Juddo Abaker

calculations to determine the theoretical yield of Cu(s) from one of the reactions, and then compare the actual yield to determine the percent yield.

Procedure

- 1. Label two 250-mL beakers "1" and "2," respectively. Record the mass of beaker 1.
- 2. Measure out the following amounts of CuCl₂*2H₂O, add to the beakers, and record the actual masses:
 - 0.50 g CuCl₂•2H₂O into beaker 1
 - 0.70 g CuCl₂•2H₂O into beaker 2
- Add 50 mL deionized H₂O to each of the beakers; gently mix the solutions until the copper salt is completely dissolved.
- 4. Measure out the following amounts of aluminum foil and add to the beakers in small pieces; record the actual masses:
 - 0.25 g Al(s) into beaker 1
 - 0.05 g Al(s) into beaker 2
- 5. Inspect the contents of each beaker and record all observations (e.g., colors, smell, bubbling, heat formation, etc.).
- 6. Stir the contents of each beaker periodically with a glass stirring rod and record any changes you observe.
- 7. Once the reactions are complete (how do you know this?), record the colors of the beaker contents and any other observations.
- 8. In beaker 1, if excess aluminum foil is still observed, then in a hood, add 6 M HCl in small portions until the foil is completely reacted.
- 9. After allowing the solid copper product to settle, decant the solution, being careful to not lose any of the copper.
- 10. Wash the copper solid with 15 mL of deionized water, let solid settle, and decant; repeat once.
- 11. Wash the copper solid with 10 mL of methanol, let solid settle, and decant.
- 12. In the hood, heat beaker 1 containing the copper solid on a hot plate at a low setting until dry. *Note:* Avoid heating at high temperatures for longer periods of time, which may cause the unwanted oxidation of the copper product.
- 13. After cooling, record the mass of beaker 1 and its contents.
- Now, take a third 250-mL beaker and add 0.70 g CuCl₂•2H₂O (record actual mass) and 50 mL deionized H₂O.
- 15. Determine how much Al(s) is needed (i.e., the stoichiometric amount) in order to completely react all of the CuCl₂. Measure this amount out (record mass) and add it to beaker in small pieces.
- 16. Record your observations initially, during the reaction, and at the conclusion of the reaction.
- 17. Dispose of the contents of the beakers as indicated by your instructor.

Data Collection 1. Mass of beaker 1:	#1 111-929 Cucl. Hz 01-129 #	Hil
2. Mass of CuCl ₂ •2H ₂ O:	Beaker 1: 509 (46) 2 Beaker 2: 509 (46) 2	
3. Mass of Al(<i>s</i>):	Beaker 1: Beaker 2:	

4. Observations for reactions:

Initial /	Beaker 1	
Initial (immediately after being mixed)		Beaker 2
Changes	bubblig All Pie	bubbling All Prece
during reaction	gaining brown Spot	gaining brown Spot
After reaction is complete	3	Spot
	No Reaction	No Reaction

- 5. Mass of beaker 1 + contents:
- 6. Mass of CuCl₂•2H₂O:

Beaker 3: Beaker 3:

- 7. Mass of Al(s):
- 8. Observations for reaction:

Y .	Beaker 3
Initial (immediately after being mixed)	
Changes	
during reaction	
After reaction	
s complete	

Analysis

9. Beaker 1 calculations:

Moles of CuCl₂•2H₂O:

Moles of Al(s):

2-5 mol

Moles of Cu(s) produced (theoretical):

Mass of Cu(s) produced (theoretical):

Mass of Cu(s) produced (actual) = (#5) = (#1):

86 Laboratory 8 Limiting Reactant Lab

X100

dien			
7	111 -	- 64 50g Cuclisho	1 1709 CUCI - 2 HO = - 29 4117 - 294 mol
7	11	10. Beaker 2 calculations:	1,170gcucl-2HO =- 294117
7	1 =	Moles of CuCl ₂ •2H ₂ O:	- 294 mol
3	00-	32 Moles of Al(s): -195 AL / Imol	0-007 mol
3	-	Moles of Cu(s) produced (theoretical):	.00/05 mol Ca
7		Moles of AlCl ₃ produced (theoretical):	·222 mol .6
7		Beaker 3 calculations:	27
3		Moles of CuCl ₂ •2H ₂ O:	
0		Moles of $Al(s)$:	
0		Moles of Cu(s) produced (theoretical):	
5			
)		Moles of AlCl ₃ produced (theoretical):	
)		Reflection Questions	
)			
,		1. For the reactions in beakers 1 and 2, each had a total material with the combination of reactants (beaker 1 or 2) will products? Explain.	produce the largest total number of moles of Produce mane Product.
	0	(b) Which combination of reactants (beaker 1 or 2) will products? Explain. Seaker 2 - 1	beaker 1 -
		2. For each reaction, what observation(s) indicated that the reaction stop—be specific? (a) Beaker 1: The bubbling Stop	reaction was complete? Also, why did each because the total amount
		of Al Consum.	
		(b) Beaker 2:	
		(s) Beaker 3:	
	100		
		0.7	

	 For each reaction, based on your calculations, which reactant was the limiting reactant? How did yo observations for each reaction reinforce your answer? (a) Beaker 1:
	(b) Beaker 2: A
	Beaker 3:
4.	Is it true that there is a limiting reactant present in grown in the state of the s
5.	Is it true that there is a limiting reactant present in any reaction that is run? Explain. Secans e of one reaction determine how For the reaction in beaker 2, what experimental errors could have possibly contributed to your percent yield? If all water was removed from beakers 1 through 3, list the chemical species that would be left in the beakers: (a) Beaker 1: Stop bubbling and soing day.
	(x) Beaker 3:

Connection

Based on your experience in this lab, draw a connection to something in your everyday life or the world around you (something not mentioned in the background section):

On observation reaction will be visualize limiting and excess reactants.