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xi  

  About This Book 

 This book grew out of my experience teaching MATLAB® and other computing 
languages to freshmen engineering students at Salt Lake Community College. 
I was frustrated by the lack of a text that “started at the beginning.” Although there 
were many comprehensive reference books, they assumed a level of both mathem-
atical and computer sophistication that my students did not possess. Also, because 
MATLAB® was originally adopted by practitioners in the fi elds of signal processing 
and electrical engineering, most of these texts provided examples primarily from 
those areas, an approach that didn’t fi t with a general engineering curriculum. 
This text starts with basic algebra and shows how MATLAB® can be used to solve 
engineering problems from a wide range of disciplines. The examples are drawn 
from concepts introduced in early chemistry and physics classes and freshman and 
sophomore engineering classes. A standard problem-solving methodology is used 
consistently. 

 The text assumes that the student has a basic understanding of college algebra 
and has been introduced to trigonometric concepts; students who are mathematically 
more advanced generally progress through the material more rapidly. Although the 
text is not intended to teach subjects such as statistics or matrix algebra, when the 
MATLAB® techniques related to these subjects are introduced, a brief background is 
included. In addition, sections describing MATLAB® techniques for solving problems 
by means of calculus and differential equations are introduced near the end of appro-
priate chapters. These sections can be assigned for additional study to students with a 
more advanced mathematics background, or they may be useful as reference material 
as students progress through an engineering curriculum. 

 The book is intended to be a “hands-on” manual. My students have been most 
successful when they read the book while sitting beside a computer and typing in the 
examples as they go. Numerous examples are embedded in the text, with more com-
plicated numbered examples included in each chapter to reinforce the concepts 
introduced. Practice exercises are included in each chapter to give students an 
immediate opportunity to use their new skills, and complete solutions are available 
online at: www.pearsonhighered.com/moore      . 

 The material is grouped into three sections. The fi rst,  An Introduction to Basic 
MATLAB® Skills , gets the student started and contains the following chapters: 

•       Chapter   1    shows how MATLAB® is used in engineering and introduces a stand-
ard problem-solving methodology.  

•      Chapter   2    introduces the MATLAB® environment and the skills required to 
perform basic computations. This chapter also introduces M-fi les, and the con-
cept of organizing code into cells. Doing so early in the text makes it easier for 
students to save their work and develop a consistent programming strategy.  

•      Chapter   3    details the wide variety of problems that can be solved with built-in 
MATLAB® functions. Background material on many of the functions is provided 
to help the student understand how they might be used. For example, the differ-
ence between Gaussian random numbers and uniform random numbers is 
described, and examples of each are presented.  

www.pearsonhighered.com/moore
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•      Chapter   4    demonstrates the power of formulating problems by using matrices 
in MATLAB® and expanding on the techniques employed to defi ne those 
matrices. The  meshgrid  function is introduced in this chapter and is used to 
solve problems with two variables. The diffi cult concept of meshing variables is 
revisited in  Chapter   5    when surface plots are introduced.  

•      Chapter   5    describes the wide variety of both two-dimensional and three-
dimensional plotting techniques available in MATLAB®. Creating plots via 
MATLAB® commands, either from the command window or from within an 
M-fi le, is emphasized. However, the extremely valuable techniques of interac-
tively editing plots and creating plots directly from the workspace window are 
also introduced. 

   MATLAB® is a powerful programming language that includes the basic 
constructs common to most programming languages. Because it is a scripting 
language, creating programs and debugging them in MATLAB® is often easier 
than in traditional programming languages such as C++. This makes MATLAB® 
a valuable tool for introductory programming classes. The second section of 
the text,  Programming in MATLAB® , introduces students to programming and 
consists of the following chapters:  

•      Chapter   6    describes how to create and use user-defi ned functions. This chapter 
also teaches students how to create a “toolbox” of functions to use in their own 
programming projects.  

•      Chapter   7    introduces functions that interact with the program user, including 
user-defi ned input, formatted output, and graphical input techniques. The use 
of MATLAB®’s debugging tools is also introduced.  

•      Chapter   8    describes logical functions such as  find  and demonstrates how they 
vary from the  if  and  if/else  structures. The  switch case  structure is also intro-
duced. The use of logical functions over control structures is emphasized, 
partly because students (and teachers) who have previous programming 
experience often overlook the advantages of using MATLAB®’s built-in mat-
rix functionality.  

•      Chapter   9    introduces repetition structures, including  for  loops,  while  loops, and 
midpoint break loops which utilize the  break  command. Numerous examples 
are included because students fi nd these concepts particularly challenging.   

  Chapters   1    through    9    should be taught sequentially, but the chapters in 
Section 3,  Advanced MATLAB® Concepts , do not depend upon each other. Any or 
all of these chapters could be used in an introductory course or could serve as ref-
erence material for self-study. Most of the material is appropriate for freshmen. A 
two-credit course might include  Chapters   1    through    9    plus  Chapter   10   , while a 
three-credit course might include  Chapters   1    through    14   , but eliminate Sections 12.4, 
12.5, 13.4, 13.5, and 13.6, which describe differentiation techniques, integration 
techniques, and solution techniques for differential equations. Chapters 15 and 
16 will be interesting to more advanced students, and might be included in a 
course delivered to sophomore or junior students instead of to freshmen. The 
skills developed in these will be especially useful as students become more 
involved in solving engineering problems: 

•       Chapter   10    discusses problem solving with matrix algebra, including dot prod-
ucts, cross products, and the solution of linear systems of equations. Although 
matrix algebra is widely used in all engineering fi elds, it fi nds early application 
in the statics and dynamics classes taken by most engineering majors.  
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•      Chapter   11    is an introduction to the wide variety of data types available in 
MATLAB®. This chapter is especially useful for electrical engineering and com-
puter engineering students.  

•      Chapter   12    introduces MATLAB®’s symbolic mathematics package, built on 
the MuPad engine. Students will fi nd this material especially valuable in math-
ematics classes. My students tell me that the package is one of the most valu-
able sets of techniques introduced in the course. It is something they start 
using immediately.  

•      Chapter   13    presents numerical techniques used in a wide variety of applica-
tions, especially curve fi tting and statistics. Students value these techniques 
when they take laboratory classes such as chemistry or physics or when they take 
the labs associated with engineering classes such as heat transfer, fl uid dynam-
ics, or strengths of materials.  

•      Chapter   14    examines graphical techniques used to visualize data. These tech-
niques are especially useful for analyzing the results of numerical analysis calcu-
lations, including results from structural analysis, fl uid dynamics, and heat 
transfer codes.  

•      Chapter   15    introduces MATLAB®’s graphical user interface capability, using the 
GUIDE application. Creating their own GUI’s gives students insight into how the 
graphical user interfaces they use daily on other computer platforms are created.  

•      Chapter   16    introduces Simulink®, which is a simulation package built on top of 
the MATLAB® platform. Simulink® uses a graphical user interface that allows 
programmers to build models of dynamic systems. Simulink® has found signifi -
cant acceptance in the fi eld of Electrical Engineering but has wide application 
across the engineering spectrum.   

  Appendix   A    lists all of the functions and special symbols (or characters) intro-
duced in the text.  Appendix   B          describes strategies for scaling data, so that the 
resulting plots are linear.  Appendix   C    includes the complete MATLAB® code to 
create the Ready_Aim_Fire graphical user interface described in  Chapter   15   . An 
instructor web -site includes the following material: 

•      M-fi les containing solutions to practice exercises  
•     M-fi les containing solutions to example problems  
•     M-fi les containing solutions to homework problems  
•     PowerPoint slides for each chapter  
•     All of the fi gures used in the text, suitable for inclusion in your own PowerPoint 

presentations  
•     A series of lectures (including narration) suitable for use with online classes or 

as reviews   

  ABOUT THE THIRD EDITION 

 New versions of MATLAB® are rolled out every 6 months, which makes keeping 
any text up-to-date a challenge. The major changes included in this edition are as 
follows: 

•      All of the screen shots throughout the book were updated to refl ect the 2011a 
release.  

•     The introduction to cell mode was moved to  Chapter   2    from  Chapter   7   . The 
description of the cell mode publishing features was expanded and updated in 
 Chapter   7   .  
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•     Information on debugging features was added to Chapters 7 and 8.  
•     Based on student and instructor feedback,  Chapter   8    was signifi cantly revised 

and split into two chapters. 
 ❍      The new  Chapter   8    introduces MATLAB®’s logical functions such as  find , 

and the more traditional selection structures  if ,  if/else , and  switch/case .  
 ❍     The new  Chapter   9    deals exclusively with repetition structures.    

•     The symbolic toolbox was changed signifi cantly in the 2007b edition, which 
required changes to the symbolic algebra materials in  Chapter   12   .  

•     Two additional chapters were added in an attempt to make the text useful to a 
wider audience. 

 ❍       Chapter   15    describes graphical user interfaces.  
 ❍      Chapter   16    is an introduction to Simulink®.    

•     Problems were added at the end of each chapter.  
•     Additional example problems were added.  
•     A number of new functions are introduced throughout the book, suggested to 

us by adopters of the text.     
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1 

     1.1   WHAT IS MATLAB ® ? 

 MATLAB ®  is one of a number of commercially available, sophisticated mathematical 
computation tools, which also include Maple, Mathematica, and MathCad. Despite 
what proponents may claim, no single one of these tools is “the best.” Each has strengths 
and weaknesses. Each allows you to perform basic mathematical computations. They 
differ in the way they handle symbolic calculations and more complicated mathemati-
cal processes, such as matrix manipulation. For example, MATLAB ®  (short for  Mat rix 
 Lab oratory) excels at computations involving matrices, whereas Maple excels at sym-
bolic calculations. At a fundamental level, you can think of these programs as sophisti-
cated computer-based calculators. They can perform the same functions as your 
scientifi c calculator—and  many more . If you have a computer on your desk, you may 
fi nd yourself using MATLAB ®  instead of your calculator for even the simplest mathe-
matical applications—for example, balancing your checkbook. In many engineering 
classes, the use of programs such as MATLAB ®  to perform computations is replacing 
more traditional computer programming. Although programs such as MATLAB ®  have 
become a standard tool for engineers and scientists, this doesn’t mean that you 
shouldn’t learn a high-level language such as C++, JAVA, or FORTRAN. 

 Because MATLAB ®  is so easy to use, you can perform many programming tasks 
with it, but it isn’t always the best tool for a programming task. It excels at numerical 
calculations—especially matrix calculations—and graphics, but you wouldn’t want to 

 After reading this chapter, you 
should be able to: 
  •   Understand what 

MATLAB ®  is and why it is 
widely used in engineering 
and science  

  •   Understand the advantages 
and limitations of the stu-
dent edition of MATLAB ®   

  •   Formulate problems by 
using a structured prob-
lem-solving approach    

     Objectives 

 About MATLAB ®  

  C H A P T E R
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use it to write a word-processing program. For large applications, such as operating 
systems or design software, C++, JAVA, or FORTRAN would be the programs of 
choice. (In fact, MATLAB ® , which  is  a large application program, was originally 
written in FORTRAN and later rewritten in C, a precursor of C++.) Usually, high-
level programs do not offer easy access to graphing—an application at which 
MATLAB ®  excels. The primary area of overlap between MATLAB ®  and high-level 
programs is “number crunching”—repetitive calculations or the processing of large 
quantities of data. Both MATLAB ®  and high-level programs are good at processing 
numbers. A “number-crunching” program is generally easier to write in MATLAB ® , 
but usually it will execute faster in C++ or FORTRAN. The one exception to this 
rule is calculations involving matrices. MATLAB ®  is optimized for matrices. Thus, if 
a problem can be formulated with a matrix solution, MATLAB ®  executes substan-
tially faster than a similar program in a high-level language.    

 MATLAB ®  is available in both a professional and a student version. The profes-
sional version is probably installed in your college or university computer laboratory, 
but you may enjoy having the student version at home. MATLAB ®  is updated regu-
larly; this textbook is based on MATLAB ®  7.12. If you are using earlier versions such 
as MATLAB ®  6, you may notice some minor differences between it and MATLAB ®  
7.12. There are substantial differences in versions that predate MATLAB ®  5.5. 

 The standard installation of the professional version of MATLAB ®  is capable of 
solving a wide variety of technical problems. Additional capability is available in the 
form of function toolboxes. These toolboxes are purchased separately, and they 
may or may not be available to you. You can fi nd a complete list of the MATLAB ®  
product family at The MathWorks web site,  www.mathworks.com .     

  1.2   STUDENT EDITION OF MATLAB ®  

 The professional and student editions of MATLAB ®  are very similar. Beginning stu-
dents probably won’t be able to tell the difference. Student editions are available for 
Microsoft Windows, Mac OSX, and Linux operating systems and can be purchased 
from college bookstores or online from The MathWorks at  www.mathworks.com . 

 The MathWorks packages its software in groups called  releases , and MATLAB ®  7.12 
is featured, along with other products, such as Simulink® 7.7, in Release R2011a. New 
versions are released every 6 months. The release number is the same for both the stu-
dent and professional edition, but the student version may lag the professional version 
by several months. The student edition of R2011a includes the following features: 

   •   Full MATLAB ®   
  •   Simulink®, with the ability to build models with up to 1000 blocks (the profes-

sional version allows an unlimited number of blocks)  
  •   Symbolic Math Toolbox  
  •   Control System Toolbox  
  •   Signal Processing Toolbox  
  •   DSP System Toolbox  
  •   Statistics Toolbox  
  •   Optimization Toolbox  
  •   Image Processing Toolbox  
  •   Software manuals for both MATLAB ®  7 and Simulink®  
  •   A CD containing the full electronic documentation  
  •   A single-user license, limited to students for use in their classwork (the profes-

sional version is licensed either singly or to a group)   

 KEY IDEA 
 MATLAB ®  is optimized for 
matrix calculations 

 KEY IDEA 
 MATLAB ®  is regularly 
updated 

www.mathworks.com
www.mathworks.com
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 Toolboxes other than those included with the student edition may be pur-
chased separately. You should be aware that if you are using a professional installa-
tion of MATLAB ® , all of the toolboxes available in the student edition may not be 
available to you. 

 The biggest difference you should notice between the professional and student 
editions is the command prompt, which is   

>>

 in the professional version and   

EDU>>

 in the student edition.  

  1.3   HOW IS MATLAB ®  USED IN INDUSTRY? 

 The ability to use tools such as MATLAB ®  is quickly becoming a requirement for 
many engineering positions. A recent job search on Monster.com found the follow-
ing advertisement: 

  . . . is looking for a System Test Engineer with Avionics experience. . . . 
Responsibilities include modifi cation of MATLAB ®  scripts, execution of 
Simulink® simulations, and analysis of the results data. Candidate MUST 
be very familiar with MATLAB ® , Simulink®, and C++. . .  

 This ad isn’t unusual. The same search turned up 660 different companies that 
specifi cally required MATLAB ®  skills for entry-level engineers. Widely used in all 
engineering and science fi elds, MATLAB ®  is particularly popular for electrical engi-
neering applications. The sections that follow outline a few of the many applica-
tions currently using MATLAB ® .    

  1.3.1   Electrical Engineering 

 MATLAB ®  is used extensively in electrical engineering for signal-processing appli-
cations. For example,  Figure   1.1    includes several images created during a research 
program at the University of Utah to simulate collision-detection algorithms used 
by the housefl y (and adapted to silicon sensors in the laboratory). The research 
resulted in the design and manufacture of a computer chip that detects imminent 
collisions. This has potential use in the design of autonomous robots using vision 
for navigation and especially in automobile safety applications.   

  1.3.2   Biomedical Engineering 

 Medical images are usually saved as dicom files (the Digital Imaging and 
Communications in Medicine standard). Dicom fi les use the fi le extension .dcm. 

 KEY IDEA 
 MATLAB ®  is widely used in 
engineering 

 Figure 1.1 
 Image processing using a 
fi sheye lens camera to 
simulate the visual system 
of a housefl y’s brain.       
  (Used by permission of 
Dr. Reid Harrison, 
University of Utah.)  
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The MathWorks offers an Image Processing Toolbox that can read these fi les, mak-
ing their data available to MATLAB ® . (The Image Processing Toolbox is included 
with the student edition and is optional with the professional edition.) The Image 
Processing Toolbox also includes a wide range of functions, many of them espe-
cially appropriate for medical imaging. A limited MRI data set that has already been 
converted to a format compatible with MATLAB ®  ships with the standard MATLAB ®  
program. This data set allows you to try out some of the imaging functions available 
both with the standard MATLAB ®  installation and with the expanded imaging tool-
box, if you have it installed on your computer.  Figure   1.2    shows six images of hori-
zontal slices through the brain based on the MRI data set.  

 The same data set can be used to construct a three-dimensional image, such as 
either of those shown in  Figure   1.3   . Detailed instructions on how to create these 
images are included in the MATLAB ®  tutorial, accessed from the help button on 
the MATLAB ®  toolbar.   

  1.3.3   Fluid Dynamics 

 Calculations describing fl uid velocities (speeds and directions) are important in a 
number of different fi elds. Aerospace engineers in particular are interested in the 
behavior of gases, both outside an aircraft or space vehicle and inside the combustion 
chambers. Visualizing the three-dimensional behavior of fl uids is tricky, but MATLAB ®  

 Figure 1.2 
 Horizontal slices through 
the brain, based on the 
sample data fi le included 
with MATLAB ® .       

 Figure 1.3 
 Three-dimensional 
visualization of MRI data, 
based on the sample data 
set included with 
MATLAB ® .       
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offers a number of tools that make it easier. In  Figure   1.4   , the fl ow-fi eld calculation 
results for a thrust-vector control device are represented as a quiver plot. Thrust-vector 
control is the process of changing the direction in which a nozzle points (and hence 
the direction a rocket travels) by pushing on an actuator (a piston-cylinder device). 
The model in the fi gure represents a high-pressure reservoir of gas (a plenum) that 
eventually feeds into the piston and thus controls the length of the actuator.    

  1.4   PROBLEM SOLVING IN ENGINEERING AND SCIENCE 

 A consistent approach to solving technical problems is important throughout engi-
neering, science, and computer programming disciplines. The approach we out-
line here is useful in courses as diverse as chemistry, physics, thermodynamics, and 
engineering design. It also applies to the social sciences, such as economics and 
sociology. Different authors may formulate their problem-solving schemes differ-
ently, but they all have the same basic format:    

   •    State the problem . 
   ❍   Drawing a picture is often helpful in this step.  
  ❍   If you do not have a clear understanding of the problem, you are not likely 

to be able to solve it.    
  •    Describe the input  values (knowns)  and  the required  outputs  (unknowns). 

   ❍   Be careful to include units as you describe the input and output values. 
Sloppy handling of units often leads to wrong answers.  

  ❍   Identify constants you may need in the calculation, such as the ideal-gas con-
stant and the acceleration due to gravity.  

  ❍   If appropriate, label a sketch with the values you have identifi ed, or group 
them into a table.    

2
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 KEY IDEA 
 Always use a systematic 
problem-solving strategy 

 Figure 1.4 
 Quiver plot of gas behavior 
in a thrust-vector control 
device.       
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  •   Develop an algorithm to solve the problem. In computer applications, this can 
often be accomplished with a  hand example . You’ll need to 
❍   Identify any equations relating the knowns and unknowns.  
❍   Work through a simplifi ed version of the problem by hand or with a calculator.    

  •    Solve  the problem. In this book, this step involves creating a  MATLAB  ®   solution .  
  •    Test the solution . 

   ❍   Do your results make sense physically?  
  ❍   Do they match your sample calculations?  
  ❍   Is your answer really what was asked for?  
  ❍   Graphs are often useful ways to check your calculations for reasonableness.     

 If you consistently use a structured problem-solving approach, such as the one 
just outlined, you’ll fi nd that “story” problems become much easier to solve. 
 Example   1.1    illustrates this problem-solving strategy. 

  THE CONVERSION OF MATTER TO ENERGY  
 Albert Einstein ( Figure   1.5   ) is arguably the most famous physicist of the 20th cen-
tury. Einstein was born in Germany in 1879 and attended school in both Germany 
and Switzerland. While working as a patent clerk in Bern, he developed his famous 
theory of relativity. Perhaps the best-known physics equation today is his 

   E � mc2   

 This astonishingly simple equation links the previously separate worlds of matter 
and energy and can be used to fi nd the amount of energy released as matter is 
changed in form in both natural and human-made nuclear reactions. 

  EXAMPLE 1.1

 Figure 1.5 
 Albert Einstein. 
(Courtesy of the Library 
of Congress, LC-
USZ62-60242.)       



 1.4 Problem Solving in Engineering and Science 7

 The sun radiates    385 � 1024 J/s    of energy, all of which is generated by nuclear 
reactions converting matter to energy. Use MATLAB ®  and Einstein’s equation to 
determine how much matter must be converted to energy to produce this much 
radiation in one day. 

   1.   State the Problem 
  Find the amount of matter necessary to produce the amount of energy radiated 

by the sun every day.  
  2.   Describe the Input and Output   

  Input    

 Energy:     E �385 �1024 J/s    which must be converted into the 
total energy radiated during one day 

 Speed of light:     c � 3.0 � 108 m/s    

  Output    
 Mass  m  in kg   

  3.   Develop a Hand Example 
 The energy radiated in one day is 

   385 � 1024 J>s � 3600 s>h � 24 h>day � 1 day � 3.33 � 1031 J   

  The equation    E � mc2    must be solved for  m  and the values for  E  and  c  substi-
tuted. We have 

     m �
E
c2    

    m �
3.33 � 1031 J

(3.0 � 108m>s)2   

     � 3.7 � 1014 
J

m2s2    

  We can see from the output criteria that we want the mass in kg, so what went 
wrong? We need to do one more unit conversion: 

    1 J � 1 kg m2>s2    

    � 3.7 � 1014
kg m2>s2

m2>s2 � 3.7 � 1014 kg    

  4.   Develop a MATLAB ®  Solution 
  At this point, you have not learned how to create MATLAB ®  code. However, 

you should be able to see from the following sample code that MATLAB ®  syn-
tax is similar to that used in most algebraic scientifi c calculators. MATLAB ®

commands are entered at the prompt (  >>  ), and the results are reported on the 
next line. The code is as follows:   

>> E=385e24  The user types in this information 
E = 

3.8500e+026  This is the computer's response 
>> E=E*3600*24 
E = 

3.3264e+031
>> c=3e8 
c = 

300000000
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>> m=E/c^2 
m = 

3.6960e+014

  From this point on, we will not show the prompt when describing interactions 
in the command window.  

5.   Test the Solution 
  The MATLAB ®  solution matches the hand calculation, but do the numbers make 

sense? Anything times    1014    is a really large number. Consider, however, that the 
mass of the sun is    2 � 1030 kg   . We can calculate how long it would take to con-
sume the mass of the sun completely at a rate of    3.7 � 1014 kg>day   . We have 

    Time �
Mass of the sun

Rate of consumption

 Time �
2 � 1030 kg

3.7 � 1014 kg>day
�

year

365 days
� 1.5 � 1013 years   

  That’s 15 trillion years! We don’t need to worry about the sun running out of 
matter to convert to energy in our lifetimes.            

>> m=E/c^2
m =

3.6960e+014

 From this point on, we will not show the prompt when describing interactions 
in the command window.

5. Test the Solution 
 The MATLAB ®  solution matches the hand calculation, but do the numbers make 
sense? Anything times    1014    is a really large number. Consider, however, that the 
mass of the sun is 2 � 1030 kg   . We can calculate how long it would take to con-
sume the mass of the sun completely at a rate of    3.7 � 1014 kg>dayaa    . We have 

Time �
Mass of the sun

Rate of consumption

Time �
2 � 1030 kg

3.7 � 1014 kg>dayaa
�

year

365 dayaa s
� 1.5 � 1013 years

 That’s 15 trillion years! We don’t need to worry about the sun running out of 
matter to convert to energy in our lifetimes. 
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     2.1   GETTING STARTED 

 Using MATLAB ®  for the fi rst time is easy; mastering it can take years. In this chapter, 
we will introduce you to the MATLAB ®  environment and show you how to perform 
basic mathematical computations. After reading this chapter, you should be able to 
start using MATLAB ®  for homework assignments or on the job. Of course, you will be 
able to do more things as you complete the rest of the chapters. 

 Because the procedure for installing MATLAB ®  depends upon your operating sys-
tem and your computing environment, we will assume that you have already installed 
MATLAB ®  on your computer or that you are working in a computing laboratory with 
MATLAB ®  already installed. To start MATLAB ®  in either the Windows or Apple envi-
ronment, click on the icon on the desktop, or use the start menu to fi nd the program. 
In the UNIX environment, type   Matlab   at the shell prompt. No matter how you start 
it, once MATLAB ®  opens, you should see the MATLAB ®  prompt  (   >>   or   EDU>>   ) , which 
tells you that MATLAB ®  is ready for you to enter a command. When you have fi nished 

 After reading this chapter, you 
should be able to: 
  •   Start the MATLAB ®  pro-

gram and solve simple 
problems in the command 
window  

  •   Understand MATLAB ® ’s 
use of matrices  

  •   Identify and use the vari-
ous MATLAB ®  windows  

  •   Defi ne and use simple 
matrices  

  •   Name and use variables  
  •   Understand the order of 

operations in MATLAB ®   

  •   Understand the difference 
between scalar, array, and 
matrix calculations in 
MATLAB ®   

  •   Express numbers in either 
fl oating-point or scientifi c 
notation  

  •   Adjust the format used to 
display numbers in the 
command window  

  •   Save the value of variables 
used in a MATLAB ®  
 session  

  •   Save a series of commands 
in an M-fi le    

     Objectives 

 MATLAB ®  
Environment 

  C H A P T E R
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your MATLAB ®  session, you can exit MATLAB ®  by typing   quit   or   exit   at the 
MATLAB ®  prompt. MATLAB ®  also uses the standard Windows menu bar, so you can 
exit the program by choosing   EXIT MATLAB  from the File menu or by selecting the 
close icon ( x ) at the upper right-hand corner of the screen. The default MATLAB ®  
screen, which opens each time you start the program, is shown in  Figure   2.1   .  

 To start using MATLAB ® , you need be concerned only with the command win-
dow (in the center of the screen). You can perform calculations in the command 
window in a manner similar to the way you perform calculations on a scientifi c cal-
culator. Even most of the syntax is the same. For example, to compute the value of 
5 squared, type the command   

5^2

 The following output will be displayed:   

ans =
25

 Or, to fi nd the value of    cos 1p2,    type   

cos(pi)

 which results in the output   

ans =
-1

 MATLAB ®  uses the standard algebraic rules for order of operation, which 
becomes important when you chain calculations together. These rules are discussed 
in Section 2.3.2. Notice that the value of pi is built into MATLAB ® , so you do not 
have to enter it yourself.   

Help Exit MATLAB
icon

Close window
and undock
window icons

Command History

Current folder

Workspace
Window

File
 Figure 2.1 
 MATLAB ®  opening 
window. The MATLAB ®  
environment consists of a 
number of windows, four of 
which open in the default 
view. Others open as 
needed during a MATLAB ®  
session.       

 KEY IDEA 
 MATLAB ®  uses the 
standard algebraic rules 
for order of operation 
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   Before going any further, try Practice Exercise 2.1. 

 HINT    
 You may think some of the examples are too simple to type in yourself—that 
just reading the material is suffi cient. However, you will remember the mate-
rial better if you both read it and type it! 

 HINT    
 You may fi nd it frustrating to learn that when you make a mistake, you cannot 
just overwrite your command after you have executed it. This occurs because 
the command window is creating a list of all the commands you have entered. 
You cannot “un-execute” a command, or “un-create” it. What you can do is 
enter the command correctly and then execute your new version.  MATLAB  ®  
offers several ways to make this easier for you. One way is to use the arrow keys, 
usually located on the right-hand side of your keyboard. The up arrow,    q,     
allows you to move through the list of commands you have executed. Once 
you fi nd the appropriate command, you can edit it and then execute your new 
version. 

  2.2   MATLAB ®  WINDOWS 

 MATLAB ®  uses several display windows. The default view, shown in  Figure   2.1   , 
includes in the middle a large  command window , located on the right, the  command 
history window  and  workspace  windows, and located on the left the  current folder win-
dow . Older versions of MATLAB ®  also included a  launch pad  window, which has 
been replaced by the  start  button in the lower left-hand corner. In addition,  docu-
ment windows ,  graphics windows , and  editing windows  will automatically open when 
needed. Each is described in the sections that follow. MATLAB ®  also includes a 
built-in help tutorial that can be accessed from the menu bar, as shown in  Figure   2.1   . 
To personalize your desktop, you can resize any of these windows, stack them on 

  PRACTICE EXERCISE 2.1 

 Type the following expressions into MATLAB ®  at the command prompt, 
and observe the results: 

    1.      5 � 2     
   2.      5 * 2     
   3.   5/2  
   4.      3 � 2 * 14 � 32     
   5.      2.54 * 8>2.6     
   6.      6.3 � 2.1045     
   7.      3.6^2     
   8.      1� 2^2     
   9.   sqrt(5)  
   10.   cos(pi)      
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top of each other, close the ones you are not using with the close icon (the  x  in the 
upper right-hand corner of each window), or “undock” them with the undock icon, 
      , also located in the upper right-hand corner of each window. You can restore the 
default confi guration by selecting Desktop on the menu bar, then navigating to 
Desktop Layout, and then to Default. 

  2.2.1   Command Window 

 The command window is located in the center pane of the default view of the 
MATLAB ®  screen, as shown in  Figure   2.1   . The command window offers an environ-
ment similar to a scratch pad. Using it allows you to save the values you calculate, 
but not the  commands  used to generate those values. If you want to save the com-
mand sequence, you will need to use the editing window to create an  M-file . M-fi les 
are described in Section 2.4.2. Both approaches are valuable. Before we introduce 
M-fi les, we will concentrate on using the command window.     

  2.2.2   Command History 

 The  command history  window records the commands you issued in the command win-
dow. When you exit MATLAB ® , or when you issue the   clc   command, the command 
window is cleared. However, the command history window retains a list of all your com-
mands. You may clear the command history with the edit menu. If you work on a pub-
lic computer, as a security precaution, MATLAB ® ’s defaults may be set to clear the 
history when you exit MATLAB ® . If you entered the earlier sample commands listed in 
this book, notice that they are repeated in the command history window. This window 
is valuable for a number of reasons, among them that it allows you to review previous 
MATLAB ®  sessions and that it can be used to transfer commands to the command 
window. For example, fi rst clear the contents of the command window by typing      

clc

 This action clears the command window but leaves the data in the command 
history window intact. You can transfer any command from the command history 
window to the command window by double-clicking (which also executes the com-
mand) or by clicking and dragging the line of code into the command window. Try 
double-clicking   

cos(pi)

 in the command history window. The command is copied into the command win-
dow and executed. It should return   

ans =
-1

 Now click and drag   

5^2

 from the command history window into the command window. The command will 
not execute until you hit Enter, and then you will get the result:   

ans =
25

 You will fi nd the command history useful as you perform more and more com-
plicated calculations in the command window.  

 KEY IDEA 
 The command window is 
similar to a scratch pad 

 KEY IDEA 
 The command history 
records all of the 
commands issued in the 
command window 
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  2.2.3   Workspace Window 

 The  workspace window  keeps track of the  variables  you have defi ned as you execute 
commands in the command window. These variables represent values stored in 
the computer memory, which are available for you to use. If you have been doing 
the examples, the workspace window should show just one variable,   ans  , and indi-
cate that it has a value of 25 and is a double array:         

 KEY IDEA 
 The workspace window 
lists information describing 
all the variables created by 
the program 

  Name    Value    Size    Bytes    Class  

         ans    25    1 �  1    8    double  

 (Your view of the workspace window may be slightly different, depending on 
how your installation of MATLAB ®  is confi gured.) 

 Set the workspace window to show more about the displayed variables by right-
clicking on the bar with the column labels. (This feature is new to MATLAB ®  7 and 
will not work if you have an older version.) Check   size   and   bytes  , in addition to 
  name  ,   value  , and   class  . Your workspace window should now display the following 
information, although you may need to resize the window to see all the columns:      

  Name    Value    Class  

         ans    25    double  

 The yellow grid-like symbol indicates that the variable   ans   is an array. The size, 
   1 � 1,    tells us that it is a single value (one row by one column) and therefore a sca-
lar. The array uses 8 bytes of memory. MATLAB ®  was written in C, and the class 
designation tells us that in the C language,   ans   is a double-precision fl oating-point 
array. For our needs, it is enough to know that the variable   ans   can store a fl oating-
point number (a number with a decimal point). Actually, MATLAB ®  considers 
every number you enter to be a fl oating-point number, whether you insert a deci-
mal point or not.    

 In addition to information about the size of the arrays and type of data stored 
in them, you can also choose to display statistical information about the data. Once 
again right click the bar in the workspace window that displays the column head-
ings. Notice that you can select from a number of different statistical measures, 
such as the max, min, and standard deviation. 

 You can defi ne additional variables in the command window, and they will be 
listed in the workspace window. For example, typing   

A = 5
 returns   

A =
5

 Notice that the variable  A  has been added to the workspace window, which lists 
variables in alphabetical order. Variables beginning with capital letters are listed 
fi rst, followed by variables starting with lowercase letters.      

 KEY IDEA 
 The default data type is 
double-precision fl oating-
point numbers stored in a 
matrix 
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 In Section 2.3.2 we will discuss in detail how to enter matrices into MATLAB ® . 
For now, you can enter a simple one-dimensional matrix by typing   

B = [1, 2, 3, 4]

 This command returns   

B =
1  2  3  4

 The commas are optional; you would get the same result with   

B = [1 2 3 4]
B =

1  2  3  4

 Notice that the variable  B  has been added to the workspace window and that it 
is a    1 � 4    array:      

  Name    Value    Size    Bytes    Class  

         A     5    1 �  1    8    double  

         ans    25    1 �  1    8    double  

  Name    Value    Size    Bytes    Class  

         A    5    1 �  1     8    double  
         B    [1 2 3 4]    1 �  4    32    double  
         ans    25    1 �  1     8    double  

  Name    Value    Size    Bytes    Class  

         A    5    1 �  1     8    double  
         B    [1 2 3 4]    1 �  4    32    double  
         C  �  3 �  4 double�    3 �  4    96    double  
         ans    25    1 �  1     8    double  

 You can defi ne two-dimensional matrices in a similar fashion. Semicolons are 
used to separate rows. For example,   

C = [1 2 3 4; 10 20 30 40; 5 10 15 20]

 returns   

C =
1   2   3   4
10  20  30  40
5   10  15  20   

 Notice that  C  appears in the workspace window as a    3 � 4    matrix. To conserve 
space, the values stored in the matrix are not listed. 
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 You can recall the values for any variable by typing in the variable name. For 
example, entering   

A

 returns   

A =
5

 Although the only variables we have introduced are matrices containing num-
bers, other types of variables are possible. 

 In describing the command window, we introduced the   clc   command. This 
command clears the command window, leaving a blank page for you to work on. 
However, it does not delete from memory the actual variables you have created. 
The   clear   command deletes all of the saved variables. The action of the   clear   
command is refl ected in the workspace window. Try it out by typing   

clear

 in the command window. The workspace window is now empty:      

  Name    Value    Size    Bytes    Class  

          

          

  Name     Size    Bytes    Class  

  A    1 � 1     8    double  
  B    1 � 4    32    double  
  C    3 � 4    96    double  
  ans    1 � 1     8    double  

 If you suppress the workspace window (closing it either from the fi le menu or 
with the close icon in the upper right-hand corner of the window), you can still fi nd 
out which variables have been defi ned by using the   whos   command:   

whos

 If executed before we entered the   clear   command,   whos   would have returned       

  2.2.4   Current Folder Window 

 The current folder window lists all the fi les in the active directory. When MATLAB ®  
either accesses fi les or saves information, it uses the current folder unless told dif-
ferently. The default for the location of the current folder varies with your version 
of the software and the way it was installed. However, the current folder is listed at 
the top of the main window. The current folder can be changed by selecting another 
directory from the drop-down list located next to the directory listing or by brows-
ing through your computer fi les. Browsing is performed with the browse button, 
located next to the drop-down list (see  Figure   2.2   ).   
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  2.2.5   Document Window 

 Double-clicking on any variable listed in the workspace window automatically 
launches a document window, containing the  variable editor . Values stored in the 
variable are displayed in a spreadsheet format. You can change values in the array 
editor, or you can add new values. For example, if you have not already entered the 
two-dimensional matrix C, enter the following command in the command window:      

C = [1 2 3 4; 10 20 30 40; 5 10 15 20];

 Placing a semicolon at the end of the command suppresses the output so that it 
is not repeated in the command window. However,  C  should now be listed in the 
workspace window. If you double-click on it, a document window will open above 
the command window, as shown in  Figure   2.3   . You can now add more values to the 
 C  matrix or change existing values.  

 The document window/variable editor can also be used in conjunction with 
the workspace window to create entirely new arrays. Run your mouse slowly over the 
icons in the shortcut bar at the top of the workspace window. If you are patient, you 
should see the function of each icon appear. The new variable icon looks like a grid 
with a large asterisk behind it. Select the new variable icon, and a new variable 
called   unnamed   should appear on the variable list. You can change its name by 
right-clicking and selecting  rename  from the pop-up menu. To add values to this 
new variable, double-click on it and add your data from the array editor window. 
The new variable button is a new feature in MATLAB ®  7; if you are using an older 
version, you will not be able to create variables this way. 

 When you are fi nished creating new variables, close the array editor by select-
ing the close window icon in the upper right-hand corner of the window.  

  2.2.6   Graphics Window 

 The graphics window launches automatically when you request a graph. To demon-
strate this feature, fi rst create an array of x values:   

x = [1 2 3 4 5];

Current folder Drop-Down
Menu and Browse Button

 Figure 2.2 
 The  Current Folder Window  
lists all the fi les in the active 
directory. You can change 
the current folder by using 
the drop-down menu or the 
browse button.       

 KEY IDEA 
 A semicolon suppresses the 
output from commands 
issued in the command 
window 
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 (Remember, the semicolon suppresses the output from this command; how-
ever, a new variable, x, appears in the workspace window.) 

 Now create a list of y values:   

y = [10 20 30 40 50];

 To create a graph, use the plot command:      

plot(x,y)

 The graphics window opens automatically (see  Figure   2.4   ). Notice that a new 
window label appears on the task bar at the bottom of the windows screen. It will be 
titled either  <Student Version> Figure…  or simply  Figure 1 , depending on whether 
you are using the student or professional version, respectively, of the software. Any 
additional graphs you create will overwrite Figure 1, unless you specifi cally com-
mand MATLAB ®  to open a new graphics window.  

 MATLAB ®  makes it easy to modify graphs by adding titles,  x  and  y  labels, multi-
ple lines, etc. Annotating graphs is covered in a separate chapter on plotting. 
Engineers and scientists  never  present a graph without labels!  

  2.2.7   Edit Window 

 To open the edit window, choose  File  from the menu bar, then  New , and, fi nally 
 Script  ( File     :      New     :      Script ). This window allows you to type and save a series of 
commands without executing them. You may also open the edit window by typing 
 edit  at the command prompt or by selecting the  New Script  button on the toolbar.  

  2.2.8   Start Button 

 The start button is located in the lower left-hand corner of the MATLAB ®  window. 
It offers alternative access to the various MATLAB ®  windows, as well as to the help 
function, Internet products, demos and MATLAB ®  toolboxes. Toolboxes provide 
additional MATLAB ®  functionality for specifi c content areas. The symbolic toolbox 
in particular is highly useful to scientists and engineers. The start button is new to 
MATLAB ®  7 and replaces the launchpad window used in MATLAB ®  6.   

New Variable
Icon

 Figure 2.3 
 The  Document Window  
displays the  Variable Editor.        

 KEY IDEA 
 Always add a title and axis 
labels to graphs 
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  2.3   SOLVING PROBLEMS WITH MATLAB ®  

 The command window environment is a powerful tool for solving engineering 
problems. To use it effectively, you will need to understand more about how 
MATLAB ®  works. 

  2.3.1   Using Variables 

 Although you can solve many problems by using MATLAB ®  like a calculator, it is 
usually more convenient to give names to the values you are using. MATLAB ®  uses 
the naming conventions that are common to most computer programs: 

   •   All names must start with a letter. The names can be of any length, but only 
the fi rst 63 characters are used in MATLAB ®  7. (Use the   namelengthmax   com-
mand to confi rm this.) Although MATLAB ®  will let you create long variable names, 
excessive length creates a signifi cant opportunity for error. A common guideline is 
to use lowercase letters and numbers in variable names and to use capital letters for 
the names of constants. However, if a constant is traditionally expressed as a lower-
case letter, feel free to follow that convention. For example, in physics textbooks the 
speed of light is always lowercase  c . Names should be short enough to remember 
and should be descriptive.  

  •   The only allowable characters are letters, numbers, and the underscore. You 
can check to see if a variable name is allowed by using the   isvarname   command. 
As is standard in computer languages, the number 1 means that something is true 
and the number 0 means false. Hence,   

isvarname time
ans =

1

 Figure 2.4 
 MATLAB ®  makes it easy to 
create graphs.       
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 indicates that   time   is a legitimate variable name, and   

isvarname cool-beans
ans =

0

 tells us that   cool-beans   is not a legitimate variable name. (Recall that the dash is 
not an allowed character.)  

  •   Names are case sensitive. The variable  x  is different from the variable  X .  

  •   MATLAB ®  reserves a list of keywords for use by the program, which you can-
not assign as variable names. The   iskeyword   command causes MATLAB ®  to list 
these reserved names:   

iskeyword
ans =
'break'
'case'
'catch'
'classdef'
'continue'
'else'
'elseif'
'end'
'for'
'function'
'global'
'if'
'otherwise'
'parfor'
'persistent'
'return'
'spmd'
'switch'
'try'
'while'

  •   MATLAB ®  allows you to reassign built-in function names as variable names. 
For example, you could create a new variable called   sin   with the command   

sin = 4

 which returns   

sin =
4

 This is clearly a dangerous practice, since the   sin   (i.e., sine) function is no longer 
available. If you try to use the overwritten function, you’ll get an error statement:   

sin(3)
??? Index exceeds matrix dimensions.

 You can check to see if a variable is a built-in MATLAB ®  function by using the 
  which   command:   

which sin
sin is a variable.
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 You can reset   sin   back to a function by typing   

clear sin

 Now when you ask   

which sin

 the response is   

built-in (C:\ProgramFiles\MATLAB\R2011a\toolbox\matlab\elfun\
 @double\sin)
% double method

 which tells us the location of the built-in function.   

  PRACTICE EXERCISE 2.2 

 Which of the following names are allowed in MATLAB ® ? Make your predic-
tions, then test them with the   isvarname  ,   iskeyword  , and   which   
 commands. 

    1.   test  
   2.   Test  
   3.   if  
   4.   my-book  
   5.   my_book  
   6.   Thisisoneverylongnamebutisitstillallowed?  
   7.   1stgroup  
   8.   group_one  
   9.   zzaAbc  
   10.   z34wAwy?12#  
   11.   sin  
   12.   log     

  2.3.2   Matrices in MATLAB ®  

 The basic data type used in MATLAB ®  is the  matrix . A single value, called a  scalar , is 
represented as a    1 � 1    matrix. A list of values, arranged in either a column or a row, 
is a one-dimensional matrix called a  vector . A table of values is represented as a two-
dimensional matrix. Although we’ll limit ourselves to scalars, vectors, and two-
dimensional matrices in this chapter, MATLAB ®  can handle higher order arrays. 
(The terms matrix and array are used interchangeably by MATLAB ®  users, even 
though they are technically different in a mathematical context.)    

 In mathematical nomenclature, matrices are represented as rows and columns 
inside square brackets:    

   A � [5] B � [2  5] C � c1
5
 

2
7
d    

 In this example,  A  is a    1 � 1    matrix,  B  is a    1 � 2    matrix, and  C  is a    2 � 2    matrix. 
The advantage in using matrix representation is that whole groups of information 
can be represented with a single name. Most people feel more comfortable assign-
ing a name to a single value, so we’ll start by explaining how MATLAB ®  handles 
scalars and then move on to more complicated matrices. 

 KEY IDEA 
 The matrix is the primary 
data type in MATLAB ®  and 
can hold numeric as well 
as other types of 
information 

 VECTOR 
 A matrix composed of a 
single row or a single 
column 
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  Scalar Operations 
 MATLAB ®  handles arithmetic operations between two scalars much as do other 
computer programs and even your calculator. The syntax for addition, subtraction, 
multiplication, division, and exponentiation is shown in  Table   2.1   . The command       

a = 1 + 2

 should be read as “  a   is assigned a value of 1 plus 2,” which is the addition of two sca-
lar quantities. Arithmetic operations between two scalar variables use the same syn-
tax. Suppose, for example that you have defi ned  a  in the previous statement and 
that   b   has a value of 5:   

b = 5

 Then   

x = a + b

 returns the following result:   

x =
8

 A single equals sign    ( � )     is called an assignment operator in MATLAB ® . The 
assignment operator causes the result of your calculations to be stored in a com-
puter memory location. In the preceding example,  x  is assigned a value of 8. If you 
enter the variable name   

x

 into MATLAB ® , you get the following result:   

x =
8

 The assignment operator is signifi cantly different from an equality. Consider 
the statement      

x = x + 1

 This is not a valid algebraic statement, since  x  is clearly not equal to  x + 1 . 
However, when interpreted as an assignment statement, it tells us to replace the cur-
rent value of  x  stored in memory with a new value that is equal to the old  x  plus  1 . 

 Since the value stored in  x  was originally 8, the statement returns   

x =
9

 SCALAR 
 A single-valued matrix 

 Table 2.1   Arithmetic Operations Between Two Scalars (Binary Operations) 

  Operation    Algebraic Syntax    MATLAB  ®   Syntax  

 Addition     a � b      a � b  

 Subtraction     a � b      a � b  
 Multiplication     a � b      a * b  

 Division     
a
b

    or    a � b      a / b  

 Exponentiation         ab          a^b  

 KEY IDEA 
 The assignment operator is 
different from an equality 
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 indicating that the value stored in the memory location named  x  has been changed 
to 9. The assignment statement is similar to the familiar process of saving a fi le. 
When you fi rst save a word-processing document, you assign it a name. Subsequently, 
after you’ve made changes, you resave your fi le, but still assign it the same name. 
The fi rst and second versions are not equal: You’ve just assigned a new version of 
your document to an existing memory location.  

  Order of Operations 
 In all mathematical calculations, it is important to understand the order in which 
operations are performed. MATLAB ®  follows the standard algebraic rules for the 
order of operation: 

   •   First perform calculations inside parentheses, working from the innermost set 
to the outermost.  

  •   Next, perform exponentiation operations.  
  •   Then perform multiplication and division operations, working from left to 

right.  
  •   Finally, perform addition and subtraction operations, working from left to 

right.   

 To better understand the importance of the order of operations, consider the 
calculations involved in fi nding the surface area of a right circular cylinder. 

 The surface area is the sum of the areas of the two circular bases and the area 
of the curved surface between them, as shown in  Figure   2.5   . If we let the height of 
the cylinder be 10 cm and the radius 5 cm, the following MATLAB ®  code can be 
used to fi nd the surface area:    

radius = 5;
height = 10;
surface_area = 2*pi*radius^2 + 2*pi*radius*height

 The code returns   

surface_area =
471.2389

 In this case, MATLAB ®  fi rst performs the exponentiation, raising the radius to 
the second power. It then works from left to right, calculating the fi rst product and 
then the second product. Finally, it adds the two products together. You could 
instead formulate the expression as   

surface_area = 2*pi*radius*(radius + height)

h

r

pr2

SA  2pr2 2prh  2pr(r h)

2prh

pr2

 Figure 2.5 
 Finding the surface area of 
a right circular cylinder 
involves addition, 
multiplication, and 
exponentiation.       
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 which also returns   

surface_area =
471.2389

 In this case, MATLAB ®  fi rst fi nds the sum of the radius and height and then 
performs the multiplications, working from left to right. If you forgot to include the 
parentheses, you would have   

surface_area = 2*pi*radius*radius + height

 in which case the program would have first calculated the product of 
  2*pi*radius*radius   and then added   height  —obviously resulting in the 
wrong answer. Note that it was necessary to include the multiplication operator 
before the parentheses, because MATLAB ®  does not assume any operators and 
would misinterpret the expression   

radius(radius + height)

 as follows. The value of radius plus height is    15 1radius � 10 and height � 52,    so 
MATLAB ®  would have looked for the 15th value in an array called radius. This 
interpretation would have resulted in the following error statement.   

??? Index exceeds matrix dimensions.

 It is important to be extra careful in converting equations into MATLAB ®  state-
ments. There is no penalty for adding extra parentheses, and they often make the 
code easier to interpret, both for the programmer and for others who may use the 
code in the future. Here’s another common error that could be avoided by liberally 
using parentheses. Consider the following mathematical expression 

   e
Q

RT    

 In MATLAB ®  the mathematical constant e is evaluated as the function,   exp  , so 
the appropriate syntax is   

exp(-Q/(R*T))

 Unfortunately, leaving out the parentheses as in   

exp(-Q/R*T)

 gives a very different result. Since the expression is evaluated from left to right, fi rst 
 Q  is divided by  R , then the result is multiplied by  T —not at all what was intended. 

 Another way to make computer code more readable is to break long expres-
sions into multiple statements. For example, consider the equation   

f �
log1ax2 � bx � c2 � sin1ax2 � bx � c2
4px2 � cos1x � 22 * 1ax2 � bx � c2

 It would be very easy to make an error keying in this equation. To minimize the 
chance of that happening, break the equation into several pieces. For example, fi rst 
assign values for   x  ,   a  ,   b  , and   c  :   

x = 9;
a = 1;
b = 3;
c = 5;
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 Then defi ne a polynomial and the denominator:   

poly = a*x^2 + b*x + c;
denom = 4*pi*x^2 + cos(x - 2)*poly;

 Combine these components into a fi nal equation:   

f = (log(poly) - sin(poly))/denom

 The result is   

f =
0.0044

 As mentioned, this approach minimizes your opportunity for error. Instead of 
keying in the polynomial three times (and risking an error each time), you need 
key it in only once. Your MATLAB ®  code is more likely to be accurate, and it’s easier 
for others to understand.    

 KEY IDEA 
 Try to minimize your 
opportunity for error 

  HINT    
 MATLAB ®  does not read “white space,” so you may add spaces to your com-
mands without changing their meaning. A long expression is easier to read if 
you add a space before and after plus    1�2    signs and minus    1�2    signs but not 
before and after multiplication    1*2    and division (/) signs.  

  PRACTICE EXERCISES 2.3 

 Predict the results of the following MATLAB ®  expressions, then check your 
predictions by keying the expressions into the command window: 

    1.      6>6 � 5     
   2.      2 * 6^2     
   3.      13 � 52 * 2     
   4.      3 � 5 * 2     
   5.      4 * 3 >  2 * 8     
   6.      3 � 2>4 � 6^2     
   7.      2^3^4     
   8.      2^13^42     
   9.      3^5 � 2     
   10.      3^15 � 22      
 Create and test MATLAB ®  syntax to evaluate the following expressions, 
then check your answers with a handheld calculator. 

       11. 
5 � 3
9 � 1

     

      12. 23 �
4

5 � 3
     

      13. 
52�1

4 � 1
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      14. 4 

1
2
 * 5 

2
3

     

      15. 
5 � 6 * 

7
3

� 22

2
3
 * 

3
3 * 6

       

  SCALAR OPERATIONS 
 Wind tunnels (see  Figure   2.6   ) play an important role in our study of the behavior of 
high-performance aircraft. In order to interpret wind tunnel data, engineers need 
to understand how gases behave. The basic equation describing the properties of 
gases is the ideal gas law, a relationship studied in detail in freshman chemistry 
classes. The law states that 

     PV � nRT     

 where  P     �     pressure in kPa, 
 V     �     volume in    m3,     
n     �     number of kmoles of gas in the sample,  
   R     �     ideal gas constant,    8.314 kPa m3/kmol K,    and  
   T     �     temperature, expressed in kelvins (K).   

 In addition, we know that the number of kmoles of gas is equal to the mass of 
the gas divided by the molar mass (also known as the molecular weight) or 

   n � m >MW   

 where 
       m     �     mass in kg and  
    MW    �     molar mass in kg/kmol.   

 Different units can be used in the equations if the value of  R  is changed 
 accordingly. 

  EXAMPLE 2.1

 Figure 2.6 
 Wind tunnels are used to 
test aircraft designs. (Louis 
Bencze/Getty Images Inc., 
Stone Allstock.)       

(continued )
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 Now suppose you know that the volume of air in the wind tunnel is    1000 m3
 .

Before the wind tunnel is turned on, the temperature of the air is 300 K, and the 
pressure is 100 kPa. The average molar mass (molecular weight) of air is approxi-
mately 29 kg/kmol. Find the mass of the air in the wind tunnel. 

 To solve this problem, use the following problem-solving methodology: 

1.   State the Problem 
   When you solve a problem, it is a good idea to restate it in your own words: 
  Find the mass of air in a wind tunnel.  
2.   Describe the Input and Output   

  Input     

 Volume     V � 1000 m3    
 Temperature     T � 300 K    
 Pressure     P � 100 kPa    
 Molecular weight     MW � 29 kg>kmol    
 Gas constant     R � 8.314 kPa m3

 >  kmol K    

  Output     

 Mass     m � ? kg    

  3.   Develop a Hand Example 
  Working the problem by hand (or with a calculator) allows you to outline an 

algorithm, which you can translate to MATLAB ®  code later. You should choose 
simple data that make it easy to check your work. In this problem, we know two 
equations relating the data: 

    PV � nRT      ideal gas law 
        n � m >  MW     relationship between mass and moles 

  Solve the ideal gas law for  n , and plug in the given values: 

   n � PV >  RT    

    �
100 kPa � 1000 m3

8.314 kPa m3>kmol K � 300K
   

    � 40.0930 kmol    

  Convert moles to mass by solving the conversion equation for the mass  m  and 
plugging in the values: 

    m � n � MW � 40.0930 kmol � 29 kg/mol   

    m � 1162.70 kg     

  4.   Develop a MATLAB ®  Solution 
  First, clear the screen and memory:   

clear, clc

   Now perform the following calculations in the command window:    

P = 100
P =

100
T = 300
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T =
300

V = 1000
V =

1000
MW = 29
MW =

29
R = 8.314
R =

8.3140
n = (P*V)/(R*T)
n =

40.0930
m = n*MW
m =

1.1627e+003

  There are several things you should notice about this MATLAB ®  solution. First, 
because no semicolons were used to suppress the output, the values of the varia-
bles are repeated after each assignment statement. Notice also the use of paren-
theses in the calculation of  n . They are necessary in the denominator, but not in 
the numerator. However, using parentheses in both makes the code easier to read.  

  5.   Test the Solution 
  In this case, comparing the result with that obtained by hand is suffi cient. More 

complicated problems solved in MATLAB ®  should use a variety of input data, 
to confi rm that your solution works in a variety of cases. The MATLAB ®  screen 
used to solve this problem is shown in  Figure   2.7   .  

 Figure 2.7 
 MATLAB ®  screen used to 
solve the ideal gas 
problem.       

(continued )
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 Notice that the variables defi ned in the command window are listed in the 
workspace window. Notice also that the command history lists the commands 
executed in the command window. If you were to scroll up in the command his-
tory window, you would see commands from previous MATLAB ®  sessions. All of 
these commands are available for you to move to the command window.     

  Array Operations 
 Using MATLAB ®  as a glorifi ed calculator is fi ne, but its real strength is in matrix 
manipulations. As described previously, the simplest way to defi ne a matrix is to use 
a list of numbers, called an  explicit list . The command      

x = [1 2 3 4]

 returns the row vector   

x =
1 2 3 4

 Recall that, in defi ning this vector, you may list the values either with or without 
commas. A new row is indicated by a semicolon, so a column vector is specifi ed as   

y = [1; 2; 3; 4]

 and a matrix that contains both rows and columns is created with the statement   

a = [1 2 3 4; 2 3 4 5 ; 3 4 5 6]

 and will return   

a =
1 2 3 4
2 3 4 5
3 4 5 6

 EXPLICIT LIST 
 A list identifying each 
member of a matrix 

  HINT    
 It’s easier to keep track of how many values you’ve entered into a matrix if 
you enter each row on a separate line—the semicolon is optional.   

 a = [1 2 3 4;           
2 3 4 5;

3 4 5 6] 

 While a complicated matrix might have to be entered by hand, evenly spaced 
matrices can be entered much more readily. The command   

b = 1:5

 and the command   

b = [1:5]

 are equivalent statements. Both return a row matrix   

b =
1 2 3 4 5
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 (The square brackets are optional.) The default increment is 1, but if you want 
to use a different increment, put it between the fi rst and fi nal values on the right 
side of the command. For example,   

c = 1:2:5

 indicates that the increment between values will be 2 and returns   

c =
1   3   5

 If you want MATLAB ®  to calculate the spacing between elements, you may use 
the   linspace   command. Specify the initial value, the fi nal value, and how many 
total values you want. For example,   

d = linspace(1, 10, 3)

 returns a vector with three values, evenly spaced between 1 and 10:   

d =
1   5.5   10

 You can create logarithmically spaced vectors with the   logspace   command ,  
which also requires three inputs. The fi rst two values are powers of 10 representing 
the initial and fi nal values in the array. The fi nal value is the number of elements in 
the array. Thus,   

e = logspace(1, 3, 3)

 returns three values:   

e =
10 100 1000

 Notice that the fi rst element in the vector is    101    and the last element in the 
array is    103.    

  HINT    
 New MATLAB ®  users often err when using the   logspace   command by enter-
ing the actual fi rst and last values requested, instead of the corresponding 
power of 10. For example,   

logspace(10,100,3)

 is interpreted by MATLAB ®  as: Create a vector from    1010    to    10100    with three 
values. The result is   

ans =
1.0e+100 *
0.0000 0.0000 1.0000

 A common multiplier    11 � 101002    is specifi ed for each result, but the fi rst 
two values are so small in comparison to the third, that they are effectively 0.  
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 Matrices can be used in many calculations with scalars. If   a = [ 1 2 3 ]  , we 
can add 5 to each value in the matrix with the syntax   

b = a + 5

 which returns   

b =
6  7  8

 This approach works well for addition and subtraction; however, multiplication 
and division are a little different. In matrix mathematics, the multiplication opera-
tor    1*2    has a specifi c meaning. Because all MATLAB ®  operations can involve matri-
ces, we need a different operator to indicate element-by-element multiplication. 
That operator is .*   (called  dot multiplication or array multiplication ). For example,      

a.*b

 results in element 1 of matrix   a   being multiplied by element 1 of matrix   b  , 
 element 2 of matrix   a   being multiplied by element 2 of matrix   b  , 
 element  n  of matrix   a   being multiplied by element  n  of matrix   b  . 

 For the particular case of our   a   (which is  [1 2 3] ) and our   b   (which is  [6 7 8] ),   

a.*b

 returns   

ans =
6   14   24

 (Do the math to convince yourself that these are the correct answers.) 
 When you multiply a scalar times an array you may use either operator ( *  or  .* ), 

but when you multiply two arrays together they mean something quite different. Just 
using   *   implies a matrix multiplication, which in this case would return an error mes-
sage, because   a   and   b   here do not meet the rules for multiplication in matrix algebra. 
The moral is, be careful to use the correct operator when you mean element-by- 
element multiplication. 

 Similar syntax holds for exponentiation (  .^  ) and element-by-element division 
(  ./  ) of individual elements:      

a.^2
a./b

 Unfortunately, when you divide a scalar by an array you still need to use the  ./  
syntax, because the  /  means taking the matrix inverse to MATLAB ® . As a general 
rule, unless you specifi cally are doing problems involving linear algebra (matrix 
mathematics), you should use the dot operators. 

 As an exercise, predict the values resulting from the preceding two expressions, 
and then test your predictions by executing the commands in MATLAB ® . 

 KEY IDEA 
 Matrix multiplication is 
different from element-by-
element multiplication 

  HINT    
 You can include mathematical operations inside a matrix defi nition state-
ment. For example, you might have           

  HINT    
 You can include mathematical operations inside a matrix defi nition state-
ment. For example, you might have a = [0 : pi/10 : pi].           

 KEY IDEA 
 Unless you are specifi cally 
performing matrix algebra 
calculations, use the dot 
operators 
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 The matrix capability of MATLAB ®  makes it easy to do repetitive calculations. 
For example, suppose you have a list of angles in degrees that you would like to 
convert to radians. First put the values into a matrix. For angles of 10, 15, 70, and 
90, enter      

degrees = [10 15 70 90];

 To change the values to radians, you must multiply by    p>180:      

radians = degrees*pi/180

 This command returns a matrix called   radians  , with the values in radians. (Try 
it!) In this case, you could use either the   *   or the   .*   operator, because the multiplica-
tion involves a single matrix (  degrees  ) and two scalars (pi and 180). Thus, you could 
have written   

radians = degrees.*pi/180

  PRACTICE EXERCISES 2.4 

 As you perform the following calculations, recall the difference between 
the    *    and    . *    operators, as well as the / and ./ and the       ̂  and .^        operators: 

    1.   Defi ne the matrix    a � [2.3  5.8  9]    as a MATLAB ®  variable.  
   2.   Find the sine of   a  .  
   3.   Add 3 to every element in   a  .  
   4.   Defi ne the matrix    b � [5.2 3.14 2]    as a MATLAB ®  variable.  
   5.   Add together each element in matrix   a   and in matrix  b .  
   6.   Multiply each element in   a   by the corresponding element in   b  .  
   7.   Square each element in matrix   a  .  
   8.   Create a matrix named  c  of evenly spaced values from 0 to 10, with an 

increment of 1.  
   9.   Create a matrix named   d   of evenly spaced values from 0 to 10, with an 

increment of 2.  
   10.   Use the   linspace   function to create a matrix of six evenly spaced 

values from 10 to 20.  
   11.   Use the   logspace   function to create a matrix of fi ve logarithmically 

spaced values between 10 and 100.    

 KEY IDEA 
 The matrix capability of 
MATLAB ®  makes it easy to 
do repetitive calculations 

  HINT    
 The value of    p    is built into MATLAB ®  as a fl oating-point number called   pi  . 

 Because    p    is an irrational number, it cannot be expressed  exactly  with a 
fl oating-point representation, so the MATLAB ®  constant   pi   is really an 
approximation. You can see this when you fi nd sin(pi)  . From trigonome-
try, the answer should be 0. However, MATLAB ®  returns a very small number, 
1.2246e–016. In most calculations, this won’t make a difference in the fi nal 
result.  
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 Another useful matrix operator is transposition. The transpose operator 
changes rows to columns and vice versa. For example,   

degrees'

 returns   

ans =
10
15
70
90

 This makes it easy to create tables. For example, to create a table that converts 
degrees to radians, enter   

table = [degrees', radians']

 which tells MATLAB ®  to create a matrix named   table  , in which column 1 is 
degrees and column 2 is radians:   

table =
10.0000  0.1745
15.0000  0.2618
70.0000  1.2217
90.0000  1.5708

 If you transpose a two-dimensional matrix, all the rows become columns and all 
the columns become rows. For example, the command   

table'

 results in   

10.0000  15.0000  70.0000  90.0000
0.1745   0.2618    1.2217   1.5708

 Note that   table   is not a MATLAB ®  command but merely a convenient variable 
name. We could have used any meaningful name, say,  conversions  or  degrees_to_radians.

  MATRIX CALCULATIONS WITH SCALARS 
 Scientifi c data, such as data collected from wind tunnels, is usually in SI (Système 
International) units. However, much of the manufacturing infrastructure in the 
United States has been tooled in English (sometimes called American Engineering 
or American Standard) units. Engineers need to be fl uent in both systems and 
should be especially careful when sharing data with other engineers. Perhaps the 
most notorious example of unit confusion problems is the Mars Climate Orbiter 
( Figure   2.8   ), which was the second fl ight of the Mars Surveyor Program. The 
spacecraft burned up in the orbit of Mars in September of 1999 because of a 
lookup table embedded in the craft’s software. The table, probably generated 
from wind-tunnel testing, used pounds force (lbf) when the program expected 
values in newtons (N).  

  EXAMPLE 2.2
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 In this example, we’ll use MATLAB ®  to create a conversion table of pounds 
force to newtons. The table will start at 0 and go to 1000 lbf, at 100-lbf intervals. The 
conversion factor is 

   1 lbf � 4.4482216 N   

   1.   State the Problem 
  Create a table converting pounds force (lbf) to newtons (N).  
  2.   Describe the Input and Output   

  Input    

 The starting value in the table is  0 lbf 
 The fi nal value in the table is  1000 lbf 
 The increment between values is  100 lbf 
 The conversion from lbf to N is     1 lbf � 4.4482216 N    

  Output

Table listing pounds force (lbf) and newtons (N)    

  3.   Develop a Hand Example 
  Since we are creating a table, it makes sense to check a number of different 

values. Choosing numbers for which the math is easy makes the hand example 
simple to complete, but still valuable as a check: 

  0    *       4.4482216 � 0     
  100    *       4.4482216 � 444.82216     
  1000    *       4.4482216 � 4448.2216      

4.   Develop a MATLAB ®  Solution   

clear, clc
lbf = [0:100:1000];
N = lbf * 4.44822;
[lbf',N']
ans =

1.0e+003 *
  0      0
0.1000    0.4448
0.2000    0.8896
0.3000    1.3345

 Figure 2.8 
 Mars Climate Orbiter. 
(Courtesy of NASA/Jet 
Propulsion Laboratory.)       

In this example, we’ll use MATLAB ® to create a conversion table of pounds 
force to newtons. The table will start at 0 and go to 1000 lbf, at 100-lbf intervals. The 
conversion factor is 

1 lbf � 4.4482216 N

1. State the Problem 
 Create a table converting pounds force (lbf) to newtons (N).  

2. Describe the Input and Output   

Input  

The starting value in the table is  0 lbf 
The fi nal value in the table is  1000 lbf 
The increment between values is  100 lbf 
The conversion from lbf to N is 1 lbf � 4.4482216 N

Output

Table listing pounds force (lbf) and newtons (N)

3.   Develop a Hand Example 
 Since we are creating a table, it makes sense to check a number of different 
values. Choosing numbers for which the math is easy makes the hand example 
simple to complete, but still valuable as a check: 

  0 * 4.4482216 � 0
  100 * 4.4482216 � 444.82216
  1000 * 4.4482216 � 4448.2216

4. Develop a MATLAB ®  Solution

clear, clc
lbf = [0:100:1000];
N = lbf * 4.44822;
[lbf',N']
ans =

1.0e+003 *
 0      0

0.1000    0.4448
0.2000    0.8896
0.3000    1.3345

 Figure 2.8 
 Mars Climate Orbiter. 
(Courtesy of NASA/Jet 
Propulsion Laboratory.)

(continued )
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0.4000    1.7793
0.5000    2.2241
0.6000    2.6689
0.7000    3.1138
0.8000    3.5586
0.9000    4.0034
1.0000    4.4482

  It is always a good idea to clear both the workspace and the command window 
before starting a new problem. Notice in the workspace window ( Figure   2.9   ) 
that   lbf   and  N  are    1 � 11    matrices and that   ans   (which is where the table we 
created is stored) is an    11 � 2    matrix. The output from the fi rst two commands 
was suppressed by adding a semicolon at the end of each line. It would be very 
easy to create a table with more entries by changing the increment to 10 or 
even to 1. Notice also that you’ll need to multiply the results shown in the table 
by 1000 to get the correct answers. MATLAB ®  tells you that this is necessary 
directly above the table, where the common scale factor is shown.   

  5.   Test the Solution 
  Comparing the results of the MATLAB ®  solution with the hand solution shows 

that they are the same. Once we’ve verifi ed that our solution works, it’s easy to 
use the same algorithm to create other conversion tables. For instance, modify 
this example to create a table that converts newtons (N) to pounds force (lbf), 
with an increment of 10 N, from 0 N to 1000 N.    

Common Scale
Factor

 Figure 2.9 
 The MATLAB ®  workspace 
window shows the 
variables as they are 
created.       
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  CALCULATING DRAG 
 One performance characteristic that can be determined in a wind tunnel is drag. 
The friction related to drag on the Mars Climate Observer (caused by the atmos-
phere of Mars) resulted in the spacecraft’s burning up during course corrections. 
Drag is extremely important in the design of terrestrial aircraft as well (see 
 Figure   2.10   ).  

 Drag is the force generated as an object, such as an airplane, moves through a 
fl uid. Of course, in the case of a wind tunnel, air moves past a stationary model, but 
the equations are the same. Drag is a complicated force that depends on many fac-
tors. One factor is skin friction, which is a function of the surface properties of the 
aircraft, the properties of the moving fl uid (air in this case), and the fl ow patterns 
caused by the shape of the aircraft (or, in the case of the Mars Climate Observer, by 
the shape of the spacecraft). Drag can be calculated with the drag equation 

drag � Cd 
rV 2A

2

 where    Cd       �      drag coeffi cient, which is determined experimentally, usually in a 
wind tunnel, 

        r �     air density,  
V     �     velocity of the aircraft,  
     A     �     reference area (the surface area over which the air fl ows).   

 Although the drag coeffi cient is not a constant, it can be taken to be constant at 
low speeds (less than 200 mph). Suppose the following data were measured in a 
wind tunnel:   

 drag  20,000 N 
r    1 � 10�6 kg >  m3    
  V   100 mph (you’ll need to convert this to meters per second) 
  A  1 m2    

 Calculate the drag coeffi cient. Finally, use this experimentally determined drag 
coeffi cient to predict how much drag will be exerted on the aircraft at velocities 
from 0 mph to 200 mph. 

  EXAMPLE 2.3

Weight
Thrust

Lift
Drag

 Figure 2.10 
 Drag is a mechanical force 
generated by a solid object 
moving through a fl uid.       

(continued )
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1.   State the Problem 
  Calculate the drag coeffi cient on the basis of the data collected in a wind tun-

nel. Use the drag coeffi cient to determine the drag at a variety of velocities.  
2.   Describe the Input and Output   

  Input     

 Drag  20,000 N 
 Air density    r        1 � 10�6 kg >  m3    
 Velocity  V   100 mph 
 Surface area  A      1 m2    

  Output    

 Drag coeffi cient 
 Drag at velocities from 0 to 200 mph 

  3.   Develop a Hand Example 
  First fi nd the drag coeffi cient from the experimental data. Notice that the 

velocity is in miles/h and must be changed to units consistent with the rest of 
the data (m/s). The importance of carrying units in engineering calculations 
cannot be overemphasized! 

    Cd �
drag � 2

r � V 2 � A
   

    �
120,000 N � 22

1 � 10�6 kg>m3 � a100 miles>h � 0.4470 
m>s

miles>h
b2

� 1m2

   

    � 2.0019 � 107    

  Since a newton is equal to a    kg m >  s2,    the drag coeffi cient is dimensionless. 
  Now use the drag coeffi cient to fi nd the drag at different velocities: 

   drag � Cd � r � V 2 � A>2   

  Using a calculator, fi nd the value of the drag with    V � 200 mph :    

   drag �

2.0019 � 107 � 1 � 10�6 kg>m3 � a200 miles>h � 0.4470 
m>s

miles>h
b2

� 1 m2

2
   

    drag � 80,000 N     

  4.   Develop a MATLAB ®  Solution   

drag = 20000;  Defi ne the variables, and    
density = 0.000001; change  V  to SI units.
velocity = 100*0.4470;
area = 1;
cd = drag*2/(density*velocity^2*area) Calculate the coeffi cient    
cd = of drag.
2.0019e+007
velocity = 0:20:200; Redefi ne  V  as a matrix.    
velocity = velocity*0.4470; Change it to SI units and

calculate the drag.
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drag = cd*density*velocity.^2*area/2; 
table = [velocity', drag']
table =
1.0e+004 *
0 0

0.0009  0.0800
0.0018  0.3200
0.0027  0.7200
0.0036  1.2800
0.0045  2.0000
0.0054  2.8800
0.0063  3.9200
0.0072  5.1200
0.0080  6.4800
0.0089  8.0000

 Notice that the equation for drag, or   

drag = cd * density * velocity.^2 * area/2;

 uses the   .^   operator, because we intend that each value in the matrix   veloc-
ity   be squared, not that the entire matrix   velocity   be multiplied by itself. 
Using just the exponentiation operator    1^2    would result in an error message. 
We could have used the  .*  operator as well in places where  *  was used, but since 
all the other quantities are scalars it doesn’t matter. Unfortunately, it is possible 
to compose problems in which using the wrong operator does not give us an 
error message but does give us a wrong answer. This makes step 5 in our 
 problem-solving methodology especially important.  

 Figure 2.11 
 The command history 
window creates a record of 
previous commands.       

(continued )
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5.   Test the Solution 
  Comparing the hand solution with the MATLAB ®  solution ( Figure   2.11   ), we 

see that they give the same results. Once we have confi rmed that our algorithm 
works with sample data, we can substitute new data and be confi dent that the 
results will be correct. Ideally, the results should also be compared with experi-
mental data, to confi rm that the equations we are using accurately model the 
real physical process.       

  2.3.3   Number Display      

  Scientifi c Notation 
 Although you can enter any number in decimal notation, that isn’t always the best 
way to represent very large or very small numbers. For example, a number that is 
used frequently in chemistry is Avogadro’s constant, whose value, to four signifi cant 
digits, is 602,200,000,000,000,000,000,000. Similarly, the diameter of an iron atom is 
approximately 140 picometers, which is 0.000000000140 m. Scientifi c notation 
expresses a value as a number between 1 and 10, multiplied by a power of 10 (the 
exponent). Thus, Avogadro’s number becomes    6.022 � 1023,    and the diameter of 
an iron atom,    1.4 � 10�10    m. In MATLAB ® , values in scientifi c notation are desig-
nated with an  e  between the decimal number and the exponent. (Your calculator 
probably uses similar notation.) For example, you might have   

Avogadro's_constant = 6.022e23;
Iron_diameter = 140e-12; or 
Iron_diameter = 1.4e-10;

 It is important to omit blanks between the decimal number and the exponent. 
For instance, MATLAB ®  will interpret   

6.022 e23

 as two values (6.022 and    1023   ). Since putting two values in an assignment statement 
is an error, MATLAB ®  will generate the message:   

Error: Unexpected MATLAB® expression.

 SCIENTIFIC NOTATION 
 A number represented as a 
value between one and ten 
times ten to an appropriate 
power 

 KEY IDEA 
 MATLAB ®  does not 
differentiate between 
integers and fl oating-point 
numbers, unless special 
functions are invoked 

  HINT    
 Although it is a common convention to use e to identify a power of 10, stu-
dents (and teachers) sometimes confuse this nomenclature with the mathe-
matical constant  e , which is equal to 2.7183. To raise  e  to a power, use the   exp   
function, for example   exp(3) is equivalent to    e3.      

  Display Format      
 A number of different display formats are available in MATLAB ® . No matter which 
display format you choose, MATLAB ®  uses double-precision fl oating-point num-
bers in its calculations, which results in approximately 16 decimal digits of preci-
sion. Changing the display format does not change the accuracy of the results. 
Unlike some other computer programs, MATLAB ®  handles both integers and deci-
mal numbers as fl oating-point numbers. 
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 When elements of a matrix are displayed in MATLAB ® , integers are always 
printed without a decimal point. However, values with decimal fractions are printed 
in the default short format that shows four digits after the decimal point. Thus,      

A = 5

 returns   

A =
5

 but   

A = 5.1

 returns   

A =
5.1000

 and   

A = 51.1

 returns   

A =
51.1000

 MATLAB ®  allows you to specify other formats that show additional digits. For 
example, to specify that you want values to be displayed in a decimal format with 
15 digits after the decimal point, use the command   

format long

 which changes all subsequent displays. Thus, with   format long   specifi ed,   

A

 now returns   

A =
51.100000000000001

 Notice that the fi nal digit in this case is 1, which represents a round-off error. 
Two decimal digits are displayed when the format is specifi ed as   format bank :   

A =
51.10

 The bank format displays only real numbers, so it’s not appropriate when com-
plex numbers need to be represented. Thus the command   

A = 5+3i

 returns the following using bank format   

A =
5.00

 Using   format long   the same command returns   

A =
5.000000000000000 + 3.000000000000000i

 KEY IDEA 
 No matter what display 
format is selected, 
calculations are performed 
using double-precision 
fl oating-point numbers 
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 You can return the format to four decimal digits with the command   

format short

 To check the results, recall the value of  A :   

A
A =

5.0000 + 3.0000i

 When numbers become too large or too small for MATLAB ®  to display in the 
default format, it automatically expresses them in scientifi c notation. For example, 
if you enter Avogadro’s constant into MATLAB ®  in decimal notation as   

a = 602000000000000000000000

 the program returns   

a =
6.0200e+023

 You can force MATLAB ®  to display  all  numbers in scientifi c notation with   format 
short e   (with four decimal digits) or   format long E   (with 15 decimal digits). For 
instance,   

format short e
x = 10.356789

 returns   

x =
1.0357e+001

 Another pair of formats that are often useful to engineers and scientists,   format 
short eng   and   format long eng  , are similar to scientifi c notation but require the 
power of 10 to be a multiple of three. This corresponds to common naming conven-
tions. For example, 

   1 millimeter � 1 � 10�3 meters   

   1 micrometer � 1 � 10�6 meters   

   1 nanometer � 1 � 10�9 meters   

   1 picometer � 1 � 10�12 meters   

 Consider the following example. First change to engineering format and then 
enter a value for  y .   

format short eng
y = 12000

 which gives the result   

y =
12.0000e+003

 When a matrix of values is sent to the screen, and if the elements become very 
large or very small, a common scale factor is often applied to the entire matrix. This 
scale factor is printed along with the scaled values. For example, when the com-
mand window is returned to   

format short
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 the results from  Example   2.3    are displayed as   

table =
1.0e+005 *

0      0
0.0002   0.0400
0.0004   0.1602
0.0006   0.3603
0.0008   0.6406   etc . . .

 Two other formats that you may occasionally fi nd useful are   format +   and 
  format rat  . When a matrix is displayed in   format +  , the only characters printed 
are plus and minus signs. If a value is positive, a plus sign will be displayed; if a value 
is negative, a minus sign will be displayed. If a value is zero, nothing will be dis-
played. This format allows us to view a large matrix in terms of its signs:   

format +
B = [1, -5, 0, 12; 10005, 24, -10,4]
B =

+- +
++-+

 The   format rat   command displays numbers as rational numbers (i.e., as 
fractions). Thus,      

format rat
x = 0:0.1:0.5

 returns   

x =
0  1/10  1/5  3/10  2/5  1/2

 If you’re not sure which format is the best for your application, you may select 
  format short g   or   format long g  . This format selects the best of fi xed-point 
or  fl oating-point representations. 

 The   format   command also allows you to control how tightly information is 
spaced in the command window. The default (  format loose  ) inserts a line feed 
between user-supplied expressions and the results returned by the computer. The 
  format compact   command removes those line feeds. The examples in this text 
use the compact format to save space.  Table   2.2    shows how the value of    p    is dis-
played in each format.  

 RATIONAL NUMBER 
 A number that can be 
represented as a fraction 

 Table 2.2   Numeric Display Formats 

  MATLAB  ®   Command    Display    Example  

  format short   4 decimal digits   3.1416  
      123.4568  

  format long   14 decimal digits   3.14159265358979  
      1.234567890000000e+002  

  format short e   4 decimal digits   3.1416  e  +000  
   scientifi c notation   1.2346e+002  

  format long e   14 decimal digits   3.141592653589793  e  +000  
   scientifi c notation   1.234567890000000e+002  

(Continued)
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 If none of these predefi ned numeric display formats is right for you, you can 
control individual lines of output with the   fprintf   function, described in a later 
chapter.    

  2.4   SAVING YOUR WORK 

 Working in the command window is similar to performing calculations on your sci-
entifi c calculator. When you turn off the calculator or when you exit the program, 
your work is gone. It  is  possible to save the  values  of the variables you defi ned in the 
command window and that are listed in the workspace window, but while doing so 
is useful, it is more likely that you will want to save the list of commands that gener-
ated your results. The   diary   command allows you to do just that. Also we will show 
you how to save and retrieve variables (the results of the assignments you made and 
the calculations you performed) to MAT-fi les or to DAT-fi les. Finally we’ll introduce 
script M-fi les, which are created in the edit window. Script M-fi les allow you to save 
a list of commands and to execute them later. You will fi nd script M-fi les especially 
useful for solving homework problems. When you create a program in MATLAB ® , 
it is stored in an M-fi le. 

  2.4.1   Diary 

 The diary function allows you to record a MATLAB ®  session in a fi le and retrieve it 
for later review. Both the MATLAB ®  commands and the results are stored— 
including all your mistakes. To activate the diary function simply type 

diary

 or 

diary on

 at the command prompt. To end a recording session type   diary   again, or   diary
off.  A fi le named diary should appear in the current folder. You can retrieve the 
fi le by double-clicking on the fi le name in the current folder window. An editor win-
dow will open with the recorded commands and results. You can also open the fi le 

  MATLAB  ®   Command    Display    Example  

  format bank   2 decimal digits   3.14  
   only real values are displayed   

  format short eng   4 decimal digits   3.1416  e  +000  
   engineering notation   123.4568e+000  

  format long eng   14 decimal digits   3.141592653589793  e  +000  
   engineering notation   123.456789000000e+000  

  format +      �, �,    blank   +  

  format rat   fractional form   355/113  

  format short g   MATLAB ®  selects the best format   3.1416  
      123.46  

  format long g   MATLAB ®  selects the best format   3.14159265358979  
      123.456789  

Table 2.2 (Continued)
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in any text editor, such as Notepad. Subsequent sessions are added to the end of the 
fi le. If you prefer to store the diary session in a different fi le, specify the fi lename   

diary' <filename>

 or   

diary('filename')

 In this text we’ll use angle brackets    (< >)    to indicate user-defi ned names. Thus, to 
save a diary session in a fi le named My_diary_fi le type   

diary My_diary_file

 or   

diary('My_diary_file')

  2.4.2   Saving Variables 

 To preserve the variables you created in the  command window  (check the  work-

space window  on the left-hand side of the MATLAB ®  screen for the list of variables), 
you must save the contents of the  workspace window  to a fi le. The default format is 
a binary fi le called a MAT-fi le. To save the workspace (remember, this is just the 
variables, not the list of commands in the command window) to a fi le, type   

save <file_name>

 at the prompt. Recall that, although   save   is a MATLAB ®  command,  file_name  is a 
user-defi ned fi le name. It can be any name you choose, as long as it conforms to the 
naming conventions for variables in MATLAB ® . Actually, you don’t even need to 
supply a fi le name. If you don’t, MATLAB ®  names the fi le  matlab.mat . You could 
also choose 

File : Save Workspace As

 from the menu bar, which will then prompt you to enter a fi le name for your data. 
To restore a workspace, type 

load <file_name>

 Again,   load   is a MATLAB ®  command, but  file_name  is the user-defi ned fi le 
name. If you just type   load  , MATLAB ®  will look for the default  matlab.mat  fi le. 

 The fi le you save will be stored in the current folder. 
 For example, type   

clear, clc

 This command will clear both the workspace and the command window. Verify 
that the workspace is empty by checking the workspace window or by typing   

whos

 Now defi ne several variables—for example,   

a = 5;
b = [1,2,3];
c = [1, 2; 3,4];

 Check the workspace window once again to confi rm that the variables have 
been stored. Now, save the workspace to a fi le called my_example_fi le:   

save my_example_file

 Confi rm that a new fi le has been stored in the current folder. If you prefer to save 
the fi le to another directory (for instance, onto a fl ash drive), use the browse button 
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(see  Figure   2.2   ) to navigate to the directory of your choice. Remember that in a pub-
lic computer lab the current folder is probably purged after each user logs off the 
system. 

 Now, clear the workspace and command window by typing   

clear, clc

 The workspace window should be empty. You can recover the missing variables 
and their values by loading the fi le (my_example_fi le.mat) back into the workspace:   

load my_example_file

 The fi le you want to load must be in the current folder, or MATLAB ®  won’t be 
able to fi nd it. In the command window, type   

a

 which returns   

a =
5

 Similarly,   

b

 returns   

b =
1 2 3

 and typing   

c

 returns   

c =
1 2
3 4

 MATLAB ®  can also store individual matrices or lists of matrices into a fi le in the 
current folder with the command   

save <file_name> <variable_list>

 where  file_name  is the user-defi ned fi le name designating the location in memory 
at which you wish to store the information, and  variable_list  is the list of variables to 
be stored in the fi le. For example,   

save my_new_file a b

 would save just the variables   a   and   b   into  my_new_file.mat . 
 If your saved data will be used by a program other than MATLAB ®  (such as C or 

C++), the .mat format is not appropriate, because .mat files are unique to 
MATLAB ® . The ASCII format is standard between computer platforms and is more 
appropriate if you need to share fi les. MATLAB ®  allows you to save fi les as ASCII 
fi les by modifying the save command to   

save <file_name> <variable_list> -ascii



2.4 Saving Your Work 45

 The command   -ascii   tells MATLAB ®  to store the data in a standard eight-
digit text format. ASCII fi les should be saved into a .dat fi le or .txt fi le instead of a 
.mat fi le; be sure to add .the extension to your fi le name:      

save my_new_file.dat a b -ascii

 If you don’t add .dat, MATLAB ®  will default to .mat. 
 If more precision is needed, the data can be stored in a 16-digit text format:      

save file_name variable_list -ascii -double

 You can retrieve the data from the current folder with the load command:   

load <file_name>

 For example, to create the matrix   z   and save it to the fi le  data_2.dat  in eight-
digit text format, use the following commands:   

z = [5 3 5; 6 2 3];
save data_2.dat z –ascii

 Together, these commands cause each row of the matrix  z  to be written to a 
separate line in the data fi le. You can view the data_2.dat fi le by double-clicking the 
fi le name in the current folder window (see  Figure   2.12   ). Perhaps the easiest way to 
retrieve data from an ASCII .dat fi le is to enter the  load  command followed by the 
fi le name. This causes the information to be read into a matrix with the same name 
as the data fi le. However, it is also quite easy to use MATLAB ® ’s interactive Import 
Wizard to load the data. When you double-click a data fi le name in the current 
folder to view the contents of the fi le, the Import Wizard will automatically launch. 
Just follow the directions to load the data into the workspace, with the same name 
as the data fi le. You can use this same technique to import data from other pro-
grams, including Excel spreadsheets, or you can select  File     :      Import Data . . .  
from the menu bar.   

  2.4.3   Script M-Files 

 Using the command window for calculations is an easy and powerful tool. However, 
once you close the MATLAB ®  program, all of your calculations are gone. Fortunately, 
MATLAB ®  contains a powerful programming language. As a programmer, you can 
create and save code in fi les called M-fi les. These fi les can be reused anytime you 
wish to repeat your calculations. An M-fi le is an ASCII text fi le similar to a C or 
FORTRAN source-code fi le. It can be created and edited with the MATLAB ®  M-fi le 

 ASCII 
 Binary data storage format 

 KEY IDEA 
 When you save the 
workspace, you save only 
the variables and their 
values; you do not save the 
commands you’ve executed 

 Figure 2.12 
 Double-clicking the fi le 
name in the command 
directory launches the 
Import Wizard.       
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editor/debugger (the edit window discussed in Section 2.2.7), or you can use 
another text editor of your choice. To open the editing window, select 

File : New : Script

 from the MATLAB ®  menu bar, or select the New Script icon, located directly below 
the fi le menu. The MATLAB ®  edit window is shown in  Figure   2.13   . Many program-
mers prefer to dock the editing window onto the MATLAB ®  desktop, using the 
docking arrow in the upper right-hand corner of the window. This allows you to 
see both the contents of the M-fi le and the results displayed when the program is 
executed. The results from an M-fi le program are displayed in the command win-
dow.  

 If you choose a different text editor, make sure that the fi les you save are ASCII 
fi les. Notepad is an example of a text editor that defaults to an ASCII fi le structure. 
Other word processors, such as WordPerfect or Word, will require you to specify the 
ASCII structure when you save the fi le. These programs default to proprietary fi le 
structures that are not ASCII compliant and may yield some unexpected results if 
you try to use code written in them without specifying that the fi les be saved in 
ASCII format. 

 When you save an M-fi le, it is stored in the current folder. You’ll need to name 
your fi le with a valid MATLAB ®  variable name—that is, a name starting with a letter 
and containing only letters, numbers, and the underscore    1_2.    Spaces are not 
allowed (see Section 2.3.1).    

 There are two types of M-fi les, called scripts and functions. A script M-fi le is simply 
a list of MATLAB ®  statements that are saved in a fi le with a .m fi le extension. The script 
can use any variables that have been defi ned in the workspace, and any variables cre-
ated in the script are added to the workspace when the script executes. You can exe-
cute a script created in the MATLAB ®  edit window by selecting the Save and Run icon 
from the menu bar, as shown in  Figure   2.13   . (The Save and Run icon changed appear-
ance with MATLAB ®  7.5. Previous versions of the program used an icon similar to an 
exclamation point.) You can also execute a script by typing a fi le name or by using the 
run command from the command window as shown in   Table   2.3   . No matter how you 
do it, you can only run an M-fi le if it is in the current folder.    

  You can fi nd out what M-fi les and MAT fi les are in the current folder by typing   
what

 into the command window. You can also browse through the current folder by look-
ing in the current folder window. 

 Using script M-fi les allows you to work on a project and to save the list of com-
mands for future use. Because you will be using these fi les in the future, it is a good 

The Save and
Run Icon

The docking
arrow

 Figure 2.13 
 The MATLAB ®  edit window, 
also called the editor/
debugger.       

 M-FILE 
 A list of MATLAB ®  
commands stored in a 
separate fi le 

 KEY IDEA 
 The two types of M-fi les are 
scripts and functions 
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idea to sprinkle them liberally with comments. The comment operator in MATLAB ®  
is the percentage sign, as in   

% This is a comment

 MATLAB ®  will not execute any code on a commented line. 
 You can also add comments after a command, but on the same line:   

a = 5 %The variable a is defined as 5

 Here is an example of MATLAB ®  code that could be entered into an M-fi le and 
used to solve  Example   2.3    :   

clear, clc
% A Script M-file to find Drag
% First define the variables
drag = 20000; %Define drag in Newtons
density= 0.000001; %Define air density in kg/m^3
velocity = 100*0.4470; %Define velocity in m/s
area = 1; %Define area in m^2
% Calculate coefficient of drag
cd = drag *2/(density*velocity^2*area)
% Find the drag for a variety of velocities
velocity = 0:20:200; %Redefine velocity
velocity = velocity*.4470 %Change velocity to m/s
drag = cd*density*velocity.^2*area/2;  %Calculate drag
table = [velocity',drag'] %Create a table of results

 This code can be run either from the M-fi le or from the command window. The 
results will appear in the command window in either case, and the variables will be 
stored in the workspace. The advantage of an M-fi le is that you can save your pro-
gram to run again later.    

 Table 2.3   Approaches to Executing a Script M-File from the Command Window 

  MATLAB  ®   Command    Comments  

  myscript   Type the fi le name, for example  myscript . The .m fi le extension is assumed. 
  run myscript   Use the run command with the fi le name. 
  run('myscript')   Use the functional form of the run command. 

  HINT    
 You can execute a portion of an M-fi le by highlighting a section and then 
right-clicking and selecting  Evaluate Section . You can also comment or 
“uncomment” whole sections of code from this menu; doing so is useful when 
you are creating programs while you are still debugging your work. 

  Example   2.4    uses a script M-fi le to fi nd the velocity and acceleration that a 
spacecraft might reach in leaving the solar system.  

 KEY IDEA 
 Liberally comment 
MATLAB® code 
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  CREATING AN M-FILE TO CALCULATE THE 
ACCELERATION OF A SPACECRAFT 
 In the absence of drag, the propulsion power requirements for a spacecraft are 
determined fairly simply. Recall from basic physical science that 

   F � ma   

 In other words, force ( F ) is equal to mass ( m ) times acceleration ( a ). Work ( W ) 
is force times distance ( d ), and since power ( P ) is work per unit time, power 
becomes force times velocity ( v ): 

    W � Fd    

    P �
W
t

� F �
d
t

� F � v � m � a � v   

 This means that the power requirements for the spacecraft depend on its mass, 
how fast it’s going, and how quickly it needs to speed up or slow down. If no power 
is applied, the spacecraft just keeps traveling at its current velocity. As long as we 
don’t want to do anything quickly, course corrections can be made with very little 
power. Of course, most of the power requirements for spacecraft are not related to 
navigation. Power is required for communication, for housekeeping, and for sci-
ence experiments and observations. 

 The  Voyager 1  and  2  spacecraft explored the outer solar system during the last 
quarter of the 20th century (see  Figure   2.14   ).  Voyager 1  encountered both Jupiter 
and Saturn;  Voyager 2  not only encountered Jupiter and Saturn but continued on to 
Uranus and Neptune. The  Voyager  program was enormously successful, and the 
 Voyager  spacecraft continue to gather information as they leave the solar system. 
The power generators (low-level nuclear reactors) on each spacecraft are expected 
to function until at least 2020. The power source is a sample of plutonium-238, 
which, as it decays, generates heat that is used to produce electricity. At the launch 
of each spacecraft, its generator produced about 470 watts of power. Because the 
plutonium is decaying, the power production had decreased to about 335 watts 
in 1997, almost 20 years after launch. This power is used to operate the science 

  EXAMPLE 2.4

 Figure 2.14 
 The  Voyager 1  and 
Voyager 2  spacecraft were 
launched in 1977 and 
have since left the solar 
system. (Courtesy of 
NASA/Jet Propulsion 
Laboratory.)       
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package, but if it were diverted to propulsion, how much acceleration would it pro-
duce in the spacecraft?  Voyager 1  is currently traveling at a velocity of 3.50 AU/year 
(an AU is an astronomical unit), and  Voyager 2  is traveling at 3.15 AU/year. Each 
spacecraft weighs 721.9 kg.  

   1.   State the Problem 
  Find the acceleration that is possible with the power output from the spacecraft 

power generators.  
  2.   Describe the Input and Output   

  Input  

    Mass � 721.9 kg    
    Power � 335 watts � 335 J >  s    
    Velocity � 3.50 AU >  year 1Voyager 12    
    Velocity � 3.15 AU >  year 1Voyager 22    
  Output  

 Acceleration of each spacecraft, in m/s/s 

  3.   Develop a Hand Example 
  We know that 

   P � m � a � v   

 which can be rearranged to give 

   a �
P

m � v
    

 The hardest part of this calculation will be keeping the units straight. First let’s 
change the velocity to m/s. For  Voyager 1 , 

   v � 3.50
AU
year

�
150 � 109m

AU
�

year

365 days
�

day

24 h
�

h
3600 s

� 16,650 m /s   

 Then we calculate the acceleration: 

   a �
335 J>s � 1 kg � m2>s2J

721.9 kg � 16,650 m>s
� 2.7 � 10�5 m>s2    

  4.   Develop a MATLAB ®  Solution   

clear, clc
% Example   2.4   
%Find the possible acceleration of the Voyager 1
%and Voyager 2 Spacecraft using the on board power
%generator
format short
mass=721.9;        %mass in kg
power=335;         %power in watts
velocity=[3.5 3.15];   %velocity in AU/year
%Change the velocity to m/sec
velocity=velocity*150e9/365/24/3600
%Calculate the acceleration
acceleration=power./(mass.*velocity)

(continued )
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  To evaluate the program, select the Save and Run icon. The results are printed 
in the command window, as shown in  Figure   2.15   .   

5.   Test the Solution 
  Compare the MATLAB ®  results with the hand example results. Notice that the 

velocity and acceleration calculated from the hand example and the MATLAB ®

solution for  Voyager 1  match. The acceleration seems quite small, but applied 
over periods of weeks or months such an acceleration can achieve signifi cant 
velocity changes. For example, a constant acceleration of    2.8 � 10�5 m >  s2

results in a velocity change of about 72 m/s over the space of a month: 

2.8 � 10�5 m >  s2 � 3600 s >  h   

�  24 h >  day � 30 days >  month � 72.3 m >  s      

  Now that you have a MATLAB ®  program that works, you can use it as the start-
ing point for other, more complicated calculations.  

Results are reported
in the command
window

M-file code

 Figure 2.15 
 The results of an M-fi le 
execution print into the 
command window. The 
variables created are 
refl ected in the workspace 
and the M-fi le is listed in 
the current folder window. 
The commands issued in 
the M-fi le are not mirrored 
in the command history.       

  2.4.4   Cell Mode 

 New to MATLAB ®  7 is a utility that allows the user to divide M-fi les into sections, or 
cells, that can be executed one at a time. This feature is particularly useful as you 
develop MATLAB ®  programs. To activate the cell mode, select    

Cell : Enable Cell Mode

 from the menu bar in the edit window, as shown in  Figure   2.16   . Once the cell mode 
has been enabled, the cell toolbar appears, as shown in  Figure   2.17   .      

 To divide your M-fi le program into cells, you can create cell dividers by using a 
double percentage sign followed by a space. If you want to name the cell, just add a 
name on the same line as the cell divider:      

%% Cell Name

 KEY IDEA 
 Cell mode is new to 
MATLAB ®  7 

 KEY IDEA 
 Cell mode allows you to 
execute portions of the 
code incrementally 

 CELL 
 A section of MATLAB ®  
code located between cell 
dividers (%%) 
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 It’s important to include the space after the double percentage sign (%%). If you 
don’t, the line is recognized as a comment, not a cell divider. 

 Once the cell dividers are in place, if you position the cursor anywhere inside 
the cell, the entire cell turns pale yellow. For example, in  Figure   2.17   , the fi rst four 
lines of the M-fi le program make up the fi rst cell. Now we can use the evaluation 
icons on the cell toolbar to evaluate a single section, evaluate the current section 
and move on to the next section, or evaluate the entire fi le. Also on the cell toolbar 
is an icon that lists all the cell titles in the M-fi le, as shown in  Figure   2.18   .  

  Figure   2.18    shows the fi rst 14 lines of an M-fi le written to solve some homework 
problems. By dividing the program into cells, it was possible to work on each prob-
lem separately. Be sure to save any M-fi les you’ve developed this way by selecting 
 Save  or  Save As  from the fi le menu: 

File : Save

 or 

File : Save As

Cell Menu

 Figure 2.16 
 You can access the cell 
mode from the menu bar in 
the edit window .      

Cell
Toolbar

Cell Dividers

 Figure 2.17 
 The cell toolbar allows the 
user to execute one cell, or 
section, at a time.       
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 The reason for using these commands is that in cell mode, the program is not 
automatically saved every time you run it. 

 Dividing a homework M-fi le into cells offers a big advantage to the person who 
must evaluate it. By using the  evaluate cell and advance  function, the grader can 
step through the program one problem at a time. Even more important, the pro-
grammer can divide a complicated project into manageable sections and evaluate 
these sections independently.    

 Figure 2.18 
 The show cell titles icon lists 
all the cells in the M-fi le.       

     SUMMARY 

 In this chapter, we introduced the basic MATLAB ®  structure. The MATLAB ®  envi-
ronment includes multiple windows, four of which are open in the default view: 

   •   Command window  
  •   Command history window  
  •   Workspace window  
  •   Current folder window   

 In addition, the 

   •   Document window  
  •   Graphics window  
  •   Edit window   

 open as needed during a MATLAB ®  session. 
 Variables defi ned in MATLAB ®  follow common computer naming conventions: 

   •   Names must start with a letter.  
  •   Letters, numbers, and the underscore are the only characters allowed.  
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  •   Names are case sensitive.  
  •   Names may be of any length, although only the fi rst 63 characters are used by 

MATLAB ® .  
  •   Some keywords are reserved by MATLAB ®  and cannot be used as variable names.  
  •   MATLAB ®  allows the user to reassign function names as variable names, although 

doing so is not good practice.   

 The basic computational unit in MATLAB ®  is the matrix. Matrices may be 

   •   Scalars (   1 � 1    matrix)  
  •   Vectors (   1 � n    or    n � 1    matrix, either a row or a column)  
  •   Two-dimensional arrays (   m � n    or    n � m   )  
  •   Multidimensional arrays   

 Matrices often store numeric information, although they can store other kinds 
of information as well. Data can be entered into a matrix manually or can be 
retrieved from stored data fi les. When entered manually, a matrix is enclosed in 
square brackets, elements in a row are separated by either commas or spaces, and a 
new row is indicated by a semicolon:   

a = [1 2 3 4; 5 6 7 8]

 Evenly spaced matrices can be generated with the colon operator. Thus, the 
command   

b = 0:2:10

 creates a matrix starting at 0, ending at 10, and with an increment of 2. The   lin-
space   and   logspace   functions can be used to generate a matrix of specifi ed 
length from given starting and ending values, spaced either linearly or logarithmi-
cally. The   help   function or the MATLAB ®  Help menu can be used to determine 
the appropriate syntax for these and other functions. 

 MATLAB ®  follows the standard algebraic order of operations. The operators 
supported by MATLAB ®  are listed in the “MATLAB ®  Summary” section of this 
chapter. 

 MATLAB ®  supports both standard (decimal) and scientifi c notation. It also 
supports a number of different display options, described in the “MATLAB ®  
Summary” section. No matter how values are displayed, they are stored as double-
precision fl oating-point numbers. 

 MATLAB ®  variables can be saved or imported from either .MAT or .DAT fi les. 
The .MAT format is proprietary to MATLAB ®  and is used because it stores data 
more effi ciently than other fi le formats. The .DAT format employs the standard 
ASCII format and is used when data created in MATLAB ®  will be shared with other 
programs. 

 Collections of MATLAB ®  commands can be saved in script M-fi les. This is the 
best way to save the list of commands used to solve a problem so that they can be 
reused at a later time. Cell mode allows the programmer to group M-fi le code into 
sections and to run each section individually. It is especially convenient when one 
M-fi le is used to solve multiple problems. 
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  MATLAB ®  SUMMARY 

 The following MATLAB ®  summary lists all the special characters, commands, and 
functions that were defi ned in this chapter:   

  Special Characters    

  [ ]   forms matrices 

   ( )   used in statements to group operations 

   used with a matrix name to identify specifi c elements 

  ,   separates subscripts or matrix elements 

  ;   separates rows in a matrix defi nition 

   suppresses output when used in commands 

  :   used to generate matrices 

   indicates all rows or all columns 

  =   assignment operator assigns a value to a memory location; 

   not the same as an equality 

  %   indicates a comment in an M-fi le 

  %%   cell divider 

  +   scalar and array addition 

  -   scalar and array subtraction 

  *   scalar multiplication and multiplication in matrix algebra 

  .*   array multiplication (dot multiply or dot star) 

  /   scalar division and division in matrix algebra 

  ./   array division (dot divide or dot slash) 

  ̂    scalar exponentiation and matrix exponentiation in matrix algebra 

  .^   array exponentiation (dot power or dot caret) 

  Commands and Functions    

  ans   default variable name for results of MATLAB ®  calculations 

  ascii   indicates that data should be saved in standard ASCII format 

  Clc   clears command window 

  Clear   clears workspace 

  Diary   creates a copy of all the commands issued in the workspace window, and 
most of the results 

  exit   terminates MATLAB ®  

  format +   sets format to plus and minus signs only 

  format compact   sets format to compact form 

  format long   sets format to 14 decimal places 

  format long e   sets format to scientifi c notation with 14 decimal places 

  format long eng   sets format to engineering notation with 14 decimal places 

  format long g   allows MATLAB ®  to select the best format (either fi xed point or fl oating 
point), using 14 decimal digits 

  format loose   sets format to the default, noncompact form 

  format short   sets format to the default, 4 decimal places 

  format short e   sets format to scientifi c notation with 4 decimal places 

  format short eng   sets format to engineering notation with 4 decimal places 
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  Commands and Functions    

  format short g   allows MATLAB ®  to select the best format (either fi xed point or fl oating 
point), using 4 decimal digits 

  format rat   sets format to rational (fractional) display 

  help   invokes help utility 

  linspace   linearly spaced vector function 

  load   loads matrices from a fi le 

  logspace   logarithmically spaced vector function 

  namelengthmax   fi nds the maximum variable name length 

  pi   numeric approximation of the value of    p     

  quit   terminates MATLAB ®  

  save   saves variables in a fi le 

  who   lists variables in memory 

  whos   lists variables and their sizes 

 arguments 
 array 
 array editor 
 array operators 
 ASCII 
 assignment 
 cell mode 
 command history 
 command window 

 current folder 
 document window 
 dot operators 
 edit window 
 function 
 graphics window 
 M-fi le 
 matrix 
 operator 

 prompt 
 scalar 
 scientifi c notation 
 script 
 start button 
 transpose 
 vector 
 workspace  

  KEY TERMS 

  PROBLEMS 

 You can either solve these problems in the command window, using MATLAB ®  as an elec-
tronic calculator, or you can create an M-fi le of the solutions. If you are solving these prob-
lems as a homework assignment, or if you want to keep a record 
of your work, the best strategy is to use an M-fi le, divided into cells with the cell divider %%. 

  Getting Started  

   2.1    Predict the outcome of the following MATLAB ®  calculations: 

   1 � 3>4   
   5 * 6 * 4 >  2   
   5 >  2 * 6 * 4   
   5^2*3   
   5^(2*3)   
   1 � 3 � 5>5 � 3 � 1   
   11 � 3 � 52 15 � 3 � 12   

   Check your results by entering the calculations into the command window.   
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  Using Variables  

   2.2    Identify which name in each of the following pairs is a legitimate MATLAB ®  
variable name:   

 fred  fred! 
 book_1  book-1 
 2ndplace  Second_Place 
 #1  No_1 
 vel_5  vel.5 
 tan  while 

    Test your answers by using   isvarname  —for example,   

isvarname fred

  Remember,   isvarname   returns a 1 if the name is valid and a 0 if it is not. 
Although it is possible to reassign a function name as a variable name, doing 
so is not a good idea. Use   which   to check whether the preceding names are 
function names—for example,   

which sin

  In what case would MATLAB ®  tell you that   sin   is a variable name, not a 
function name?   

  Scalar Operations and Order of Operations  

   2.3    Create MATLAB ®  code to perform the following calculations: 
   52   

   
5 � 3
5 # 6    

   24 � 63  (Hint: A square root is the same thing as a 1/2 power.)   

   9
6
12

 �  7 # 53 � 2   

   1 �  5 # 3 >  62 �  22 � 4 # 1 >  5.5   

  Check your code by entering it into MATLAB ®  and performing the 
calculations on your scientifi c calculator.   

   2.4 As you answer the following questions, consider the shapes shown in 
Figure P2.4.

         (a)    The area of a circle is    pr2.    Defi ne  r  as 5, then fi nd the area of a circle, 
using MATLAB ® .  

  (b)    The surface area of a sphere is    4pr2.    Find the surface area of a sphere 
with a radius of 10 ft.  

  (c)    The volume of a sphere is    4/3pr3.    Find the volume of a sphere with a 
radius of 2 ft.        

   2.5        As you answer the following questions, consider the shape shown in 
Figure P2.5.

  (a)    The area of a square is the edge length squared    1A � edge22   . Defi ne 
the edge length as 5, then fi nd the area of a square, using MATLAB ® .  

  (b)    The surface area of a cube is 6 times the edge length squared 
   1SA � 6 � edge22   . Find the surface area of a cube with edge length 10.  

  (c)    The volume of a cube is the edge length cubed    1V � edge32   . Find the 
volume of a cube with edge length 12.        

   2.6    Consider the barbell shown in  Figure   P2.6   . 

r

 Figure P2.4(a)         

e

e

 Figure P2.5 (a–c) 

        

 Figure P2.6 
 The geometry of a barbell can 
be modeled as two spheres 
and a cylindrical rod.       
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   (a)    Find the volume of the fi gure, if the radius of each sphere is 10 cm, the 
length of the bar connecting them is 15 cm, and the diameter of the 
bar is 1 cm. Assume that the bar is a simple cylinder.  

  (b)   Find the surface area of the fi gure.      
   2.7.    The ideal gas law was introduced in  Example   2.1   . It describes the relation-

ship between pressure ( P ), temperature ( T  ), volume ( V  ), and the number 
of moles of gas ( n ). 

   PV � nRT    

  The additional symbol,  R , represents the ideal gas constant. The ideal gas 
law is a good approximation of the behavior of gases when the pressure is 
low and the temperature is high. (What constitutes low pressure and high 
temperature varies with different gases.) In 1873, Johannes Diderik van der 
Waals ( Figure   P2.7   ) proposed a modifi ed version of the ideal gas law that 
better models the behavior of real gases over a wider range of temperature 
and pressure. 

   aP �
n2a
V 2 b 1V � nb2 � nRT    

 In this equation the additional variables  a  and  b  represent values 
characteristic of individual gases. 

 Use both the ideal gas law and van der Waals’ equation to calculate the 
temperature of water vapor (steam), given the following data.   

 Pressure,  P   220 bar   
 Moles,  n   2 mol   
 Volume, V  1 L   
  a      5.536 L2bar >  mol2        *    
  B   0.03049 L/mol     *    
 Ideal gas constant,  R   0.08314472 L bar/K mol   

 * Source  : Weast, R. C. (Ed.),  Handbook of Chemistry and Physics 
(53rd Edn.) , Cleveland: Chemical Rubber Co., 1972. 

  Array Operations  

   2.8        (a)    The volume of a cylinder is    pr2h.    Defi ne  r  as 3 and  h  as the matrix 

    h = [1, 5, 12]   

  Find the volume of the cylinders (see  Figure   P2.8a   ).  

  (b)    The area of a triangle is    1/2    the length of the base of the triangle, times 
the height of the triangle. Defi ne the base as the matrix 

    b = [2, 4, 6]   

    and the height  h  as 12, and find the area of the triangles (see 
 Figure   P2.8b   ).  

  (c)    The volume of any right prism is the area of the base of the prism, times 
the vertical dimension of the prism. The base of the prism can be any 
shape—for example, a circle, a rectangle, or a triangle. 

    Find the volume of the prisms created from the triangles of part (b). 
Assume that the vertical dimension of these prisms is 6 (see  Figure   P2.8c   ).        

h

r

 Figure P2.8(a)         

h

b

 Figure P2.8(b)         



58 Chapter 2 MATLAB ®  Environment

base is
a circle

base is a
rectangle

base is a
triangle

 Figure P2.8(c)         

   2.9    The response of circuits containing resistors, inductors, and capacitors 
depends upon the relative values of the resistors and the way they are con-
nected. An important intermediate quantity used in describing the response 
of such circuits is  s . Depending on the values of  R ,  L , and  C , the values of  s  
will be either both real values, a pair of complex values, or a duplicated 
value.  

R

L�100 mHC�1 �F

 Figure P2.9 
 Series circuit.       

 The equation that identifi es the response of a particular series circuit 
( Figure   P2.9   ) is 

   S � �
R
2L

	 A a R
2L
b2

�
1

LC
   

   (a)   Determine the values of  s  for a resistance of 800 Ω.  
  (b)    Create a vector of values for  R  ranging from 100 to 1000Ω and evaluate  s . 

Refi ne your values of  R  until you fi nd the approximate size of resistor 
that yields a pure real value of  s . Describe the effect on  s  as  R  increases in 
value.   

  Hint :
   1 μF = 1e-6F  
  1 mH = 1e-3H      

   2.10    The equation that identifi es the response parameter,  s , of the parallel cir-
cuit shown in  Figure   P2.10    is 

   S � �
1

2RC
	 A a 1

2RC b2
�

1
LS

   

   (a)   Determine the values of  s  for a resistance of 200 Ω.  
  (b)    Create a vector of values for  R  ranging from 100 to 1000 Ω and evaluate  s . 

Refi ne your values of  R  until you fi nd the size of resistor that yields a pure 
real value of  s . Describe the effect on  s  as  R  decreases.      
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R

L�.64 H

t � 0

I

C�1 �F

 Figure P2.10 
 Parallel circuit.       

   2.11    Burning one gallon of gasoline in your car produces 19.4 pounds of    CO2.    
Calculate the amount of    CO2    emitted during a year for the following vehi-
cles, assuming they all travel 12,000 miles per year. The reported fuel- 
effi ciency numbers were extracted from the manufacturers’ websites based 
on the EPA 2010 criteria; they are an average of the city and highway 
 estimates.   

 2010  Smart Car Fortwo  37 mpg 
 2010  Civic Coupe  29 mpg 
 2010  Civic Hybrid  43 mpg 
 2010  Chevrolet Cobalt  31 mpg 
 2010  Toyota Prius (Hybrid)  48 mpg 
 2010  Toyota Yaris  32 mpg 

   2.12        (a)    Create an evenly spaced vector of values from 1 to 20 in increments of 1.  
    (b)    Create a vector of values from zero to    2p    in increments of    p >  10.     
    (c)    Create a vector containing 15 values, evenly spaced between 4 and 20. ( Hint : 

Use the   linspace   command. If you can’t remember the syntax, type 
  help linspace .)  

    (d)    Create a vector containing 10 values, spaced logarithmically between 
10 and 1000. ( Hint : Use the   logspace   command.)     

   2.13         (a)    Create a table of conversions from feet to meters. Start the feet column 
at 0, increment it by 1, and end it at 10 feet. (Look up the conversion 
factor in a textbook or online.)  

    (b)    Create a table of conversions from radians to degrees. Start the radians 
column at 0 and increment by    0.1p    radian, up to    p    radians. (Look up 
the conversion factor in a textbook or online.)  

    (c)    Create a table of conversions from mi/h to ft/s. Start the mi/h column 
at 0 and end it at 100 mi/h. Print 15 values in your table. (Look up the 
conversion factor in a textbook or online.)  

    (d)    The acidity of solutions is generally measured in terms of  p H. The  p H 
of a solution is defi ned as    - log10    of the concentration of hydronium 
ions. Create a table of conversions from concentration of hydronium 
ion to  p H, spaced logarithmically from .001 to .1 mol/liter with 10 val-
ues. Assuming that you have named the concentration of hydronium 
ions   H_conc  , the syntax for calculating the negative of the logarithm 
of the concentration (and thus the pH) is   

pH = -log10(H_conc)
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   2.14    The general equation for the distance that a freely falling body has traveled 
(neglecting air friction) is 

   d �
1
2
 gt2   

  Assume that    g � 9.8 m >  s2.    Generate a table of time versus distance traveled 
for values of time from 0 to 100 seconds. Choose a suitable increment for 
your time vector. ( Hint : Be careful to use the correct operators;    t2    is an array 
operation!)   

   2.15    In direct current applications, electrical power is calculated using Joule’s 
law as 

   P � VI    

 where  P  is power in watts 
    V  is the potential difference, measured in volts  
   I  is the electrical current, measured in amperes   

 Joule’s law can be combined with Ohm’s law 

   V � IR   

 to give 

   P � I 2R   

 where  R  is resistance measured in ohms. 
 The resistance of a conductor of uniform cross section (a wire or rod 

for example) is 

   R � r
l
A

   

 where 
    r  is the electrical resistivity measured in ohm-meters  
   l  is the length of the wire  
  A is the cross-sectional area of the wire   

 This results in the equation for power 

   P � I 2r 
l
A

   

 Electrical resistivity is a material property that has been tabulated for many 
materials. For example   

  Material    Resistivity, ohm-meters (measured at 20°C)  

 Silver  1.59 × 10 �8  

 Copper  1.68 × 10 �8  
 Gold  2.44 × 10 �8  
 Aluminum  2.82 × 10 �8  
 Iron  1.0 × 10 �7  
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 Calculate the power that is dissipated through a wire with the following 
dimensions for each of the materials listed.   

 diameter  0.001 m 
 length  2.00 m 

 Assume the wire carries a current of 120 amps.   
   2.16    Repeat the previous problem for 10 wire lengths, from 1 m to 1 km. Use 

logarithmic spacing.   
   2.17    Newton’s law of universal gravitation tells us that the force exerted by one 

particle on another is 

   F � G 
m1m2

r2    

 where the universal gravitational constant  G  is found experimentally to be 

   G � 6.673 � 10�11 N m2
 >  kg2   

  The mass of each particle is    m1    and    m2,    respectively, and  r  is the distance 
between the two particles. Use Newton’s law of universal gravitation to fi nd 
the force exerted by the earth on the moon, assuming that 

   the mass of the earth is approximately    6 � 1024 kg,     
  the mass of the moon is approximately    7.4 � 1022 kg,    and  
  the earth and the moon are an average of    3.9 � 108 m    apart.     

   2.18    We know that the earth and the moon are not always the same distance apart. 
Based on the equation in the previous problem, fi nd the force the moon 
exerts on the earth for 10 distances between    3.8 � 108 m    and    4.0 � 108 m.    
Be careful when you do the division to use the correct operator.   

   2.19    Recall from Problem 2.7 that the ideal gas law is: 

   PV � nRT    

 and that the van der Waals modifi cation of the ideal gas law is 

   aP �
n2a
V 2 b 1V � nb2 � nRT    

 Using the data from Problem 2.7, fi nd the value of temperature ( T ), for 

   (a)   10 values of pressure from 0 bar to 400 bar for volume of 1 L  
  (b)   10 values of volume from 0.1 L to 10 L for a pressure of 220 bar     

  Number Display  

   2.20    Create a matrix  a  equal to [   � 1>3,    0, 1/3, 2/3], and use each of the built-in 
format options to display the results:   

format short (which is the default)
format long
format bank
format short e
format long e
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format short eng
format long eng
format short g
format long g
format �

format rat

  Saving Your Work in Files  

   2.21        •    Create a matrix called D_to_R composed of two columns, one represent-
ing degrees and the other representing the corresponding value in radi-
ans. Any value set will do for this exercise.  

  •   Save the matrix to a fi le called degrees.dat.  
  •   Once the fi le is saved, clear your workspace and then load the data from 

the fi le back into MATLAB ® .     
   2.22    Create a script M-fi le and use it to do the homework problems you’ve been 

assigned from this chapter. Your fi le should include appropriate comments 
to identify each problem and to describe your calculation process. Don’t 
forget to include your name, the date, and any other information your 
instructor requests. Divide the script up into convenient sections, using 
cell mode.        



3  

  INTRODUCTION 

 The vast majority of engineering computations require quite complicated mathemati-
cal functions, including logarithms, trigonometric functions, and statistical analysis 
functions. MATLAB ®  has an extensive library of built-in functions to allow you to per-
form these calculations.   

     3.1   USING BUILT-IN FUNCTIONS 

 Many of the names for MATLAB ® ’s built-in functions are the same as those defi ned 
not only in the C programming language, but in Fortran and Java as well. For exam-
ple, to take the square root of the variable  x , we type   

b = sqrt(x)

 A big advantage of MATLAB ®  is that function arguments can generally be either sca-
lars or matrices. In our example, if  x  is a scalar, a scalar result is returned. Thus, the 
statement   

x = 9;
b = sqrt(x)

 After reading this chapter, you 
should be able to: 
  •   Use a variety of common 

mathematical functions  
  •   Understand and use trigo-

nometric functions in 
MATLAB ®   

  •   Compute and use statistical 
and data analysis functions  

  •   Generate uniform and 
Gaussian random-number 
matrices  

  •   Understand the computa-
tional limits of MATLAB ®   

  •   Recognize and be able to 
use the special values and 
functions built into 
MATLAB ®    

     Objectives 

 Built-In MATLAB ®  
Functions 

  C H A P T E R
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 returns a scalar:   

b =
3

 However, the square-root function,   sqrt  , can also accept matrices as input. In 
this case, the square root of each element is calculated, so   

x = [4, 9, 16];
b = sqrt(x)

 returns   

b =
2  3  4

 All functions can be thought of as having three components: a name, input, 
and output. In the preceding example, the name of the function is   sqrt  , the 
required input (also called the argument) goes inside the parentheses and can be a 
scalar or a matrix, and the output is a calculated value or values. In this example, 
the output was assigned the variable name   b  .    

 Some functions require multiple inputs. For example, the remainder function, 
  rem  , requires two inputs: a dividend and a divisor. We represent this as   rem(x,y)  , so      

rem(10,3)

 calculates the remainder of 10 divided by 3:   

ans =
1

 The   size   function is an example of a function that returns two outputs, which are 
stored in a single array. It determines the number of rows and columns in a matrix. 
Thus,   

d = [1, 2, 3; 4, 5, 6];
f = size(d)

 returns the    1 � 2    result matrix   

f =
2  3

 You can also assign variable names to each of the answers by representing the 
left-hand side of the assignment statement as a matrix. For example,   

[rows,cols] = size(d)

 gives   

rows =
2

cols =
3

 A useful feature of the more recent versions of MATLAB ®  is the adaptive help 
capability. As you type a function name, a screen tip appears showing the correct 
function format. It also includes a link to the function’s help page.    

 You can create more complicated expressions by nesting functions. For 
instance,   

g = sqrt(sin(x))

 KEY IDEA 
 Most of the MATLAB ®  
function names are the 
same as those used in other 
computer programs 

 ARGUMENT 
 Input to a function 

 NESTING 
 Using one function as the 
input to another 
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 fi nds the square root of the sine of whatever values are stored in the matrix named 
 x . If  x  is assigned a value of 2,   

x = 2;

 the result is   

g =
0.9536

 Nesting functions can result in some complicated MATLAB ®  code. Be sure to include 
the arguments for each function inside their own set of parentheses. Often, your code 
will be easier to read if you break nested expressions into two separate statements. Thus,   

a = sin(x);
g = sqrt(a)

 gives the same result as     g � sqrt1sin1x22     and is easier to follow. 

  HINT   
 You can probably guess the name and syntax for many MATLAB ®  functions. 
However, check to make sure that the function of interest is working the way 
you assume it is, before you do any important calculations.   

  3.2   USING THE HELP FEATURE 

 MATLAB ®  includes extensive help tools, which are especially useful in understand-
ing how to use functions. There are two ways to get help from within MATLAB ® : a 
command-line help function (  help  ) and an HTML-based set of documentation 
available by selecting   Help   from the menu bar, selecting the help icon (a question 
mark) or by using the F1 function key, usually located at the top of your keyboard 
(or found by typing   helpwin   in the command window). There is also an online 
help set of documentation, available through the Start button or the Help icon on 
the menu bar. However, the online help usually just refl ects the HTML-based docu-
mentation. You should use both help options, since they provide different informa-
tion and insights into how to use a specifi c function. 

 To use the command-line help function, type   help   in the command window:   

help

 A list of help topics will appear:      

HELP topics:

MATLAB\general – General-purpose commands
MATLAB\ops – Operators and special characters
MATLAB\lang – Programming language constructs
MATLAB\elmat –  Elementary matrices and matrix 

manipulation
MATLAB\elfun – Elementary math functions
MATLAB\specfun – Specialized math functions

and so on

 To get help on a particular topic, type   help <topic>  . (Recall that the angle 
brackets,     6          7 ,     identify where you should type your input; they are not included in 
your actual MATLAB ®  statement.) 

 KEY IDEA 
 Use the help function to 
help you use MATLAB ® ’s 
built-in functions 
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 For example, to get help on the   tangent   function, type   

help tan

 The following should be displayed:   

TAN Tangent of argument in radians.
TAN(X) is the tangent of the elements of X.

See also atan, tand, atan2.

 To use the windowed help screen, select  Help     :      Product Help  from the menu 
bar. A windowed version of the help list will appear (see  Figure   3.1   ). You can then 
navigate to the appropriate topic. To access this version of the help utility directly 
from the command window, type   doc <topic>  . Thus, to access the windowed 
help for tangent, type   

doc tan

 The contents of the two methods for getting help on a function are differ-
ent. If your question isn’t immediately answered by whichever method you try 
fi rst, it’s often useful to try the other technique. The windowed help utility 
includes a MATLAB ®  tutorial that you will fi nd extremely useful. The list in the 
left-hand window is a table of contents. Notice that it includes a link to a list of 
functions, organized both by category and alphabetically by name. You can use 
this link to fi nd out what MATLAB ®  functions are available to solve many prob-
lems. For example, you might want to round a number you’ve calculated. Use 
the MATLAB ®  help window to determine whether an appropriate MATLAB ®  
function is available. 

 Select the  MATLAB  ®   Functions-By Category  link (see  Figure   3.1   ) and then the 
 Mathematics  link (see  Figure   3.2   ). 

 Figure 3.1 
 The MATLAB ®  help 
environment.       
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 Figure 3.2 
 Functions-By Category help 
window. Notice the link to 
Mathematics functions in 
the right-hand pane.       

 Figure 3.3 
 Mathematics help window.       

 Near the middle of the page is the category Elementary Math ( Figure   3.3   ), 
which lists rounding as a topic. Follow the links and you will fi nd a whole category 
devoted to rounding functions. For example,   round   rounds to the nearest integer. 
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  3.3   ELEMENTARY MATH FUNCTIONS 

 Elementary math functions include logarithms, exponentials, absolute value, 
rounding functions, and functions used in discrete mathematics. 

  3.3.1   Common Computations 

 The functions listed in  Table   3.1    accept either a scalar or a matrix of   x   values.     

  PRACTICE EXERCISES 3.1 

    1.   Use the help command in the command window to fi nd the appropriate 
syntax for the following functions: 
   a.   cos  
  b.   sqrt  
  c.   exp    

   2.   Use the windowed help function from the menu bar to learn about the 
functions in Exercise 1.  

   3.   Go to the online help function at  www.mathworks.com  to learn about 
the functions in Exercise 1.     

 KEY IDEA 
 Most functions accept 
scalars, vectors, or matrices 
as input 

 Table 3.1   Common Math Functions 

  abs(x)   Finds the absolute value of x.   abs(�3)  
      ans � 3  

  sqrt(x)   Finds the square root of x.   sqrt(85)  
      ans � 9.2195  
  nthroot(x,n)   Finds the real nth root of x. This function 

will not return complex results. Thus, 
  nthroot(�2, 3)  
  ans �  

    (-2)^(1/3)       �1.2599  
   does not return the same result, yet both 

answers are legitimate third roots of    -2.    
  
(�2)^(1/3)  

      ans � 
  0.6300 � 1.0911i  

  sign(x)   Returns a value of    -1    if x is less than zero, 
a value of 0 if x equals zero, and a value 
of    �1    if x is greater than zero. 

  sign(�8)    
ans � �1  

  rem(x,y)   Computes the remainder of x/y.   rem(25,4)  
      ans � 1  
  exp(x)   Computes the value of    ex,    where e 

is the base for natural logarithms, or 
approximately 2.7183. 

  exp(10)    
ans � 2.2026e � 
004  

  log(x)   Computes ln(x), the natural logarithm of x
(to the base e). 

  log(10)    
ans � 2.3026  

  log10(x)   Computes    log10   (x), the common logarithm 
of x (to the base 10). 

  log10(10)    
ans � 1  

 You could have also found the syntax for the   round   function by selecting 
 Functions—Alphabetical List.  

www.mathworks.com
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  HINT    
 As a rule, the function   log   in all computer languages means the  natural
logarithm . Although not the standard in mathematics textbooks, it is the 
standard in computer programming. Not knowing this distinction is a com-
mon source of errors, especially for new users. If you want logarithms to the 
base 10, you’ll need to use the   log10   function. A   log2   function is also 
included in MATLAB ® , but logarithms to any other base will need to be com-
puted; there is no general logarithm function that allows the user to input 
the base.  

  PRACTICE EXERCISES 3.2 

    1.   Create a vector  x  from    �2    to    �2    with an increment of 1. Your vector 
should be 

   x � 3�2, �1, 0, 1, 24    
   a.   Find the absolute value of each member of the vector.  
  b.   Find the square root of each member of the vector.    

   2.   Find the square root of both    �3    and    �3.    
   a.   Use the   sqrt   function.  
  b.   Use the   nthroot   function. (You should get an error statement for    �3.   )  
  c.   Raise    �3    and    �3    to the    ½    power. 

  How do the results vary?    
   3.   Create a vector x from    �9    to 12 with an increment of 3. 

   a.   Find the result of x divided by 2.  
  b.   Find the remainder of x divided by 2.    

   4.   Using the vector from Exercise 3, fi nd    ex.     
   5.   Using the vector from Exercise 3: 

   a.   Find ln(x) (the natural logarithm of x).  
  b.   Find    log10    (x) (the common logarithm of x). Explain your results.    

   6.   Use the  sign  function to determine which of the elements in vector x 
are positive.  

   7.   Change the  format  to  rat , and display the value of the x vector 
divided by 2. 

   (Don’t forget to change the format back to  format short  when you 
are done with this exercise set.)    

  HINT    
 The mathematical notation and MATLAB ®  syntax for raising e to a power are 
not the same. To raise e to the third power, the mathematical notation would 
be    e3.    However, the MATLAB ®  syntax is  exp(3) . Students also sometimes 
confuse the syntax for scientifi c notation with exponentials. The number  5e3  
should be interpreted as    5 � 103.     
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  USING THE CLAUSIUS–CLAPEYRON EQUATION 
 Meteorologists study the atmosphere in an attempt to understand and ultimately 
predict the weather (see  Figure   3.4   ). Weather prediction is a complicated process, 
even with the best data. Meteorologists study chemistry, physics, thermodynamics, 
and geography, in addition to specialized courses about the atmosphere. 

 One equation used by meteorologists is the Clausius–Clapeyron equation, 
which is usually introduced in chemistry classes and examined in more detail in 
advanced thermodynamics classes. Rudolf Clausius and Emile Clapeyron were phys-
icists responsible for the early development of thermodynamic principles during 
the mid-1800s (see  Figures   3.5a    and  Figure   3.5b   ). 

 In meteorology, the Clausius–Clapeyron equation is employed to determine 
the relationship between saturation water-vapor pressure and the atmospheric tem-
perature. The saturation water-vapor pressure can be used to calculate relative 
humidity, an important component of weather prediction, when the actual partial 
pressure of water in the air is known. 

 The Clausius–Clapeyron equation is 

   lna P 0

6.11
b � a �Hv

Rair
b * a 1

273
�

1
T
b    

  EXAMPLE 3.1

 Figure 3.4 
 View of the earth’s weather 
from space. (Courtesy of 
NASA/Jet Propulsion 
Laboratory.)       

 Figure 3.5 
 Portraits of (a) Rudolf 
Clausius and (b) Emile 
Clapeyron             .

(a) (b)
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 where 

P 0    = saturation vapor pressure for water, in mbar, at temperature  T   
�Hv    = latent heat of vaporization for water,    2.453 � 106 J>kg     
Rair    = gas constant for moist air, 461 J/kg  
T  = temperature in kelvins (K).   

 It is rare that temperatures on the surface of the earth are lower than    �60�F    or 
higher than 120°F. Use the Clausius–Clapeyron equation to fi nd the saturation 
vapor pressure for temperatures in this range. Present your results as a table of 
Fahrenheit temperatures and saturation vapor pressures. 

   1.   State the Problem 
  Find the saturation vapor pressure at temperatures from    �60�F    to 120°F, using 

the Clausius–Clapeyron equation.  
  2.   Describe the Input and Output   

  Input  

    �Hv � 2.453 � 106 J>kg    
    Rair � 461 J>kg    

    T � �60�F to 120�F    

  Since the number of temperature values was not specifi ed, we’ll choose to 
recalculate every 10°F.   

  Output  

 Saturation vapor pressures 

3.   Develop a Hand Example 
  The Clausius–Clapeyron equation requires that all the variables have consistent 

units. This means that temperature (T) needs to be in kelvins. To change 
degree Fahrenheit to kelvin, we use the conversion equation 

Tk �
1Tf �  459.62

1.8

  (There are lots of places to fi nd units conversions. The Internet is one source, 
as are science and engineering textbooks.) 

 Now we need to solve the Clausius–Clapeyron equation for the saturation 
vapor pressure    P 0.    We have 

lna P 0

6.11
b � a �Hv

Rair
b � a 1

273
�

1
T
b

P 0 � 6.11 � e a a �Hv

Rair
b � a 1

273
�

1
T
b b

  Next, we solve for one temperature—for example,    T � 0�F.    Since the equation 
requires temperature in kelvins we must perform the unit conversion to obtain 

T �
10 � 459.62

1.8
� 255.3333 K

  Finally, we substitute values to get 

P 0 � 6.11 � e a a2.453 � 106

461
b � a 1

273
�

1
255.3333

b b � 1.5836 mbar

 where 

P 0 = saturation vapor pressure for water, in mbar, at temperature  T
�HvHH = latent heat of vaporization for water,    2.453 � 106 J>kg
RaRR ir = gas constant for moist air, 461 J/kg  
T  = temperature in kelvins (K).  T

It is rare that temperatures on the surface of the earth are lower than    �60�F    or 
higher than 120°F. Use the Clausius–Clapeyron equation to fi nd the saturation 
vapor pressure for temperatures in this range. Present your results as a table of 
Fahrenheit temperatures and saturation vapor pressures.

1.   State the Problem
 Find the saturation vapor pressure at temperatures from    �60�F    to 120°F, using
the Clausius–Clapeyron equation. 

2.   Describe the Input and Output   

  Input  

�HvHH � 2.453 � 106 J>kg
RaRR ir � 461 J>kg

T � �60�F to 120�F

  Since the number of temperature values was not specifi ed, we’ll choose to 
recalculate every 10°F.

Output  

 Saturation vapor pressures

3.   Develop a Hand Example 
  The Clausius–Clapeyron equation requires that all the variables have consistent 

units. This means that temperature (T) needs to be in kelvins. To changeTT
degree Fahrenheit to kelvin, we use the conversion equation 

TkTT �
1TfTT � 459.62

1.8

  (There are lots of places to fi nd units conversions. The Internet is one source, 
as are science and engineering textbooks.) 

 Now we need to solve the Clausius–Clapeyron equation for the saturation 
vapor pressure P 0.    We have

lna P 0

6.11
b � a �HvHH

RaRR ir
b � a 1

273
�

1
T
b

P 0 � 6.11 � e a a �HvHH
Rair
b � a 1

273
�

1
T
b b

  Next, we solve for one temperature—for example,    T � 0�F.    Since the equation 
requires temperature in kelvins we must perform the unit conversion to obtain 

T �
10 � 459.62

1.8
� 255.3333 K

  Finally, we substitute values to get 

P 0 � 6.11 � e a a2.453 � 106

461
b � a 1

273
�

1
255.3333

b b � 1.5836 mbar
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4.   Develop a MATLAB ®  Solution 
  Create the MATLAB ®  solution in an M-fi le, and then run it in the command 

environment:   

%Example 3.1
%Using the Clausius–Clapeyron Equation, find the
%saturation vapor pressure for water at different 
%temperatures

TempF=[-60:10:120]; %Define temp matrix in F
TempK=(TempF + 459.6)/1.8; %Convert temp to K
Delta_H=2.45e6; %Define latent heat of 

%vaporization
R_air = 461;  %Define ideal gas constant 

%for air
%
%Calculate the vapor pressures
Vapor_Pressure=6.11*exp((Delta_H/R_air)*(1/273 - 1./TempK));
%Display the results in a table
my_results = [TempF',Vapor_Pressure']

  When you create a MATLAB ®  program, it is a good idea to comment liberally 
(lines beginning with  % ). This makes your program easier for others to under-
stand and may make it easier for you to “debug.” Notice that most of the lines 
of code end with a semicolon, which suppresses the output. Therefore, the only 
information that displays in the command window is the table  my_results:   

my_results =
-60.0000   0.0698
-50.0000   0.1252
-40.0000   0.2184
...
120.0000   118.1931

  5.   Test the Solution 
  Compare the MATLAB ®  solution when    T � 0�F    with the hand solution:   

 Hand solution:     P0 � 1.5888 mbar    
 MATLAB ®  solution:     P0 � 1.5888 mbar    

  The Clausius–Clapeyron equation can be used for more than just humidity 
problems. By changing the values of    �H     and R, you could generalize the pro-
gram to deal with any condensing vapor.     

  3.3.2   Rounding Functions 

 MATLAB ®  contains functions for a number of different rounding techniques 
( Table   3.2   ). You are probably most familiar with rounding to the closest integer; 
however, you may want to round either up or down, depending on the situation.   

 For example, suppose you want to buy apples at the grocery store. The apples 
cost $0.52 a piece. You have $5.00. How many apples can you buy? Mathematically, 

   
$5.00

$0.52>apple
� 9.6154 apples   
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 But clearly, you can’t buy part of an apple, and the grocery store won’t let you round 
to the nearest number of apples. Instead, you need to round it down. The MATLAB ®  
function to accomplish this is  fix . Thus, 

fix(5/0.52)

 returns the maximum number of apples you can buy:   

ans =
9

  3.3.3   Discrete Mathematics 

 MATLAB ®  includes functions to factor numbers, fi nd common denominators and 
multiples, calculate factorials, and explore prime numbers ( Table   3.3   ). All of these 
functions require integer scalars as input. In addition, MATLAB ®  includes the 
 rats  function, which expresses a fl oating-point number as a rational number—
that is, a fraction. Discrete mathematics is the mathematics of whole numbers. 
Factoring, calculating common denominators, and fi nding least common multiples 
are procedures usually covered in intermediate algebra courses. Factorials are usu-
ally covered in statistics or probability courses and may not be familiar to beginning 
engineering students.  

 A factorial is the product of all the positive integers from 1 to a given value. Thus 
3 factorial (indicated as 3!) is    3 � 2 � 1 � 6.    Many problems involving probability 
can be solved with factorials. For example, the number of ways that fi ve cards can be 
arranged is    5 � 4 � 3 � 2 � 1 � 5! � 120.    When you select the fi rst card, you have 
fi ve choices; when you select the second card, you have only four choices remaining, 
then three, two, and one. This approach is called combinatorial mathematics, or 
combinatorics. To calculate a factorial in MATLAB ®  use the factorial function. Thus   

factorial(5)
ans =

120

 gives the same result as   

5*4*3*2*1
ans =

120

 The value of a factorial quickly becomes very large. Ten factorial is 3,628,800. 
MATLAB ®  can handle up to 170! Anything larger gives  Inf  for an answer, because 
the maximum value for a real number is exceeded.   

 Table 3.2   Rounding Functions 

  round(x)   Rounds x to the nearest integer.   round(8.6)  
      ans � 9  
  fi x(x)   Rounds (or truncates) x to the nearest integer toward 

zero. Notice that 8.6 truncates to 8, not 9, with this 
function. 

  fi x(8.6)    
ans � 8    
fi x(�8.6)  

      ans � �8  

  fl oor(x)   Rounds x to the nearest integer 
toward negative infi nity. 

  fl oor(�8.6)
    ans � �9  

  ceil(x)   Rounds x to the nearest integer 
toward positive infi nity. 

  ceil(�8.6)    
ans � �8  
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factorial(170)
ans =
7.2574e+306

factorial(171)
ans =

Inf

 Factorials are used to calculate the number of permutations and combinations 
of possible outcomes. A permutation is the number of subgroups that can be 
formed when sampling from a larger group, when the order matters. Consider the fol-
lowing problem. How many different teams of two people can you form from a 
group of four? Assume that the order matters, since for this problem the fi rst per-
son chosen is the group leader. If we represent each person as a letter, the possibili-
ties are as follows:   

 AB  BA  CA  DA 
 AC  BC  CB  DB 
 AD  BD  CD  DC 

 Table 3.3   Functions Used in Discrete Mathematics 

  factor(x)   Finds the prime factors of x.   factor(12)  
      ans � 

  2 2 3  
  gcd(x,y)   Finds the greatest common denominator of 

x and y. 
  gcd(10,15)    
ans � 
  5  

  lcm(x,y)   Finds the least common multiple of x and y.   lcm(2,5)  
      ans � 

  10  
      lcm(2,10)  
      ans � 

   10  
  rats(x)   Represents x as a fraction.   rats(1.5)  
      ans �

   3/2  
  factorial(x)   Finds the value of x factorial (x!). 

A factorial is the product of all the integers 
less than x. For example, 
   6! � 6 � 5 � 4 � 3 � 2 � 1 � 720.    

  factorial(6)
    ans � 
   720  

  nchoosek(n,k)   Finds the number of possible combinations of k items 
from a group of n items. For example, use this function 
to determine the number of possible subgroups of 3 
chosen from a group of 10. 

  nchoosek(10,3)    
ans � 
   120  

  primes(x)   Finds all the prime numbers less than x.   primes(10)    
ans � 
   2 3 5 7  

  isprime(x)   Checks to see if x is a prime number. If it 
is, the function returns 1; if not, it returns 0. 

  isprime(7)    
ans � 
   1    
isprime(10)
    ans � 
   0  



 3.3 Elementary Math Functions 75

 For the fi rst member of the team, there are four choices, and for the second there 
are three choices, so the number of possible teams is    4 � 3 � 12.    We could also 
express this as 4!/2!. More generally, if you have a large group to choose from, call 
the group size n, and the size of the subgroup (team) m. Then the possible number 
of permutations is 

   
n!1n � m2!   

 If there are 100 people to choose from, the number of teams of two (where order 
matters) is 

   
100!1100 � 22! � 9900   

 But, what if the order doesn’t matter? In this case, team AB is the same as team 
BA, and we refer to all the possibilities as combinations instead of permutations. 
The possible number of combinations is 

   
n!1n � m2! � m!

   

 Although you could use MATLAB ® ’s factorial function to calculate the number 
of combinations, the  nchoosek  function will do it for you, and it offers some 
advantages when using larger numbers. If we want to know the number of possible 
teams of 2, chosen from a pool of 100 (100 choose 2),   

nchoosek(100,2)
ans =

4950

 The  nchoosek  function allows us to calculate the number of combinations 
even if the pool size is greater than 170, which would not be possible using the fac-
torial approach.   

nchoosek(200,2)
ans =

19900
factorial(200)/(factorial(198)*factorial(2))
ans =

NaN

  PRACTICE EXERCISES 3.3 

    1.   Factor the number 322.  
   2.   Find the greatest common denominator of 322 and 6.  
   3.   Is 322 a prime number?  
   4.   How many primes occur between 0 and 322?  
   5.   Approximate    p    as a rational number.  
   6.   Find 10! (10 factorial).  
   7.   Find the number of possible groups containing 3 people from a group 

of 20, when order does not matter. (20 choose 3)      
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  3.4   TRIGONOMETRIC FUNCTIONS 

 MATLAB ®  includes a complete set of the standard trigonometric functions and the 
hyperbolic trigonometric functions. Most of these functions assume that angles are 
expressed in radians. To convert radians to degrees or degrees to radians, we need 
to take advantage of the fact that    p    radians equals 180: 

   degrees � radians a180
p
b  and radians � degrees a p

180
b    

 The MATLAB ®  code to perform these conversions is      

degrees = radians * 180/pi;
radians = degrees * pi/180;

 To carry out these calculations, we need the value of    p,    so a constant,  pi , is built into 
MATLAB ® . However, since    p    cannot be expressed as a fl oating-point number, the con-
stant  pi  in MATLAB ®  is only an approximation of the mathematical quantity    p.    Usually 
this is not important; however, you may notice some surprising results. For example, for   

sin(pi)
ans =

1.2246e-016

 when you expect an answer of zero. 
 MATLAB ®  also includes a set of trigonometric functions that accept the angle 

in degrees so that you need not do the conversion to radians. These include  sind , 
 cosd , and  tand . 

 You may access the help function from the menu bar for a complete list of 
trigonometric functions available in MATLAB ® .  Table   3.4    shows some of the more 
common ones.  

 KEY IDEA 
 Most trig functions require 
input in radians 

 Table 3.4   Some of the Available Trigonometric Functions 

  sin(x)   Finds the sine of x when x is expressed in radians.   sin(0)  
      ans � 0  
  cos(x)   Finds the cosine of x when x is expressed in radians.   cos(pi)  
      ans � �1  
  tan(x)   Finds the tangent of x when x is expressed in radians.   tan(pi)  
      ans � 

�1.2246 
e�016  

  asin(x)   Finds the arcsine, or inverse sine, of x, where x 
must be between    �1    and 1. The function returns 
an angle in radians between    p>2    and    �p>2.    

  asin(�1)    
ans � 
�1.5708  

  sinh(x)   Finds the hyperbolic sine of x when x is expressed 
in radians. 

  sinh(pi)    
ans � 
11.5487  

  asinh(x)   Finds the inverse hyperbolic sin of x.   asinh(1)  
      ans � 

0.8814  
  sind(x)   Finds the sin of x when x is expressed in degrees.   sind(90)  
      ans � 

  1  
  asind(x)   Finds the inverse sin of x and reports the result 

in degrees. 
  asind(1)    
ans � 
  90  
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  HINT    
 Math texts often use the notation    sin�11x2    to indicate an inverse sine func-
tion, also called an arcsine. Students are often confused by this notation and 
try to create parallel MATLAB ®  code. Note, however, that   

a = sin^-1(x)

 is  not  a valid MATLAB ®  statement but instead should be   

           a = sin(x)

  PRACTICE EXERCISES 3.4 

 Calculate the following (remember that mathematical notation is not nec-
essarily the same as MATLAB ®  notation): 

1. sin12u2    for    u � 3p.     
2. cos1u2    for    0 … u … 2p;    let    u    change in steps of    0.2p.     

   3.      sin�1112.     
   4.      cos�11x2    for    �1 … x … 1;     let x change in steps of 0.2.  
   5.   Find the cosine of 45°. 

   a.   Convert the angle from degrees to radians, and then use the cos 
function.  

  b.   Use the cosd function.  
   6.   Find the angle whose sine is 0.5. Is your answer in degrees or radians?    
   7.   Find the cosecant of 60. You may have to use the help function to fi nd 

the appropriate syntax.    

  USING TRIGONOMETRIC FUNCTIONS 
 A basic calculation in engineering is fi nding the resulting force on an object that is 
being pushed or pulled in multiple directions. Adding up forces is the primary cal-
culation performed in both statics and dynamics classes. Consider a balloon that is 
acted upon by the forces shown in  Figure   3.6   . 

 To fi nd the net force acting on the balloon, we need to add up the force due to 
gravity, the force due to buoyancy, and the force due to the wind. One approach is 
to fi nd the force in the x direction and the force in the y direction for each indi-
vidual force and then to recombine them into a fi nal result. 

 The forces in the x and y directions can be found by trigonometry: 

    F   = total force  
     Fx    = force in the x direction  
     Fy    = force in the y direction   

 We know from trigonometry that the sine is the opposite side over the hypote-
nuse, so 

   sin1u2 � Fy>F    

  EXAMPLE 3.2

Wind

Buoyancy

Gravity

 Figure 3.6 
 Force balance on a balloon.       
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 and therefore, 

   Fy � F sin1u2   
 Similarly, since the cosine is the adjacent side over the hypotenuse, 

   Fx � F cos1u2   
 We can add up all the forces in the x direction and all the forces in the y direction 
and use these totals to fi nd the resulting force: 

   Fx total � �Fxi  Fy total � �Fyi   

 To fi nd the magnitude and angle for    Ftotal,    we use trigonometry again. The tan-
gent is the opposite side over the adjacent side. Therefore, 

   tan1u2 �
Fy total

Fx total
   

 We use an inverse tangent to write 

   u � tan�1 a Fy total

Fx total
b    

 (The inverse tangent is also called the arctangent; you’ll see it on your scientifi c cal-
culator as atan.) 

 Once we know    u,    we can fi nd    Ftotal,    using either the sine or the cosine. We have 

   Fx total � Ftotal cos 1u2   
 and rearranging terms gives 

   Ftotal �
Fx total

cos1u2    
 Now consider again the balloon shown in  Figure   3.6   . Assume that the force due to 
gravity on this particular balloon is 100 N, pointed downward. Assume further that 
the buoyant force is 200 N, pointed upward. Finally, assume that the wind is push-
ing on the balloon with a force of 50 N, at an angle of 30� from horizontal. 

 Find the resulting force on the balloon. 

   1.   State the Problem 
  Find the resulting force on a balloon. Consider the forces due to gravity, buoy-

ancy, and the wind.  
  2.   Describe the Input and Output 

      Input    

  Force    Magnitude    Direction  

 Gravity  100 N     �90    
 Buoyancy  200 N     �90    
 Wind  50 N     �30    

     Output  

 We’ll need to fi nd both the magnitude and the direction of the resulting force.    
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3.   Develop a Hand Example 
  First fi nd the x and y components of each force and sum the components:   

  Force    Horizontal Component    Vertical Component  

 Gravity     Fx � F cos1u2    Fy � F sin1u2    
    Fx � 100 cos1�90�2 � 0 N    Fy � 100 sin1�90�2 � �100 N    

 Buoyancy     Fx � F cos1u2    Fy � F sin1u2    
    Fx � 200 cos1�90�2 � 0 N    Fy � 200 sin1�90�2 � �200 N    

 Wind     Fx � F cos1u2    Fy � F sin1u2    
    Fx � 50 cos1�30�2 � 43.301 N    Fy � 50 sin1�30�2 � �25 N    

 Sum     Fx total � 0 � 0 � 43.301        Fy total � �100 � 200 � 25    

      � 43.301 N        � 125 N    

  Find the resulting angle: 

    u � tan�1 a Fy total

Fx total
b    

    u � tan�1 
125

43.301
� 70.89�   

  Find the magnitude of the total force: 

    Ftotal �
Fx total

cos1u2    

    Ftotal �
43.301

cos170.89�2 � 132.29 N    

  4.   Develop a MATLAB ®  Solution 
  One solution is   

%Example 3_2
clear, clc
%Define the input
Force =[100, 200, 50];
theta = [-90, +90, +30];
%convert angles to radians
theta = theta*pi/180;
%Find the x components
ForceX = Force.*cos(theta);
%Sum the x components
ForceX_total = sum(ForceX);
%Find and sum the y components in the same step
ForceY_total = sum(Force.*sin(theta));
%Find the resulting angle in radians
result_angle = atan(ForceY_total/ForceX_total);
%Find the resulting angle in degrees
result_degrees = result_angle*180/pi
%Find the magnitude of the resulting force
Force_total = ForceX_total/cos(result_angle)
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  which returns   

result_degrees =
70.8934

Force_total =
132.2876

  Notice that the values for the force and the angle were entered into an array. 
This makes the solution more general. Notice also that the angles were con-
verted to radians. In the program listing, the output from all but the fi nal calcu-
lations was suppressed. However, while developing the program, we left off the 
semicolons so that we could observe the intermediate results.  

5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. Now that you know it 

works, you can use the program to fi nd the resultant of multiple forces. Just add 
the additional information to the defi nitions of the force vector  Force  and the 
angle vector  theta . Note that we assumed a two-dimensional world in this exam-
ple, but it would be easy to extend our solution to forces in all three dimensions.     

  3.5   DATA ANALYSIS FUNCTIONS 

 Analyzing data statistically in MATLAB ®  is particularly easy, partly because whole 
data sets can be represented by a single matrix and partly because of the large num-
ber of built-in data analysis functions. 

  3.5.1   Maximum and Minimum 

  Table   3.5    lists functions that fi nd the minimum and maximum in a data set and the 
element at which those values occur.  

 Table 3.5   Maxima and Minima 

  max(x)   Finds the largest value in a vector x. For example, 
if    x � 31 5 34 ,    the maximum value is 5. 

  x�[1, 5, 3];    
max(x)  

    ans � 
  5  

 Creates a row vector containing the maximum element from each  

column of a matrix x. For example, if    x � c1 5 3
2 4 6

d ,    then 

the maximum value in column 1 is 2, the maximum value in 
column 2 is 5, and the maximum value in column 3 is 6. 

  x�[1, 5, 3; 2, 4, 6];    
max(x)    
ans � 
  2 5 6  

  [a,b]=max(x)   Finds both the largest value in a vector x and its location in vector x. 
For    x � 31 5 34     the maximum value is named a and is found 
to be 5. The location of the maximum value is element 2 and 
is named b. 

  x�[1, 5, 3];    
[a,b] � max(x)
    a � 
  5
    b � 
  2  

 Creates a row vector containing the maximum element from each 
column of a matrix x and returns a row vector with the location of the 

maximum in each column of matrix x. For example, if    x � c1 5 3
2 4 6

d ,    
then the maximum value in column 1 is 2, the maximum value in 
column 2 is 5, and the maximum value in column 3 is 6. 
These maxima occur in row 2, row 1, and row 2, respectively. 

  x�[1, 5, 3; 2, 4, 6];    
[a,b] � max(x)
    a � 
  2 5 6
    b � 
  2 1 2  
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 All of the functions in this section work on the columns in two-dimensional 
matrices. MATLAB ®  is column dominant—in other words if there is a choice to 
make, MATLAB ®  will choose columns fi rst over rows. If your data analysis requires 
you to evaluate data in rows, the data must be transposed. (In other words, the rows 
must become columns and the columns must become rows.) The transpose opera-
tor is a single quote ('). For example, if you want to fi nd the maximum value in each 
row of the matrix 

   x � c1 5 3
2 4 6

d    
 use the command   

max(x')

  max(x,y)   Creates a matrix the same size as x and y. (Both x and y must 
have the same number of rows and columns.) Each element 
in the resulting matrix contains the maximum value from the 
corresponding positions in x and y. For example, 

if    x � c1 5 3
2 4 6

d     and    y � c10 2 4
1 8 7

d     then the resulting 

matrix will be    x � c10 5 4
2 8 7

d     

  x�[1, 5, 3; 2, 4, 6];    
y�[10,2,4; 1, 8, 7];    
max(x,y)    
ans � 
  10 5 4
       2 8 7  

  min(x)   Finds the smallest value in a vector x. For example, if    x � 31 5 34     
the minimum value is 1. 

  x�[1, 5, 3];    
min(x)    
ans � 
  1  

   Creates a row vector containing the minimum element from each 

column of a matrix x. For example, if    x � c1 5 3
2 4 6

d ,    then the 

minimum value in column 1 is 1, the minimum value in column 2 is 4, 
and the minimum value in column 3 is 3. 

  x�[1, 5, 3; 2, 4, 6];    
min(x)
    ans � 
  1 4 3  

  [a,b]=min(x)   Finds both the smallest value in a vector x and its location in 
vector x. For    x � 31 5 34 ,    the minimum value is named a and 
is found to be 1. The location of the minimum value is element 1 
and is named b. 

  x�[1, 5, 3];
    [a,b]�min(x)
    a � 
  1 
   b � 
  1  

   Creates a row vector containing the minimum element from 
each column of a matrix x and returns a row vector with the 
location of the minimum in each column of matrix x.

For example, if    x � c1 5 3
2 4 6

d ,    then the minimum value in 

column 1 is 1, the minimum value in column 2 is 4, and the 
minimum value in column 3 is 3. These minima occur in row 1, 
row 2, and row 1, respectively. 

  x�[1, 5, 3; 2, 4, 6];    
[a,b]�min(x)
    a � 
  1 4 3
    b � 
  1 2 1  

  min(x,y)   Creates a matrix the same size as x and y. (Both x and y must 
have the same number of rows and columns.) Each element in the 
resulting matrix contains the minimum value from the 

corresponding positions in x and y. For example, if    x � c1 5 3
2 4 6

d     
and    y � c10 2 4

1 8 7
d ,    then the resulting matrix will be    � c1 2 3

1 4 6
d     

  x�[1, 5, 3; 2, 4, 6];
    y�[10,2,4; 1, 8, 7];    
min(x,y)    
ans � 
  1 2 3  
   1 4 6 
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  3.5.2   Mean and Median 

 There are several ways to fi nd the “average” value in a data set. In statistics, the 
 mean  of a group of values is probably what most of us would call the average. The 
mean is the sum of all the values, divided by the total number of values. Another 
kind of average is the  median , or the middle value. There are an equal number of 
values both larger and smaller than the median. The  mode  is the value that appears 
most often in a data set. MATLAB ®  provides functions for fi nding the mean, 
median, and the mode, as shown in  Table   3.6   . Recall that all of these functions are 
column dominant and will return an answer for each column in a two-dimensional 
matrix.         

  HINT    
 A common mistake when fi nding the maximum or minimum value in a data 
set is to name the result max or min. This overwrites the function and it is no 
longer available for calculations. For example   

max = max(x)

 results in a variable named max for the answer. This is allowable MATLAB ®  
code, but not wise. Trying to use the max function later in the program will 
result in an error. For example 

another_max = max(y) 

 will return 

??? Index exceeds matrix dimensions. 

  PRACTICE EXERCISES 3.5 

 Consider the following matrix: 

   x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥    

    1.   What is the maximum value in each column?  
   2.   In which row does that maximum occur?  
   3.   What is the maximum value in each row? (You’ll have to transpose the 

matrix to answer this question.)  
   4.   In which column does the maximum occur?  
   5.   What is the maximum value in the entire table?     

 MEAN 
 The average of all the 
values in the data set 

 MEDIAN 
 The middle value in a 
data set 

 which returns   

ans=
5 6
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 Table 3.6   Averages 

  mean(x)   Computes the mean value (or average value) 
of a vector x. For example if    x � 31 5 34 ,    
the mean value is 3. 

  x=[1, 5, 3];    
mean(x)
    ans = 
 3.0000  

   Returns a row vector containing the mean 
value from each column of a matrix x. 

For example, if    x � c1 5 3
2 4 6

d     then the 

mean value of column 1 is 1.5, the mean 
value of column 2 is 4.5, and the mean 
value of column 3 is 4.5. 

  x=[1, 5, 3; 2, 4, 6];    
mean(x)    
ans = 
 1.5 4.5 4.5  

  median(x)   Finds the median of the elements of a 
vector x. For example, if    x � 31 5 34 ,    
the median value is 3. 

  x=[1, 5, 3];    
median(x)    
ans = 
 3  

   Returns a row vector containing the median 
value from each column of a matrix x. 

For example, if    x � £1 5 3
2 4 6
3 8 4

§ ,    
then the median value from column 1 is 2, 
the median value from column 2 is 5, and 
the median value from column 3 is 4. 

  x=[1, 5, 3; 
2, 4, 6; 
3, 8, 4];    
median(x)    
ans = 
 2 5 4  

  mode(x)   Finds the value that occurs most often 
in an array. Thus, for the array 
   x � 31, 2, 3, 34     
the mode is 3. 

  x=[1,2,3,3]    
mode(x)
    ans = 
 3  

  PRACTICE EXERCISES 3.6 

 Consider the following matrix: 

   x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥    

    1.   What is the mean value in each column?  
   2.   What is the median for each column?  
   3.   What is the mean value in each row?  
   4.   What is the median for each row?  
   5.   What is returned when you request the mode?  
   6.   What is the mean for the entire matrix?    

  3.5.3   Sums and Products 

 Often it is useful to add up (sum) all of the elements in a matrix or to multiply all of 
the elements together. MATLAB ®  provides a number of functions to calculate both 
sums and products, as shown in  Table   3.7   .  
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 Table 3.7   Sums and Products 

  sum(x)   Sums the elements in vector x. For example, 
if    x � 31 5 34 ,    the sum is 9. 

  x�[1, 5, 3];    
sum(x)    
ans � 
 9  

   Computes a row vector containing the sum 
of the elements in each column of a 

matrix x. For example, if    x � c1 5 3
2 4 6

d     
then the sum of column 1 is 3, the sum of 
column 2 is 9, and the sum of column 3 is 9. 

  x�[1, 5, 3; 2, 4, 6];    
sum(x)    
ans � 
 3 9 9  

  prod(x)   Computes the product of the elements of a 
vector x. For example, if    x � 31 5 34     
the product is 15. 

  x�[1, 5, 3];    
prod(x)    
ans � 
 15  

   Computes a row vector containing the product 
of the elements in each column of a  matrix x .

For example, if    x � c1 5 3
2 4 6

d ,    then the 

product of column 1 is 2, the product of column 2 
is 20, and the product of column 3 is 18. 

  x�[1, 5, 3; 2, 4, 6];    
prod(x)    
ans � 
 2 20 18  

  cumsum(x)   Computes a vector of the same size as, and 
containing cumulative sums of the elements of, 
a vector x. For example, if    x � 31 5 34 ,    
the resulting vector is    x � 31 6 94 .    

  x�[1, 5, 3];    
cumsum(x)    
ans � 
 1 6 9  

   Computes a matrix containing the cumulative sum of 
the elements in each column of a  matrix x . For 

example, if    x � c1 5 3
2 4 6

d ,    the resulting 

matrix is    x � c1 5 3
3 9 9

d .    
  x�[1, 5, 3; 2, 4, 6];    
cumsum(x)    
ans � 
 1 5 3
     3 9 9  

  cumprod(x)   Computes a vector of the same size as, and 
containing cumulative products of the elements 
of, a  vector x . For example, if    x � 31 5 34 ,    
the resulting vector is    x � 31 5 154 .    

  x�[1, 5, 3];    
cumprod(x)    
ans � 
 1 5 15  

   Computes a matrix containing the cumulative 
product of the elements in each column of a 

 matrix . For example, if    x � c1 5 3
2 4 6

d ,    
the resulting matrix is    x � c1 5 3

2 20 18
d .    

  x�[1, 5, 3; 2, 4, 6];    
cumprod(x)    
ans � 
 1 5 3
     2 20 18  

 In addition to simply adding up all the elements, which returns a single value 
for each column in the array, the  cumsum  function (cumulative sum) adds all of the 
previous elements in an array and creates a new array of these intermediate totals. 
This is useful when dealing with the sequences of numbers in a series. Consider the 
harmonic series 

   a
n

k�1

1
k

   

 which is equivalent to 

   
1
1

�
1
2

�
1
3

�
1
4

� ... �
1
n
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 We could use MATLAB ®  to create a sequence representing the fi rst fi ve values in 
the sequence as follows   

k = 1:5;
sequence = 1./k

 which gives us   

sequence =
1.0000 0.5000 0.3333 0.2500 0.2000

 We could view the series as a sequence of fractions by changing the format to 
rational with the following code   

format rat
sequence =

1 1/2 1/3 1/4 1/5

 Now we could use the  cumsum  function to fi nd the value of the entire series for 
values of n from 1 to 5   

format short
series = cumsum(sequence)
series =

1.0000 1.5000 1.8333 2.0833 2.2833

 Similarly the  cumprod  function fi nds the cumulative product of a sequence of 
numbers stored in an array.  

  3.5.4   Sorting Values 

  Table   3.8    lists several commands to sort data in a matrix into ascending or descend-
ing order. For example, if we defi ne an array  x  

    x � [1 6 3 9 4]   

 we can use the  sort  function to rearrange the values.   

sort(x)
ans =

1     3     4     6     9

 The default is ascending order, but adding the string “descend” to the second fi eld 
will force the function to list the values in descending order.   

sort(x, 'descend')
ans =

9     6     4     3     1

 You can also use the sort command to rearrange entire matrices. This function is 
consistent with other MATLAB ®  functions, and sorts based on columns. Each col-
umn will be sorted independently. Thus 

   x � [1 3; 10 2; 3 1; 82 4; 5 5]   
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 Table 3.8   Sorting Functions 

  sort(x)   Sorts the elements of a vector x into 
ascending order. For example, if    x � 31 5 34 ,    
the resulting vector is    x � 31 3 54 .      x�[1, 5, 3];    

sort(x)    
ans �
   1 3 5  

   Sorts the elements in each column of a 
matrix x into ascending order. For example, 

if    x � c1 5 3
2 4 6

d ,    
the resulting matrix is    x � c1 4 3

2 5 6
d .    

  x�[1, 5, 3; 2, 4, 6];    
sort(x)    
ans � 
   1 4 3    
   2 5 6  

  sort(x,'descend')   Sorts the elements in each column in 
descending order. 

  x�[1, 5, 3; 2, 4, 6];    
sort(x,'descend')    
ans � 
   2 5 6    
   1 4 3  

  sortrows(x)   Sorts the rows in a matrix in ascending 
order on the basis of the values in the fi rst 
column, and keeps each row intact. For 

example, if    x � £3 1 2
1 9 3
4 3 6

§ ,     

then using the sortrows command will move 
the middle row into the top position. The fi rst 
column defaults to the basis for sorting. 

  x�[3, 1, 3; 1, 9, 3; 
4, 3, 6]    
sortrows(x)    
ans � 
   1 9 3    
   3 1 2    
   4 3 6  

  sortrows(x,n)   Sorts the rows in a matrix on the basis of 
the values in column n. If n is negative, the 
values are sorted in descending order. If n is 
not specifi ed, the default column used as the 
basis for sorting is column 1. 

  sortrows(x,2)    
ans � 
   3 1 2
       4 3 6    
   1 9 3  

 gives   

x =
1   3
10  2
3   1
82  4
5   5

 When we sort the array   

sort(x)

 each column is sorted in ascending order.   

ans =
1   1
3   2
5   3
10  4
82  5

 The sortrows allows you to sort entire rows, based on the value in a specifi ed col-
umn. Thus 

   sortrows(x,1)   
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 sorts based on the fi rst column, but maintains the relationship between values in 
columns one and two.   

ans =
1   3
3   1
5   5
10  2
82  4

 Similarly you can sort based on values in the second column.   

sortrows(x,2)
ans = 

3   1 
10  2 
1   3 
2   4
5   5

 These functions are particularly useful in analyzing data. Consider the results of the 
Men’s 2006 Olympic 500-m speed skating event shown in  Table   3.9   . 

  The skaters were given a random number for this illustration, but once the race 
is over we’d like to sort the table in ascending order, based on the times in the sec-
ond column.   

skating_results = [1.0000  42.0930
2.0000  42.0890
3.0000  41.9350
4.0000  42.4970
5.0000  42.0020]

sortrows(skating_results,2)
ans =

3.0000  41.9350 
5.0000  42.0020
2.0000  42.0890
1.0000  42.0930
4.0000  42.4970

 As you may remember, the winning time was posted by Apolo Anton Ohno, who in 
our example, is skater number 3. 

 Table 3.9   2006 Olympic Speed Skating Times 

  Skater Number    Time (min)  

 1  42.093 

 2  42.089 
 3  41.935 
 4  42.497 
 5  42.002 
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 The  sortrows  function can also sort in descending order but uses a different 
syntax from the  sort  function. To sort in descending order, place a minus sign in 
front of the column number used for sorting. Thus   

sortrows(skating_results, -2)

 sorts the array in descending order, based on the second column. The result of this 
command is   

ans =
4.0000  42.4970
1.0000  42.0930
2.0000  42.0890
5.0000  42.0020
3.0000  41.9350

  3.5.5   Determining Matrix Size 

 MATLAB ®  offers three functions ( Table   3.10   ) that allow us to determine how big a 
matrix is:  size ,  length , and  numel . The size function returns the number of 
rows and columns in a matrix. The  length  function returns the larger of the 
matrix dimensions. The  numel  function returns the total number of elements in a 
matrix. For example, if 

x = [1 2 3; 4 5 6];
size(x);

 MATLAB ®  returns the following result   

ans =
2    3

 This tells us that the x array has two rows and three columns. However, if we use 
the  length  function   

length(x)

 the result is   

ans =
3

 Table 3.10   Size Functions 

  size(x)   Determines the number of rows and columns in 
matrix x. (If x is a multidimensional array, size 
determines how many dimensions exist and 
how big they are.) 

  x�[1, 5, 3; 2, 4, 6];    
size(x)    
ans � 
    2 3  

  [a,b] = size(x)   Determines the number of rows and columns in 
matrix  x  and assigns the number of rows to  a  
and the number of columns to  b . 

  [a,b]�size(x)    
a � 
   2    
b � 
   3  

  length(x)   Determines the largest dimension of a matrix x.   x�[1, 5, 3; 2, 4, 6];    
length(x)    
ans � 
    3  

  numel(x)   Determines the total number of elements in a 
matrix x. 

  x�[1, 5, 3; 2, 4, 6];    
numel(x)    
ans � 
    6  
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 because the largest of the array dimensions is 3. 
 Finally, if we use the  numel  function   

numel(x)

 the result is   

ans =
6

 The  length  function is particularly useful when used with a loop structure, 
since it can easily determine how many times to execute the loop—based on the 
dimensions of an array. 

  EXAMPLE 3.3
  WEATHER DATA 
 The National Weather Service collects massive amounts of weather data every day 
( Figure   3.7   ). Those data are available to all of us on the agency’s online service at 
 http://cdo.ncdc.noaa.gov/CDO/cdo . Analyzing large amounts of data can be con-
fusing, so it’s a good idea to start with a small data set, develop an approach that 
works, and then apply it to the larger data set that we are interested in. 

  We have extracted precipitation information from the National Weather Service 
for one location for all of 1999 and stored it in a fi le called Weather_Data.xls. 
(The .xls indicates that the data are in an Excel spreadsheet.) Each row repre-
sents a month, so there are 12 rows, and each column represents the day of 
the month (1 to 31), so there are 31 columns. Since not every month has the same 
number of days, data are missing for some locations in the last several columns. 
We place the number    � 99999    in those locations. The precipitation information 
is presented in hundredths of an inch. For example, on February 1 there was 
0.61 inch of precipitation, and on April 1, 2.60 inches. A sample of the data is 
displayed in  Table   3.11   , with labels added for clarity; however, the data in the fi le 
contain only  numbers. 

 Figure 3.7 
 Satellite photo of a 
hurricane. (Courtesy of 
NASA/Jet Propulsion 
Laboratory.)       

 Table 3.11   Precipitation Data from Asheville, North Carolina 

  1999    Day1    Day2    Day3    Day4       . . .       Day28    Day29    Day30    Day31  

 January  0  0  272  0    0  0  33  33 

 February  61  103  0  2    62     -99999        -99999        -99999    

 March  2  0  17  27    0  5  8  0 

 April  260  1  0  0    13  86  0     -99999    

 May  47  0  0  0    0  0  0  0 

 June  0  0  30  42    14  14  8     -99999    

 July  0  0  0  0    5  0  0  0 

 August  0  45  0  0    0  0  0  0 

 September  0  0  0  0    138  58  10     -99999    

 October  0  0  0  14    0  0  0  1 

 November  1  163  5  0    0  0  0     -99999    

 December  0  0  0  0    0  0  0  0 

http://cdo.ncdc.noaa.gov/CDO/cdo
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  Use the data in the fi le to fi nd the following: 

a.   The total precipitation in each month.  
b.   The total precipitation for the year.  
c.    The month and day on which the maximum precipitation during the year 

was recorded.   

1.   State the Problem 
  Using the data in the fi le Weather_Data.xls, fi nd the total monthly precipitation, 

the total precipitation for the year, and the day on which it rained the most.  
2.   Describe the Input and Output 

Input    The input for this example is included in a data fi le called Weather_
Data.xls and consists of a two-dimensional matrix. Each row represents a month, 
and each column represents a day.  

Output    The output should be the total precipitation for each month, the total 
precipitation for the year, and the day on which the precipitation was a maxi-
mum. We have decided to present precipitation in inches, since no other units 
were specifi ed in the statement of the problem.    

3.   Develop a Hand Example 
 For the hand example, deal only with a small subset of the data. The informa-
tion included in  Table   3.11    is enough. The total for January, days 1 to 4, is 

   total_1 � 10 � 0 � 272 � 02 >100 � 2.72 inches   

 The total for February, days 1 to 4, is 

   total_2 � 161 � 103 � 0 � 22 >100 � 1.66 inches   

 Now add the months together to get the combined total. If our sample “year” is 
just January and February, then 

   total � total_1 � total_2 � 2.72 � 1.66 � 4.38 inches   

 To fi nd the day on which the maximum precipitation occurred, fi rst fi nd the 
maximum in the table, and then determine which row and which column it is in. 

 Working through a hand example allows you to formulate the steps 
required to solve the problem in MATLAB ® .  

4.   Develop a MATLAB ®  Solution 
 First we’ll need to save the data fi le into MATLAB ®  as a matrix. Because the fi le 
is an Excel spreadsheet, the easiest approach is to use the Import Wizard. Double-
click on the fi le in the current folder window to launch the Import Wizard. 

 Once the Import Wizard has completed execution, the variable name 
Sheet1  will appear in the workspace window. (See  Figure   3.8   ; your version 
may name the variable   Weather_data   or   Sheet1  .) 

  Because not every month has 31 days, there are a number of entries for 
nonexistent days. The value    -99999    was inserted into those fi elds. You can dou-
ble-click the variable name,   data  , in the workspace window, to edit this matrix 
and change the “phantom” values to 0 (see  Figure   3.9   ). 

  Now write the script M-fi le to solve the problem:   

clc
%Example 3.3 - Weather Data 
%In this example we will find the total precipitation 
%for each month, and for the entire year, using a data file 
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 Figure 3.8 
 MATLAB ®  Import Wizard.       

 Figure 3.9 
 MATLAB ®  array editor. You can edit the array in this window and change all of the “phantom 
values” from    � 99999    to 0.       

%We will also find the month and day on which the 
%precipitation was the maximum 
weather_data=data;
%Use the transpose operator to change rows to columns 
weather_data = weather_data'; 
%Find the sum of each column, which is the sum for each %month 
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monthly_total=sum(weather_data)/100
%Find the annual total 
yearly_total = sum(monthly_total) 
%Find the annual maximum and the day on which it occurs 
[maximum_precip,month]=max(max(weather_data))
%Find the annual maximum and the month in which it occurs 
[maximum_precip,day]=max(max(weather_data'))

 Notice that the code did not start with our usual   clear  ,   clc   commands, 
because that would clear the workspace, effectively deleting the   data   variable. 
Next we rename   data   to   weather_data  . 

 Next, the matrix   weather_data   is transposed, so that the data for each 
month are in a column instead of a row. That allows us to use the   sum   com-
mand to add up all the precipitation values for the month. 

 Now we can add up all the monthly totals to get the total for the year. An 
alternative syntax is 

   yearly_total � sum(sum(weather_data))   

 Finding the maximum daily precipitation is easy; what makes this example hard is 
determining the day and month on which the maximum occurred. The command 

   [maximum_precip, month] � max(max(weather_data))   

 is easier to understand if we break it up into two commands. 
 First, 

   [a,b] �  max(weather_data)   

 returns a matrix of maxima for each column, which in this case is the maximum 
for each month. This value is assigned to the variable name   a  . The variable   b
becomes a matrix of index numbers that represent the row in each column at 
which the maximum occurred. The result, then, is   

a = 
      Columns 1 through 9 

272   135   78   260   115   240   157   158   138 
      Columns 10 through 12 

156   255   97 
b = 

      Columns 1 through 9 
  3    18   27     1     6    25    12    24    28 

      Columns 10 through 12 
  5    26   14 

 Now when we execute the   max   command the second time, we determine 
the maximum precipitation for the entire data set, which is the maximum 
value in matrix   a  . Also, from matrix   a  , we find the index number for that 
maximum:   

[c,d]=max(a)
c = 

        272 
d = 

         1 
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 These results tell us that the maximum precipitation occurred in column 1 of 
the   a   matrix, which means that it occurred in the fi rst month. 

 Similarly, transposing the   weather_data   matrix (i.e., obtaining 
  weather_data'  ) and fi nding the maximum twice allows us to fi nd the day of 
the month on which the maximum occurred. 

 There are several things you should notice about the MATLAB ®  screen 
shown in  Figure   3.10   . In the workspace window, both   data   and   weather_
data   are listed. The variable   data   is a    12 � 31    matrix, whereas   weather_
data   is a    31 � 12    matrix. All of the variables created when the M-fi le was 
executed are now available to the command window. This makes it easy to per-
form additional calculations in the command window after the M-fi le has com-
pleted running. For example, notice that we forgot to change the 
maximum_precip   value to inches from hundredths of an inch. Adding the 
command 

    maximum_precip � maximun_precip/100   

 would correct that oversight. Notice also that the Weather_Data.xls fi le is still in 
the current folder. Finally, notice that the command history window refl ects 
only commands issued from the command window; it does not show commands 
executed from an M-fi le.  

  5.   Test the Solution 
 Open the Weather_Data.xls fi le, and confi rm that the maximum precipitation 
occurred on January 3. Once you’ve confi rmed that your M-fi le program works, 
you can use it to analyze other data. The National Weather Service maintains 
similar records for all of its recording stations.     

 Figure 3.10 
 Results from the precipitation calculations.       
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  3.5.6   Variance and Standard Deviation 

 The standard deviation and variance are measures of how much elements in a data 
set vary with respect to each other. Every student knows that the average score on a 
test is important, but you also need to know the high and low scores to get an idea 
of how well you did. Test scores, like many kinds of data that are important in engi-
neering, are often distributed in a “bell”-shaped curve. In a normal (Gaussian) dis-
tribution of a large amount of data, approximately 68% of the data falls within one 
standard deviation (sigma) of the mean    ( 	 one sigma2.    If you extend the range 
to a two-sigma variation    ( 	 two sigma2,    approximately 95% of the data should fall 
inside these bounds, and if you go out to three sigma, over 99% of the data should 
fall in this range ( Figure   3.11   ). Usually, measures such as the standard deviation 
and variance are meaningful only with large data sets.   

 STANDARD DEVIATION 
 A measure of the spread of 
values in a data set 

 VARIANCE 
 The standard deviation 
squared 

34.13%34.13%

3 2 1 0
Standard Deviations

1 2 3

13.59%13.59%

02.15%02.15%

 Figure 3.11 
 Normal distribution.       

    PRACTICE EXERCISES 3.7 

 Consider the following matrix: 

   x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥    

    1.   Use the   size   function to determine the number of rows and columns 
in this matrix.  

   2.   Use the   sort   function to sort each column in ascending order.  
   3.   Use the   sort   function to sort each column in descending order.  
   4.   Use the   sortrows   function to sort the matrix so that the fi rst column 

is in ascending order, but each row still retains its original data. Your 
matrix should look like this:

 x � ≥1 84 92 93
2 55 65 75
3 78 82 79
4 90 85 75

¥
   5.   Use the   sortrows   function to sort the matrix from Exercise 4 in 

descending order, based on the third column.    

 Consider the data graphed in  Figure   3.12   . Both sets of data have the same aver-
age (mean) value of 50. However, it is easy to see that the fi rst data set has more 
variation than the second.   
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   The mathematical defi nition of variance is 

      variance � s2 �
a
N

k�1
(xk � m)2

N � 1
 In this equation, the symbol    m    represents the mean of the values    xk    in the data set. 
Thus, the term    xk � m    is simply the difference between the actual value and the 
average value. The terms are squared and added together: 

a
N

k�1
(xk � m)2      

 Finally, we divide the summation term by the number of values in the data set (N), 
minus 1. 

 The standard deviation    1s2,    which is used more often than the variance, is the 
square root of the variance. 

 The MATLAB ®  function used to fi nd the standard deviation is   std  . When we applied 
this function on the large data set shown in  Figure   3.12   , we obtained the following output:   

std(scores1)
ans =

20.3653
std(scores2)
ans =

9.8753
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 Figure 3.12 
 Test scores from two different tests.       
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 In other words, approximately 68% of the data in the fi rst data set fall between 
the average, 50, and    	 20.3653.    Similarly 68% of the data in the second data set 
fall between the same average, 50, and   	 9.8753.    

 The variance is found in a similar manner with the   var   function:   

var(scores1)
ans =

414.7454
var(scores2)
ans =

97.5209

 The syntax for calculating both standard deviation and variance is shown in 
 Table   3.12   . 

 Table 3.12   Statistical Functions 

  std(x)   Computes the standard deviation of the values in a vector x. 
For example, if    x � 31 5 34 ,    the standard deviation is 2. 
However, standard deviations are not usually calculated 
for small samples of data. 

  x�[1, 5, 3];    
std(x)    
ans � 
    2  

   Returns a row vector containing the standard deviation 
calculated for each column of a matrix x. For example, if 

   x � c1 5 3
2 4 6

d     the standard deviation in column 1 

is 0.7071, the standard deviation in column 2 is 0.7071, 
and standard deviation in column 3 is 2.1213. 

  x�[1, 5, 3; 2, 4, 6];    
std(x)    
ans � 
0.7071    0.7071 
2.1213  

   Again, standard deviations are not usually calculated for 
small samples of data. 

  

  var(x)   Calculates the variance of the data in x. For example, 
if    x � 31 5 34 ,    the variance is 4. However, variance is not 
usually calculated for small samples of data. Notice that 
the standard deviation in this example is the square root 
of the variance. 

  var(x)    
ans � 
4  

 Consider the following matrix: 

   x � ≥4 90 85 75
2 55 65 75
3 78 82 79
1 84 92 93

¥    

    1.   Find the standard deviation for each column.  
   2.   Find the variance for each column.  
   3.   Calculate the square root of the variance you found for each column.  
   4.   How do the results from Exercise 3 compare against the standard 

deviation you found in Exercise 1?    

   PRACTICE EXERCISES 3.8 
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  CLIMATOLOGIC DATA 
 Climatologists examine weather data over long periods of time, trying to fi nd a pat-
tern. Weather data have been kept reliably in the United States since the 1850s; 
however, most reporting stations have been in place only since the 1930s and 1940s 
( Figure   3.13   ). Climatologists perform statistical calculations on the data they col-
lect. Although the data in Weather_Data.xls represent just one location for 1 year, 
we can use them to practice statistical calculations. Find the mean daily precipita-
tion for each month and the mean daily precipitation for the year, and then fi nd 
the standard deviation for each month and for the year. 

    1.   State the Problem 
  Find the mean daily precipitation for each month and for the year, on the basis 

of the data in Weather_Data.xls. Also, fi nd the standard deviation of the data 
during each month and during the entire year.  

  2.   Describe the Input and Output 
    Input    Use the Weather_Data.xls fi le as input to the problem.  

   Output    Find 
 The mean daily precipitation for each month. 
 The mean daily precipitation for the year. 
 The standard deviation of the daily precipitation data for each month. 
 The standard deviation of the daily precipitation data for the year.    

  3.   Develop a Hand Example 
 Use just the data for the fi rst 4 days of the month: 

  January average � (0 � 0 � 272 � 0)/4 � 68       hundredths 
of an inch of precipitation, or 0.68 inch.  

 The standard deviation is found from the following equation: 

   s � Sa
N

k�1
(xk � m)2

N � 1
   

 Using just the fi rst 4 days of January, fi rst calculate the sum of the squares of the 
difference between the mean and the actual value: 

   10 � 6822 � 10 � 6822 � 1272 � 6822 � 10 � 6822 � 55,488   
 Divide by the number of data points minus 1: 

   55,488> 14 � 12 � 18,496   
 Finally, take the square root, to give 136 hundredths of an inch of precipitation, 
or 1.36 inches.  

  EXAMPLE 3.4

 Figure 3.13 
 A hurricane over 
Florida. (Courtesy of 
NASA/Jet Propulsion 
Laboratory.)       

(continued)
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4.   Develop a MATLAB ®  Solution 
  First we need to load the Weather_Data.xls fi le and edit out the    -99999    entries. 

Although we could do that as described in  Example   3.3   , there is an easier way: 
The data from  Example   3.3    could be saved to a fi le, so that they are available to 
use later. If we want to save the entire workspace, just type   

save <filename> 

 where   filename   is a user-defi ned fi le name. If you just want to save one varia-
ble, type   

save <filename> <variable_name> 

 which saves a single variable or a list of variables to a fi le. All we need to save is 
the variable   weather_data  , so the following command is suffi cient:   

   save weather_data weather_data   

 This command saves the matrix   weather_data   into the weather_data.mat

fi le. Check the current folder window to make sure that weather_data.mat has 
been stored ( Figure   3.14   ). 

  Now the M-fi le we create to solve this example can load the data automatically:   

clear, clc 
% Example 3.4 Climatological Data 
% In this example, we find the mean daily 
% precipitation for each month 
% and the mean daily precipitation for the year 
% We also find the standard deviation of the data 
%
% Changing the format to bank often makes the output 

 Figure 3.14 
 The current folder records the name of the saved fi le.       
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% easier to read 
format bank 
% By saving the variable weather_data from the last example, it is 
% available to use in this problem 
load weather_data 
Average_daily_precip_monthly = mean(weather_data) 
Average_daily_precip_yearly = mean(weather_data(:)) 
% Another way to find the average yearly precipitation 
Average_daily_precip_yearly = mean(mean(weather_data)) 
% Now calculate the standard deviation 
Monthly_Stdeviation = std(weather_data) 
Yearly_Stdeviation = std(weather_data(:)) 

 The results, shown in the command window, are   

Average_daily_precip_monthly = 
 Columns 1 through 3 
  27.35 16.61 12.42 
 Columns 4 through 6 
  15.29 10.35 20.42 
 Columns 7 through 9 
  10.23 8.97 8.03 
 Columns 10 through 12 
  18.26 15.10 9.23 
Average_daily_precip_yearly = 
  14.35 
Average_daily_precip_yearly = 
  14.35 
Monthly_Stdeviation = 
 Columns 1 through 3 
  63.78 35.06 20.40 
 Columns 4 through 6 
  48.98 26.65 50.46 
 Columns 7 through 9 
  30.63 30.77 27.03 
 Columns 10 through 12 
  42.08 53.34 21.01 
Yearly_Stdeviation = 
  39.62 

 The mean daily precipitation for the year was calculated in two equivalent ways. 
The mean of each month was found, and then the mean (average) of the monthly 
values was found. This works out to be the same as taking the mean of all the data 
at once. Some new syntax was introduced in this example. The command   

weather_data(:)

 converts the two-dimensional matrix   weather_data   into a one-dimensional 
matrix, thus making it possible to fi nd the mean in one step. 

 The situation is different for the standard deviation of daily precipitation 
for the year. Here, we need to perform just one calculation:   

std(weather_data(:))

(continued)
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 Otherwise you would fi nd the standard deviation of the standard devia-
tion—not what you want at all.  

5.   Test the Solution 
 First, check the results to make sure they make sense. For example, the fi rst time 
we executed the M-fi le, the  weather_data   matrix still contained    -99999    val-
ues. That resulted in mean values less than 1. Since it isn’t possible to have nega-
tive rainfall, checking the data for reasonability alerted us to the problem. 
Finally, although calculating the mean daily rainfall for one month by hand 
would serve as an excellent check, it would be tedious. You can use MATLAB ®

to help you by calculating the mean without using a predefi ned function. The 
command window is a convenient place to perform these calculations:   

load weather_data 

sum(weather_data(:,1))       %Find the sum of all the rows in 
%column one of matrix weather_data 

ans = 
    848.00 
ans/31
ans = 
    27.35 

 Compare these results with those for January (month 1).    

  HINT    
 Use the colon operator to change a two-dimensional matrix into a single column:   

A = X(:)

  3.6   RANDOM NUMBERS 

 Random numbers are often used in engineering calculations to simulate measured 
data. Measured data rarely behave exactly as predicted by mathematical models, so 
we can add small values of random numbers to our predictions to make a model 
behave more like a real system. Random numbers are also used to model games of 
chance. Two different types of random numbers can be generated in MATLAB ® : 
uniform random numbers and Gaussian random numbers (often called a normal 
distribution). 

  3.6.1   Uniform Random Numbers 

 Uniform random numbers are generated with the   rand   function. These numbers 
are evenly distributed between 0 and 1. (Consult the help function for more details.) 
 Table   3.13    lists several MATLAB ®  commands for generating random numbers. 

  We can create a set of random numbers over other ranges by modifying the 
numbers created by the   rand   function. For example, to create a set of 100 evenly 
distributed numbers between 0 and 5, fi rst create a set over the default range with 
the command   

r = rand(100,1);

 This results in a    100 � 1    matrix of values. Now we just need to multiply by 5 to 
expand the range to 0 to 5:   

r = r * 5;
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 Table 3.13   Random-Number Generators  

  rand(n)   Returns an    n � n    matrix. Each value in the matrix is a random 
number between 0 and 1. 

  rand(2)    
ans �  

  

      0.9501    0.6068  
      0.2311    0.4860  

  rand(m,n)   Returns an    m � n    matrix. Each value in the matrix is a random 
number between 0 and 1. 

  rand(3,2)    
ans �  

  

      0.8913    0.0185  
      0.7621    0.8214  
      0.4565    0.4447  

  randn(n)   Returns an    n � n    matrix. Each value in the matrix is a Gaussian 
(or normal) random number with a mean of 0 and a variance of 1. 

  randn(2)    
ans �  

  

      �0.4326    0.1253  
      �1.6656    0.2877  

  randn(m,n)   Returns an    m � n    matrix. Each value in the matrix is a Gaussian 
(or normal) random number with a mean of 0 and a variance of 1. 

  randn(3,2)    
ans �  

  

      �1.1465    �0.0376  
      1.1909    0.3273  
      1.1892    0.1746  

 If we want to change the range to 5 to 10, we can add 5 to every value in the array:   

r = r + 5;

 The result will be random numbers varying from 5 to 10. We can generalize these 
results with the equation 

     x � 1max � min2 # random_number_set � min      

  3.6.2   Gaussian Random Numbers 

 Gaussian random numbers have the normal distribution shown in  Figure   3.11   . 
There is no absolute upper or lower bound to a data set of this type; we are just less 
and less likely to fi nd data, the farther away from the mean we get. Gaussian ran-
dom-number sets are described by specifying their average and the standard devia-
tion of the data set. 

 MATLAB ®  generates Gaussian values with a mean of 0 and a variance of 1.0, 
using the   randn   function. For example,   

randn(3)

 returns a    3 � 3    matrix   

ans =
-0.4326  0.2877  1.1892
-1.6656 -1.1465 -0.0376
0.1253  1.1909  0.3273

 If we need a data set with a different average or a different standard deviation, 
we start with the default set of random numbers and then modify it. Since the 
default standard deviation is 1, we must multiply by the required standard deviation 
for the new data set. Since the default mean is 0, we’ll need to add the new mean: 

     x � standard_deviation # random_data_set � mean     
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 For example, to create a sequence of 500 Gaussian random variables with a stand-
ard deviation of 2.5 and a mean of 3, type   

x = randn(1,500)*2.5 + 3;

 Notice that both   rand   and   randn   can accept either one or two input values. If only 
one is specifi ed the result is a square matrix. If two values are specifi ed they repre-
sent the number of rows and the number of columns in the resulting matrix. 

  PRACTICE EXERCISES 3.9 

 1.   Create a    3 � 3    matrix of evenly distributed random numbers.  
 2.   Create a    3 � 3    matrix of normally distributed random numbers.  
 3.   Create a    100 � 5    matrix of evenly distributed random numbers. 
  Be sure to suppress the output.  
   4.   Find the maximum, the standard deviation, the variance, and the 

mean for each column in the matrix that you created in Exercise 3.  
   5.   Create a    100 � 5    matrix of normally distributed random numbers. Be 

sure to suppress the output.  
   6.   Find the maximum, the standard deviation, the variance, and the 

mean for each column in the matrix you created in Exercise 5.  
   7.   Explain why your results for Exercises 4 and 6 are different.    

  NOISE     
  Random numbers can be used to simulate the noise we hear as static on the radio. 
By adding this noise to data fi les that store music, we can study the effect of static on 
recordings. 

 MATLAB ®  has the ability to play music fi les by means of the   sound   function. 
To demonstrate this function, it also has a built-in music fi le with a short segment of 
Handel’s Messiah. In this example, we will use the   randn   function to create noise, 
and then we’ll add the noise to the music clip. 

 Music is stored in MATLAB ®  as an array with values from   -1    to 1. To convert 
this array into music, the   sound   function requires a sample frequency. The han-
del.mat fi le contains both an array representing the music and the value of the 

  EXAMPLE 3.5

 Figure 3.15 
 Utah Symphony 
Orchestra.       
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sample frequency. To hear the Messiah, you must fi rst load the fi le, using the 
command   

load handel 

 Notice that two new variables—  y   and   Fs  —were added to the workspace win-
dow when the   handel   fi le was loaded. To play the clip, type   

sound(y, Fs) 

 Experiment with different values of   Fs   to hear the effect of different sample 
frequencies on the music. (Clearly, the sound must be engaged on your computer, 
or you won’t be able to hear the playback.) 

   1.   State the Problem 
  Add a noise component to the recording of Handel’s Messiah included with 

MATLAB ® .  
  2.   Describe the Input and Output   

  Input    MATLAB ®  data fi le of Handel’s Messiah, stored as the built-in fi le handel 

  Output   An array representing the Messiah, with static added 
   A graph of the fi rst 200 elements of the data fi le 

  3.   Develop a Hand Example 
  Since the data in the music fi le vary between    -1    and    �1,    we should add noise 

values of a smaller order of magnitude. First we’ll try values centered on 0 and 
with a standard deviation of 0.1.  

  4.   Develop a MATLAB ®  Solution   

%Example 3.5
%Noise
load handel    %Load the music data file 
sound(y,Fs)    %Play the music data file 
pause        %Pause to listen to the music 
% Be sure to hit enter to continue after playing the music 
% Add random noise 
noise=randn(length(y),1)*0.10;
sound(y+noise,Fs)

 This program allows you to play the recording of the Messiah, both with and 
without the added noise. You can adjust the multiplier on the noise line to 
observe the effect of changing the magnitude of the added static. For example:   

noise=randn(length(y),1)*0.20

  5.   Test the Solution 
  In addition to playing back the music both with and without the added noise, 

we could plot the results. Because the fi le is quite large (73,113 elements), we’ll 
just plot the fi rst 200 points:   

% Plot the first 200 data points in each file 
t=1:length(y);
noisy = y + noise; 
plot(t(1,1:200),y(1:200,1),t(1,1:200),noisy(1:200,1),':')
title('Handel"s Messiah') 
xlabel('Element Number in Music Array') 
ylabel('Frequency')

(continued)



104 Chapter 3 Built-In MATLAB ®  Functions 

 These commands tell MATLAB ®  to plot the index number of the data on the 
x-axis and the value stored in the music arrays on the y-axis. Plotting is intro-
duced in more detail in a later chapter. 

 In  Figure   3.16   , the solid line represents the original data, and the dotted 
line the data to which we’ve added noise. As expected, the noisy data has a big-
ger range and doesn’t always follow the same pattern as the original. 
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 Figure 3.16 
 Handel’s Messiah. The 
solid line represents the 
original data, and the 
dotted line is the data 
to which we’ve added 
noise.       

  3.7   COMPLEX NUMBERS 

 MATLAB ®  includes several functions used primarily with complex numbers. 
Complex numbers consist of two parts: a real and an imaginary component. For 
example, 

   5 � 3i   

 is a complex number. The real component is 5, and the imaginary component is 3. 
Complex numbers can be entered into MATLAB ®  in two ways: as an addition prob-
lem, such as   

A = 5 + 3i  or  A = 5+3*i

 or with the   complex   function, as in   

A = complex(5,3)

 which returns   

A =
5.0000 + 3.0000i

 COMPLEX NUMBER 
 A number with both real 
and imaginary components 
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 As is standard in MATLAB ® , the input to the   complex   function can be either 
two scalars or two arrays of values. Thus, if x and y are defi ned as   

x = 1:3;
y = [-1,5,12];

 then the   complex   function can be used to defi ne an array of complex numbers as 
follows:   

complex(x,y)
ans =

1.0000 - 1.0000i 2.0000 + 5.0000i 3.0000 +12.0000i

 The   real   and   imag   functions can be used to separate the real and imaginary 
components of complex numbers. For example, for A = 5 + 3*i  , we have   

real(A)
ans =

5
imag(A)
ans =

3

 The   isreal   function can be used to determine whether a variable is storing a 
complex number. It returns a 1 if the variable is real and a 0 if it is complex. Since   A   
is a complex number, we get   

isreal(A)
ans =

0

 Thus, the   isreal   function is false and returns a value of 0. 
 The complex conjugate of a complex number consists of the same real compo-

nent, but an imaginary component of the opposite sign. The   conj   function returns 
the complex conjugate:   

conj(A)
ans =

5.0000 - 3.0000i

 The transpose operator also returns the complex conjugate of an array, in addi-
tion to converting rows to columns and columns to rows. Thus, we have   

A'
ans =

5.0000 - 3.0000i

 Of course, in this example   A   is a scalar. We can create a complex array   B   by 
using   A   and performing both addition and multiplication operations:   

B = [A, A+1, A*3]
B =

5.0000 + 3.0000i 6.0000 + 3.0000i 15.0000 + 9.0000i
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 The transpose of   B   is   

B'
ans =

5.0000 - 3.0000i
6.0000 - 3.0000i
15.0000 - 9.0000i

 Complex numbers are often thought of as describing a position on an x–y 
plane. The real part of the number corresponds to the x-value, and the imaginary 
component corresponds to the y-value, as shown in  Figure   3.17a   . Another way to 
think about this point is to describe it with polar coordinates—that is, with a radius 
and an angle ( Figure   3.17b   ). 

  MATLAB ®  includes functions to convert complex numbers from Cartesian to 
polar form. 

 When the absolute-value function is used with a complex number, it calculates 
the radius, using the Pythagorean theorem:   

abs(A)
ans =

5.8310

   radius � 2(real component)2 � (imaginary component)2   

 Since, in this example, the real component is 5, and the imaginary component is 3, 

   radius � 252 � 32 � 5.8310   

 We could also calculate the radius in MATLAB ® , using the   real   and   imag   
functions described earlier:   

sqrt(real(A).^2 + imag(A).^2)
ans =

5.8310

 Similarly, the angle is found with the angle function:   

angle(A)
ans =

0.5404
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 Figure 3.17 
 (a) Complex number 
represented in a Cartesian 
coordinate system. (b) A 
complex number can also 
be described with polar 
coordinates.       

 POLAR COORDINATES 
 A technique for describing 
a location using an angle 
and a distance 
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 The result is expressed in radians. Both functions,   abs   and   angle  , will accept sca-
lars or arrays as input. Recall that B is a    1 � 3    array of complex numbers:   

B =
5.0000 + 3.0000i 6.0000 + 3.0000i 15.0000 + 9.0000i

 The   abs   function returns the radius if the number is represented in polar 
 coordinates:   

abs(B)
ans =

5.8310 6.7082 17.4929

 The angle from the horizontal can be found with the   angle   function:   

angle(B)
ans =

0.5404 0.4636 0.5404

 The MATLAB ®  functions commonly used with complex numbers are summa-
rized in  Table   3.14   . 

 Table 3.14   Functions Used with Complex Numbers 

  abs(x)   Computes the absolute value of a complex number, using the 
Pythagorean theorem. This is equivalent to the radius if the 
complex number is represented in polar coordinates. 

  x�3+4i;    
abs(x)    
ans � 
    5  

   For example, if    x � 3 � 4i,    the absolute value is    232 � 42 � 5      
  angle(x)   Computes the angle from the horizontal in radians when a 

complex number is represented in polar coordinates. 
  x�3�4i;    
angle(x)    
ans � 
    0.9273  

  complex(x,y)   Generates a complex number with a real component x 
and an imaginary component y. 

  x�3;    
y�4;  

      complex(x,y)    
ans � 
    3.0000 + 
    4.0000i  

  real(x)   Extracts the real component from a complex number.   x�3�4i;  
      real(x)    

ans � 
    3  

  imag(x)   Extracts the imaginary component from a complex number.   x�3�4i;  
      imag(x)    

ans � 
    4  

  isreal(x)   Determines whether the values in an array are real. If they are 
real, the function returns a 1; if they are complex, it returns a 0. 

  x�3�4i;    
isreal(x)    
ans � 
    0  

  conj(x)   Generates the complex conjugate of a complex number.   x�3�4i;  
      conj(x)    

ans � 
    3.0000 - 
    4.0000i  



108 Chapter 3 Built-In MATLAB ®  Functions 

  3.8   COMPUTATIONAL LIMITATIONS 

 The variables stored in a computer can assume a wide range of values. On the 
majority of computers, the range extends from about    10�308    to    10308,    which should 
be enough to accommodate most computations. MATLAB ®  includes functions to 
identify the largest real numbers and the largest integers the program can process 
( Table   3.15   ).   

   The value of   realmax   corresponds roughly to    21024,    since computers actually 
perform their calculations in binary (base-2) arithmetic. Of course, it is possible to 
formulate a problem in which the result of an expression is larger or smaller than the 
permitted maximum. For example, suppose that we execute the following commands:   

x = 2.5e200;
y = 1.0e200;
z = x*y

   PRACTICE EXERCISES 3.10 

    1.   Create the following complex numbers: 
   a.      A � 1 � i     
  b.      B � 2 � 3i     
  c.      C � 8 � 2i       

   2.   Create a vector   D   of complex numbers whose real components are 2, 4, 
and 6 and whose imaginary components are    -3,    8, and    -16.     

   3.   Find the magnitude (absolute value) of each of the vectors you created 
in Exercises 1 and 2.  

   4.   Find the angle from the horizontal of each of the complex numbers 
you created in Exercises 1 and 2.  

   5.   Find the complex conjugate of vector   D  .  
   6.   Use the transpose operator to fi nd the complex conjugate of vector   D  .  
   7.   Multiply   A   by its complex conjugate, and then take the square root of 

your answer. How does this value compare against the magnitude 
(absolute value) of A?     

 KEY IDEA 
 There is a limit to how 
small or how large a 
number can be handled by 
computer programs 

 Table 3.15   Computational Limits 

  realmax   Returns the largest possible fl oating-point number used in 
MATLAB ® . 

  realmax    
ans = 
       1.7977e+308  

  realmin   Returns the smallest possible fl oating-point number used in 
MATLAB ® . 

  realmin    
ans = 
       2.2251e-308  

  intmax   Returns the largest possible integer number used in 
MATLAB ® . 

  intmax    
ans = 
       2147483647  

  intmin   Returns the smallest possible integer number used in 
MATLAB ® . 

  intmin    
ans = 
       –2147483648  
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 OVERFLOW 
 A calculational result that is 
too large for the computer 
program to handle 

 UNDERFLOW 
 A calculational result that is 
too small for the computer 
program to distinguish from 
zero 

 MATLAB ®  responds with   

z =
Inf

 because the answer (2.5e400) is outside the allowable range. This error is called 
exponent overfl ow, because the exponent of the result of an arithmetic operation is 
too large to store in the computer’s memory.   

  Exponent underfl ow is a similar error, caused by the exponent of the result of 
an arithmetic operation being too small to store in the computer’s memory. Using 
the same allowable range, we obtain an exponent underfl ow with the following 
commands:   

x = 2.5e-200;
y = 1.0e200
z = x/y

 Together, these commands return   

z = 0

 The result of an exponent underfl ow is zero. 
 We also know that division by zero is an invalid operation. If an expression 

results in a division by zero, the result of the division is infi nity:   

z = y/0
z =

Inf

 MATLAB ®  may print a warning telling you that division by zero is not possible. 
 In performing calculations with very large or very small numbers, it may be pos-

sible to reorder the calculations to avoid an underfl ow or an overfl ow. Suppose, for 
example, that you would like to perform the following string of multiplications: 

   12.5 � 102002 � 12 � 102002 � 11 � 10�1002   
 The answer is    5 � 10300,    within the bounds allowed by MATLAB ® . However, con-
sider what happens when we enter the problem into MATLAB ® :   

2.5e200*2e200*1e-100
ans =

Inf

 Because MATLAB ®  executes the problem from left to right, the fi rst multiplica-
tion yields a value outside the allowable range    15 � 104002,    resulting in an answer 
of infi nity. However, by rearranging the problem to   

2.5e200*1e-100*2e200
ans =
5.0000e+300

 we avoid the overfl ow and fi nd the correct answer.  

  3.9   SPECIAL VALUES AND MISCELLANEOUS FUNCTIONS 

 Most, but not all, functions require an input argument. Although used as if 
they were scalar constants, the functions listed in  Table   3.16    do not require any 
input. 

 KEY IDEA 
 Careful planning can help 
you avoid calculational 
overfl ow or underfl ow 
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 Table 3.16   Special Functions 

  pi   Mathematical constant    p.      pi  
      ans = 

    3.1416  
  I    Imaginary number.    i  
      ans = 

    0 + 1.0000i  
  J    Imaginary number.    j  
      ans = 

    0 + 1.0000i  
  Inf    Infi nity, which often occurs during a calculational overfl ow or when a 

number is divided by zero.  
  5/0    
Warning: Divide by zero.  
ans =

          Inf  

  NaN    Not a number.    0/0  
    Occurs when a calculation is undefi ned.    Warning: Divide by zero.  
      ans = 

    NaN 
inf/inf  

      ans = 
    NaN  

  clock    Current time.    clock  
    Returns a six-member array [year month day hour minute second]. 

When the clock function was called on July 19, 2008, at 5:19 p.m. 
and 30.0 seconds, MATLAB ®  returned the output shown at the right.  

  ans = 
    1.0e+003 *    
2.0080 0.0070 0.0190
    0.0170 0.0190 0.0300  

   The  fi x  and  clock  functions together result in a format that is easier to read.   fi x(clock)  
   The  fi x  function rounds toward zero. A similar result could be obtained by 

setting  format bank . 
  ans = 
    2008  7  19  

          17     19  30  
  date   Current date.   date  
   Similar to the clock function. However, it returns the date in a “string format.”   ans = 

    19-Jul-2008  

  eps    The distance between 1 and the next-larger double-precision 
fl oating-point number.  

  eps    
ans = 
    2.2204e-016  

  MATLAB ®  allows you to redefi ne these special values as variable names; how-
ever, doing so can have unexpected consequences. For example, the following 
MATLAB ®  code is allowed, even though it is not wise:   

pi = 12.8;

 From this point on, whenever the variable   pi   is called, the new value will be used. 
Similarly, you can redefi ne any function as a variable name, such as   

sin = 10;

 To restore   sin   to its job as a trigonometric function (or to restore the default 
value of   pi  ), you must clear the workspace with   

clear

 or you may clear each variable independently with   

clear sin
clear pi
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 Now check to see the result by issuing the command for    p.      

pi

 This command returns   

pi =
       3.1416

  HINT    
 The function i is the most common of these functions to be unintentionally 
renamed by MATLAB ®  users.  

 The NaN function stands for “not a number.” It is returned when a user 
attempts a calculation where the result is undefi ned—for example 0/0. It can also 
be useful as a placeholder in an array. 

  PRACTICE EXERCISES 3.11 

    1.   Use the   clock   function to add the time and date to your work sheet.  
   2.   Use the   date   function to add the date to your work sheet.  
   3.   Convert the following calculations to MATLAB ®  code and explain 

your results: 
   a.    322! (Remember that, to a mathematician, the symbol ! means 

factorial.)  
  b.      5 * 10500     
  c.      1>5 * 10500     
  d.   0/0        

     SUMMARY 

 In this chapter, we explored a number of predefi ned MATLAB ®  functions, includ-
ing the following: 

   •   General mathematical functions, such as 
   ❍   exponential functions  
  ❍   logarithmic functions  
  ❍   roots    

  •   Rounding functions  
  •   Functions used in discrete mathematics, such as 

   ❍   factoring functions  
  ❍   prime-number functions    

  •   Trigonometric functions, including 
   ❍   standard trigonometric functions  
  ❍   inverse trigonometric functions  
  ❍   hyperbolic trigonometric functions  
  ❍   trigonometric functions that use degrees instead of radians    

  •   Data analysis functions, such as 
   ❍   maxima and minima  
  ❍   averages (mean and median)  
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  ❍   sums and products  
  ❍   sorting  
  ❍   standard deviation and variance    

  •   Random-number generation for both 
   ❍   uniform distributions  
  ❍   Gaussian (normal) distributions    

  •   Functions used with complex numbers   

 We explored the computational limits inherent in MATLAB ®  and introduced spe-
cial values, such as   pi  , that are built into the program. 

  MATLAB ®  SUMMARY 

 The following MATLAB ®  summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter:   

  Special Characters and Functions  

  eps   smallest difference recognized 
  i   imaginary number 
  clock   returns the time 
  date   returns the date 
  Inf   infi nity 
  intmax   returns the largest possible integer number used in MATLAB ®  
  intmin   returns the smallest possible integer number used in MATLAB ®  
j  imaginary number 
  NaN   not a number 
  pi   mathematical constant p        
  realmax   returns the largest possible fl oating-point number used in MATLAB ®  
  realmin   returns the smallest possible fl oating-point number used in MATLAB ®  

  Commands and Functions  

  abs   computes the absolute value of a real number or the magnitude of a complex 
number 

  angle   computes the angle when complex numbers are represented in polar 
coordinates 

  asin   computes the inverse sine (arcsine) 
  asind   computes the inverse sine and reports the result in degrees 
  ceil   rounds to the nearest integer toward positive infi nity 
  complex   creates a complex number 
  conj   creates the complex conjugate of a complex number 
  cos   computes the cosine 
  cumprod   computes a cumulative product of the values in an array 
  cumsum   computes a cumulative sum of the values in an array 
  erf   calculates the error function 
  exp   computes the value of    ex    
  factor   fi nds the prime factors 
  factorial   calculates the factorial 
  fi x   rounds to the nearest integer toward zero 
  fl oor   rounds to the nearest integer toward minus infi nity 
  gcd   fi nds the greatest common denominator 
  help   opens the help function 
  helpwin   opens the windowed help function 
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  Commands and Functions  

  imag   extracts the imaginary component of a complex number 
  isprime   determines whether a value is prime 
  isreal   determines whether a value is real or complex 
  lcm   fi nds the least common multiple 
  length   determines the largest dimension of an array 
  log   computes the natural logarithm or the logarithm to the base    e 1loge2    
  log10   computes the common logarithm or the logarithm to the base    10 1log102    
  log2   computes the logarithm to the base    2 1log22    
  max   fi nds the maximum value in an array and determines which element stores the 

maximum value 
  mean   computes the average of the elements in an array 
  median   fi nds the median of the elements in an array 
  min   fi nds the minimum value in an array and determines which element stores the 

minimum value 
  mode   fi nds the most common number in an array 
  nchoosek   fi nds the number of possible combinations when a subgroup of k values is 

chosen from a group of n values. 
  nthroot   fi nd the real nth root of the input matrix 
  numel   determines the total number of elements in an array 
  primes   fi nds the prime numbers less than the input value 
  prod   multiplies the values in an array 
  rand   calculates evenly distributed random numbers 
  randn   calculates normally distributed (Gaussian) random numbers 
  rats   converts the input to a rational representation (i.e., a fraction) 
  real   extracts the real component of a complex number 
  rem   calculates the remainder in a division problem 
  round   rounds to the nearest integer 
  sign   determines the sign (positive or negative) 
  sin   computes the sine, using radians as input 
  sind   computes the sine, using angles in degrees as input 
  sinh   computes the hyperbolic sine 
  size   determines the number of rows and columns in an array 
  sort   sorts the elements of a vector 
  sortrows   sorts the rows of a vector on the basis of the values in the fi rst column 
  sound   plays back music fi les 
  sqrt   calculates the square root of a number 
  std   determines the standard deviation 
  sum   sums the values in an array 
  tan   computes the tangent, using radians as input 
  var   computes the variance 

 argument 
 average 
 complex numbers 
 discrete mathematics 
 function 
 function input 
 Gaussian random 

variation 
 mean 
 median 
 nesting 
 normal random variation 
 overfl ow 
 rational numbers 

 real numbers 
 seed 
 standard deviation 
 underfl ow 
 uniform random 
number 
 variance  

       KEY TERMS 



114 Chapter 3 Built-In MATLAB ®  Functions 

  Elementary Math Functions  

   3.1    Find the cube root of    -5,    both by using the   nthroot   function and by rais-
ing    -5    to the 1/3 power. Explain the difference in your answers. Prove that 
both results are indeed correct answers by cubing them and showing that 
they equal    -5.      

   3.2    MATLAB ®  contains functions to calculate the natural logarithm (  log  ), the 
logarithm to the base 10 (  log10  ), and the logarithm to the base 2 (  log2  ). 
However, if you want to fi nd a logarithm to another base—for example, 
base b—you’ll have to do the math yourself with the formula 

   logb1x2 �
loge1x2
 loge1b2    

 What is the    logb    of 10 when b is defi ned from 1 to 10 in increments of 1?   
   3.3    Populations tend to expand exponentially, that is, 

   P � P0ert   

 where 

    P  = current population  
     P0    = original population  
   r  = continuous growth rate, expressed as a fraction  
   t  = time.   
 If you originally have 100 rabbits that breed at a continuous growth rate of 90% 
   1r � 0.92    per year, fi nd how many rabbits you will have at the end of 10 years.   

   3.4    Chemical reaction rates are proportional to a rate constant k that changes 
with temperature according to the Arrhenius equation 

   k � k0e
�Q>RT    

 For a certain reaction, 

    Q � 8000 cal>mol    

    R � 1.987 cal>mol K   

    k0 � 1200 min�1    

  Find the values of k for temperatures from 100 K to 500 K, in 50� increments. 
Create a table of your results.   

   3.5    Consider the air-conditioning requirements of the large home shown in 
 Figure   P3.5   . 

  The interior of the house is warmed by waste heat from lighting and 
electrical appliances, by heat leaking in from the outdoors, and by heat 
generated by the people in the home. An air-conditioner must be able to 
remove all this thermal energy in order to keep the inside temperature 
from rising. Suppose there are 20 light bulbs emitting 100 J/s of energy 
each and four appliances emitting 500 J/s each. Suppose also that heat 
leaks in from the outside at a rate of 3000 J/s. 

   (a)   How much heat must the air-conditioner be able to remove from the 
home per second?  

  PROBLEMS 
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  (b)   One particular air-conditioning unit can handle 2000 J/s. How many of 
these units are needed to keep the home at a constant temperature?     

   3.6.        (a)    If you have four people, how many different ways can you arrange them 
in a line?  

  (b)   If you have 10 different tiles, how many different ways can you arrange 
them?     

   3.7.        (a)    If you have 12 people, how many different committees of two people 
each can you create? Remember that a committee of Bob and Alice is 
the same as a committee of Alice and Bob.  

  (b)    How many different soccer teams of 11 players can you form from a 
class of 30 students? (Combinations—order does not matter).  

  (c)    Since each player on a soccer team is assigned a particular role, order 
does matter. Recalculate the possible number of different soccer teams 
that can be formed when order is taken into account.     

   3.8    There are 52 different cards in a deck. How many different hands of 5 cards 
each are possible? Remember, every hand can be arranged 120 (5!) differ-
ent ways.   

   3.9    Very large prime numbers are used in cryptography. How many prime num-
bers are there between 10,000 and 20,000? (These aren’t big enough primes 
to be useful in ciphers.) (Hint: Use the   primes   function and the   length   
command.)   

  Trigonometric Functions  

   3.10    Sometimes it is convenient to have a table of sine, cosine, and tangent val-
ues instead of using a calculator. Create a table of all three of these trigono-
metric functions for angles from 0 to    2p,    with a spacing of 0.1 radian. Your 
table should contain a column for the angle and then for the sine, cosine, 
and tangent.   

   3.11    The displacement of the oscillating spring shown in  Figure   P3.11    can be 
described by 

   x � A cos1vt2   

heat from the
surroundings

heat from
lightbulbs

heat from
appliances

heat removed
with the air
conditioner

 Figure P3.5 
 Air conditioning must 
remove heat from a number 
of sources.       
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 where 
    x  = displacement at time  t   
   A  = maximum displacement  
     v    =  angular frequency, which depends on the spring constant and the 

mass attached to the spring  
   t  = time.   
  Find the displacement x for times from 0 to 10 seconds when the maximum 
displacement A is 4 cm, and the angular frequency is 0.6 radian/s. Present 
your results in a table of displacement and time values. 

      3.12    The acceleration of the spring described in the preceding exercise is 

   a � -Av2 cos1vt2   
  Find the acceleration for times from 0 to 10 seconds, using the constant 
values from the preceding problem. Create a table that includes the time, 
the displacement from corresponding values in the previous exercise, and 
the acceleration.   

   3.13    You can use trigonometry to fi nd the height of a building as shown in  Figure 
  P3.13   . Suppose you measure the angle between the line of sight and the 
horizontal line connecting the measuring point and the building. You can 
calculate the height of the building with the following formulas: 

   tan1u2 � h>d    

   h � d tan1u2   
  Assume that the distance to the building along the ground is 120 m and the 
angle measured along the line of sight is    30� 	3�.    Find the maximum and 
minimum heights the building can be. 

      3.14    Consider the building from the previous exercise. 

   (a)    If it is 200 feet tall and you are 20 feet away, at what angle from the 
ground will you have to tilt your head to see the top of the building? 
(Assume that your head is even with the ground.)  

  (b)   How far is it from your head to the top of the building?     

A

A

 Figure P3.11 
 An oscillating spring.       

height h

distance d

angle u

 Figure P3.13 
 You can determine the 
height of a building with 
trigonometry.       
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  Data Analysis Functions  

   3.15    Consider the following table of data representing temperature readings in 
a reactor: 

  Thermocouple 1    Thermocouple 2    Thermocouple 3  

 84.3  90.0  86.7 
 86.4  89.5  87.6 
 85.2  88.6  88.3 
 87.1  88.9  85.3 
 83.5  88.9  80.3 
 84.8  90.4  82.4 
 85.0  89.3  83.4 
 85.3  89.5  85.4 
 85.3  88.9  86.3 
 85.2  89.1  85.3 
 82.3  89.5  89.0 
 84.7  89.4  87.3 
 83.6  89.8  87.2 

  Your instructor may provide you with a fi le named thermocouple.dat, or 
you may need to enter the data yourself.   
     Use MATLAB ®  to fi nd 

   (a)   The maximum temperature measured by each thermocouple.  
  (b)   The minimum temperature measured by each thermocouple.     

   3.16    The range of an object shot at an angle    u    with respect to the x-axis and an 
initial velocity    v0    ( Figure   P3.16   ) is given by 

Range �
v2

0

g
sin12u2

  for    0 … u … p>2    and neglecting air resistance. Use    g � 9.81 m>s2    and an 
initial velocity    v0    of 100 m/s. Show that the maximum range is obtained at 
approximately    u � p>4    by computing the range in increments of    p>100    
between    0 … u … p>2.    You won’t be able to fi nd the exact angle that results 
in the maximum range, because your calculations are at evenly spaced angles 
of    p>100    radian. 

      3.17    The vector 

   G�[68, 83, 61, 70, 75, 82, 57, 5, 76, 85, 62, 71, 96, 78, 76, 68, 72, 75, 83, 93]   

  represents the distribution of fi nal grades in a dynamics course. Compute 
the mean, median, mode, and standard deviation of G. Which better 
represents the “most typical grade,” the mean, median, or mode? Why? Use 
MATLAB ®  to determine the number of grades in the array (don’t just count 
them) and to sort them into ascending order.   

   3.18    Generate 10,000 Gaussian random numbers with a mean of 80 and stand-
ard deviation of 23.5. (You’ll want to suppress the output so that you don’t 
overwhelm the command window with data.) Use the   mean   function to 
confi rm that your array actually has a mean of 80. Use the   std   function to 
confi rm that your standard deviation is actually 23.5.   

   3.19    Use the   date   function to add the current date to your homework.   

Range

u

 Figure P3.16 
 The range depends on the 
launch angle and the launch 
velocity.       



118 Chapter 3 Built-In MATLAB ®  Functions 

  Random Numbers  

   3.20    Many games require the player to roll two dice. The number on each die 
can vary from 1 to 6. 

   (a)   Use the   rand   function in combination with a rounding function to cre-
ate a simulation of one roll of one die.  

  (b)   Use your results from part (a) to create a simulation of the value rolled 
with a second die.  

  (c)   Add your two results to create a value representing the total rolled dur-
ing each turn.  

  (d)   Use your program to determine the values rolled in a favorite board 
game, or use the game shown in  Figure   P3.20   . 

        3.21    Suppose you are designing a container to ship sensitive medical materials 
between hospitals. The container needs to keep the contents within a speci-
fi ed temperature range. You have created a model predicting how the con-
tainer responds to the exterior temperature, and you now need to run a 
simulation. 

   (a)   Create a normal distribution (Gaussian distribution) of temperatures 
with a mean of 70°F and a standard deviation of 2°, corresponding to a 
2-hour duration. You’ll need a temperature for each time value from 0 
to 120 minutes. (That’s 121 values.)  
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 Figure P3.20 
 The college game.       



 Problems 119

  (b)   Plot the data on an x–y plot. Don’t worry about labels. Recall that the 
MATLAB ®  function for plotting is plot(x,y).  

  (c)   Find the maximum temperature, the minimum temperature, and the 
times at which they occur.     

  Complex Numbers  

   3.22    Consider the circuit shown in  Figure   P3.22   , which includes the following: 
   •   A sinusoidally varying voltage source,  V .  
  •   An inductor, with an inductance,  L .  
  •   A capacitor, with a capacitance,  C .  
  •   A resistor, with a resistance,  R .   

 We can fi nd the current, I, in the circuit by using Ohm’s law (generalized 
for alternating currents), 

   V �  IZT    

  where  Z T   is the total impedance in the circuit. (Impedance is the AC 
corollary to resistance.) 

 Assume that the impedance for each component is as follows: 

    ZL � 0 � 5j ohms    

    ZC � 0 � 15j ohms    

    R � ZR � 5 � 0j ohms   

    ZT � ZC � ZL � R    

 and that the applied voltage is 

   V � 10 � 0j volts   

 (Electrical engineers usually use  j  instead of  i  for imaginary numbers.) 
  Find the current,  I , in the circuit. You should expect a complex number 

as a result. Enter the complex values of impedance into your calculations 
using the  complex  function.   

   3.23    Impedance is related to the inductance,  L , and the capacitance,  C , by the 
following equations 

   ZC �  
1
vCj

   

   ZL �  
1
vLj

   

  For a circuit similar to the one shown in  Figure   P3.22    assume the following: 

L C

R

V

I

 Figure P3.22 
 A simple circuit illustrating 
a sinusoidally varying 
voltage source,  V.        
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     C � 1
F (microfarads)   

    L � 200 mH (millihenries)   

    R � 5 ohms    

    f � 15 kHz (kilohertz)    

    v � 2pf    

    V � 10 volts    

   (a)   Find the impedance for the capacitor (ZC) and for the inductor (ZL).  
  (b)   Find the total impedance 

ZT �  ZC �  ZL �  R

  (c)   Find the current by solving Ohm’s law for  I . 

V �  IZT

  (d)   Electrical engineers often describe complex parameters using polar 
coordinates, that is, the parameter has both an angle and a magnitude. 
(Imagine plotting a point on the complex plane, where the x-axis repre-
sents the real part of the number, and the y-axis represents the imagi-
nary part of the number.) Use the   abs   function to fi nd the magnitude 
of the current found in part c, and use the   angle   function to fi nd the 
corresponding angle.                 



4  

     4.1   MANIPULATING MATRICES 

 As you solve more and more complicated problems with MATLAB ® , you’ll fi nd that 
you will need to combine small matrices into larger matrices, extract information from 
large matrices, create very large matrices, and use matrices with special properties. 

  4.1.1   Defi ning Matrices 

 In MATLAB ® , you can defi ne a matrix by typing in a list of numbers enclosed in 
square brackets. You can separate the numbers by spaces or by commas, at your discre-
tion. (You can even combine the two techniques in the same matrix defi nition.) To 
indicate a new row, you can use a semicolon. For example,   

   A = [3.5];     
   B = [1.5, 3.1];  or  B = [1.5 3.1];     
   C = [-1, 0, 0; 1, 1, 0; 0, 0, 2];   

 You can also defi ne a matrix by listing each row on a separate line, as in the following 
set of MATLAB ®  commands:   

   C =  [-1,  0, 0;     
   1,  1, 0;     
   1, -1, 0;     
   0,  0, 2]   

 After reading this chapter, you 
should be able to: 
  •   Manipulate matrices  
  •   Extract data from 

matrices  

  •   Solve problems with two 
matrix variables of 
 different sizes  

  •   Create and use special 
matrices    

     Objectives 

 Manipulating 
MATLAB ®  
Matrices 

  C H A P T E R
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 You don’t even need to enter the semicolon to indicate a new row. MATLAB ®  interprets   

C =  [-1,  0, 0
1,  1, 0
1, -1, 0
0,  0, 2]

 as a    4 � 3    matrix. You could also enter a column matrix in this manner:   

A = [
1
2
3 ]

 If there are too many numbers in a row to fi t on one line, you can continue the 
statement on the next line, but a comma and an ellipsis (…) are required at the 
end of the line, indicating that the row is to be continued. You can also use the ellip-
sis to continue other long assignment statements in MATLAB ® .    

 If we want to defi ne  F  with 10 values, we can use either of the   following 
 statements:   

F = [1, 52, 64, 197, 42, -42, 55, 82, 22, 109]; or 
F = [1, 52, 64, 197, 42, -42, ...

55, 82, 22, 109];

 MATLAB ®  also allows you to defi ne a matrix in terms of another matrix that 
has already been defi ned. For example, the statements   

B = [1.5, 3.1];
S = [3.0, B]

 return   

S =
3.0  1.5  3.1

 Similarly,   

T = [ 1, 2, 3; S]

 returns   

T =
1  2    3
3  1.5  3.1

 We can change values in a matrix, or include additional values, by   using an index 
number to specify a particular element. This process is called  indexing into an 

array . Thus, the command      

S(2) = -1.0;

 changes the second value in the matrix  S  from 1.5 to –1. If we type the matrix name   

S

 into the command window, then MATLAB ®  returns   

S =
3.0  -1.0  3.1

 ELLIPSIS 
 A set of three periods used 
to indicate that a row is 
continued on the next line 

 INDEX 
 A number used to identify 
elements in an array 
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 We can also extend a matrix by defining new elements. If we execute the 
command   

S(4) = 5.5;

 we extend the matrix  S  to four elements instead of three. If we defi ne element   

S(8) = 9.5;

 matrix  S  will have eight values, and the values of   S(5)  ,   S(6)  , and  S(7)  will be set 
to 0. Thus,   

S

 returns   

S =
3.0  -1.0  3.1  5.5  0  0  0  9.5 

  4.1.2   Using the Colon Operator 

 The colon operator is very powerful in defi ning new matrices and modifying exist-
ing ones. First, we can use it to defi ne an evenly spaced matrix. For example,   

H = 1:8

 returns   

H =
1  2  3  4  5  6  7  8

 The default spacing is 1. However, when colons are used to separate three num-
bers, the middle value becomes the spacing. Thus,   

time = 0.0 : 0.5 : 2.0

 returns   

time =
0  0.5000  1.0000  1.5000  2.0000

 The colon operator can also be used to extract data from matrices, a feature 
that is very useful in data analysis. When a colon is used in a matrix reference in 
place of a specifi c index number, the colon represents the entire row or column. 

 Suppose we defi ne   M   as   

M = [1 2 3 4 5;
2 3 4 5 6;
3 4 5 6 7];

 We can extract column 1 from matrix   M   with the command   

x = M(:, 1)

 which returns   

x =
1
2
3
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 We read this syntax as “all the rows in column 1.” We can extract any of the columns 
in a similar manner. For instance,   

y = M(:, 4)

 returns   

y =
4
5
6

 and can be interpreted as “all the rows in column 4.” Similarly, to   extract a row,   

z = M(1,:)

 returns   

z =
1  2  3  4  5

 and is read as “row 1, all the columns.” 
 We don’t have to extract an entire row or an entire column. The colon operator 

can also be used to mean “from row to row” or “from column to column.” To extract 
the two bottom rows of the matrix   M  , type   

w = M(2:3,:)

 which returns   

w =
2  3  4  5  6
3  4  5  6  7

 and reads “rows 2 to 3, all the columns.” Similarly, to extract just the four numbers 
in the lower right-hand corner of matrix   M  ,   

w = M(2:3, 4:5)

 returns   

w =
5  6
6  7

 and reads “rows 2 to 3 in columns 4 to 5.” 
 In MATLAB ® , it is valid to have a matrix that is empty. For example, each of the 

following statements will generate an empty matrix:   

a = [ ];
b = 4:-1:5;

 Finally, using the matrix name with a single colon, such as   

M(:)

 transforms the matrix into one long column.   
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M =
1
2
3
2
3
4
3
4    M
5    M =
4        1  2  3  4  5
5        2  3  4  5  6
6        3  4  5  6  7
5    M(2, 3)
6    ans =
7           4

 The matrix was formed by fi rst listing column 1, then adding column 2 
onto the end, tacking on column 3, and so on. Actually, the computer 
does not store two-dimensional arrays in a two-dimensional pattern. 
Rather, it “thinks” of a matrix as one long list, just like the matrix  M  at the 
left. There are two ways you can extract a single value from an array: by 
using a single index number or by using the row, column notation. To 
fi nd the value in row 2, column 3, use the following commands:    

 Alternatively, you can use a single index number. The value in row 2, column 3 of 
matrix   M   is element number 8. (Count down column 1, then down column 2, and 
finally down column 3 to the correct element.) The associated MATLAB ®  
 command is   

M(8)
ans = 4

 KEY IDEA 
 You can identify an element 
using either a single 
number, or indices 
representing the row and 
column 

  HINT    
 You can use the word “end” to identify the fi nal row or column in a matrix, 
even if you don’t know how big it is. For example,   

M(1,end)

 returns   

M(1,end)
ans =

5

 and   

M(end, end)

 returns   

ans =
7

 as does   

M(end)
ans =

7
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  PRACTICE EXERCISES 4.1 

 Create MATLAB ®  variables to represent the following matrices, and use 
them in the exercises that follow: 

   a � 312 17 3 64   b � £5 8 3
1 2 3
2 4 6

§   c � £22
17
4
§    

1.   Assign to the variable   x1   the value in the second column of matrix   a  . 
This is sometimes represented in mathematics textbooks as element 
 a  1,2  and could be expressed as  x1 = a1,2    .

   2.   Assign to the variable   x2   the third column of matrix   b  .  
3.   Assign to the variable   x3   the third row of matrix   b  .  
4.   Assign to the variable   x4   the values in matrix   b   along the diagonal 

(i.e., elements  b  1,1 ,  b  2,2 , and  b  3,3 ).  
5.   Assign to the variable   x5   the fi rst three values in matrix   a   as the fi rst 

row and all the values in matrix   b   as the second through the fourth row.  
   6.   Assign to the variable   x6   the values in matrix   c   as the fi rst column, the 

values in matrix   b   as columns 2, 3, and 4, and the values in matrix   a   as 
the last row.  

   7.   Assign to the variable  x7  the value of element 8 in matrix   b  , using the 
single-index-number identifi cation scheme.  

   8.   Convert matrix   b   to a column vector named   x8  .    

  USING TEMPERATURE DATA 
 The data collected by the National Weather Service are extensive but are not always 
organized in exactly the way we would like ( Figure   4.1   ). Take, for example, the sum-
mary of the 1999 Asheville, North Carolina, Climatological Data. We’ll use these 
data to practice manipulating matrices—both extracting elements and recombin-
ing elements to form new matrices.  

  EXAMPLE 4.1

 Figure 4.1 
 Temperature data collected 
from a weather satellite 
were used to create this 
composite false-color 
image. (Courtesy of 
NASA/Jet Propulsion 
Laboratory.)       



 4.1 Manipulating Matrices 127

 The numeric information has been extracted from the table and is in an Excel 
fi le called  Asheville_1999.xls  (Appendix D, available online). Use MATLAB ®  to 
confi rm that the reported values on the annual row are correct for the mean maxi-
mum temperature and the mean minimum temperature, as well as for the annual 
high temperature and the annual low temperature. Combine these four columns of 
data into a new matrix called  temp_data . 

   1.   State the Problem 
  Calculate the annual mean maximum temperature, the annual mean mini-

mum temperature, the highest temperature reached during the year, and the 
lowest temperature reached during the year for 1999 in Asheville, North 
Carolina.  

  2.   Describe the Input and Output   
  Input      Import a matrix from the Excel fi le  Asheville_1999.xls .   

  Output    Find the following four values:  annual mean maximum temperature 
 annual mean minimum temperature 
 highest temperature 
 lowest temperature 

  Create a matrix composed of the mean maximum temperature values, the 
mean minimum temperature values, the highest monthly temperatures, and 
the lowest monthly temperatures. Do not include the annual data.  

3.   Develop a Hand Example 
  Using a calculator, add the values in column 2 of the table and divide by 12.  
4.   Develop a MATLAB ®  Solution 
  First import the data from Excel, then save them in the current directory as 

Asheville_1999 . Save the variable  Asheville_1999  as the fi le  Asheville_1999.mat . 
This makes it available to be loaded into the workspace from our M-fi le  program:   

% Example 4.1
% In this example, we extract data from a large matrix and
% use the data analysis functions to find the mean high
% and mean low temperatures for the year and to find the
% high temperature and the low temperature for the year
%
clear, clc
% load the data matrix from a file
load asheville_1999
% extract the mean high temperatures from the large matrix
mean_max = asheville_1999(1:12,2);
% extract the mean low temperatures from the large matrix
mean_min = asheville_1999(1:12,3);
% Calculate the annual means
annual_mean_max = mean(mean_max)
annual_mean_min = mean(mean_min)
% extract the high and low temperatures from the large
% matrix
high_temp = asheville_1999(1:12,8);
low_temp = asheville_1999(1:12,10);
% Find the max and min temperature for the year

(continued)



128 Chapter 4 Manipulating MATLAB ®  Matrices

max_high = max(high_temp)
min_low = min(low_temp)
% Create a new matrix with just the temperature
% information
new_table =[mean_max, mean_min, high_temp, low_temp]

 The results are displayed in the command window:   

annual_mean_max =
68.0500

annual_mean_min =
46.3250

max_high =
96

min_low =
9

new_table =
51.4000  31.5000  78.0000   9.0000
52.6000  32.1000  66.0000  16.0000
52.7000  32.5000  76.0000  22.0000
70.1000  48.2000  83.0000  34.0000
75.0000  51.5000  83.0000  40.0000
80.2000  60.9000  90.0000  50.0000
85.7000  64.9000  96.0000  56.0000
86.4000  63.0000  94.0000  54.0000
79.1000  54.6000  91.0000  39.0000
67.6000  45.5000  78.0000  28.0000
62.2000  40.7000  76.0000  26.0000
53.6000  30.5000  69.0000  15.0000

5.   Test the Solution 
  Compare the results against the bottom line of the table from the Asheville, 

North Carolina, Climatological Survey. It is important to confi rm that the results 
are accurate before you start to use any computer program to process data.      

  4.2   PROBLEMS WITH TWO VARIABLES 

 All of the calculations we have done thus far have used only one variable. Of course, 
most physical phenomena can vary with many different factors. In this section, we 
consider how to perform the same calculations when the variables are represented 
by vectors. 

 Consider the following MATLAB ®  statements:   

x = 3;
y = 5;
A = x * y

 Since  x  and  y  are scalars, it’s an easy calculation: x · y = 15, or   

A =
15

 Now, let’s see what happens if  x  is a matrix and  y  is still a scalar:   
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x = 1:5;

 returns fi ve values of  x . Because  y  is still a scalar with only one value (5),   

A = x * y

 returns   

A =
5  10  15  20  25

 This is still a review. But what happens if  y  is now a vector? Then   

y = 1:3;
A = x * y

 returns an error statement:   

??? Error using = => *
Inner matrix dimensions must agree.

 This error statement reminds us that the asterisk is the operator for matrix mul-
tiplication, which is not what we want. We want the dot-asterisk operator ( .* ), which 
will perform an element-by-element multiplication. However, the two vectors,  x  and  y , 
will need to be the same length for this to work. Thus,      

y = linspace(1,3,5)

 creates a new vector  y  with fi ve evenly spaced elements:   

y =
1.0000  1.5000  2.0000  2.5000  3.0000

A = x .* y
A =

1   3   6   10   15

 However, although this solution works, the result is probably not what you really 
want. You can think of the results as the diagonal on a matrix ( Table   4.1   ).  

 What if we want to know the result for element 3 of vector  x  and element 5 of 
vector  y ? This approach obviously doesn’t give us all the possible answers. We want a 
two-dimensional matrix of answers that corresponds to all the combinations of  x  and  y . 
In order for the answer  A , to be a two-dimensional matrix, the input vectors must be 
two-dimensional matrices. MATLAB ®  has a built-in function called   meshgrid   that 
will help us accomplish this—and  x  and  y  don’t even have to be the same size. 

 First, let’s change  y  back to a three-element vector:   

 KEY IDEA 
 When formulating 
problems with two 
variables, the matrix 
dimensions must agree 

 Table 4.1   Results of an Element-by-Element Calculation 

     x 

     1  2  3  4  5 

   1.0  1         

   1.5    3       

 Y  2.0      6     

   2.5        10   

   3.0      ?    15 
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y = 1:3;

 Then, we’ll use   meshgrid   to create a new two-dimensional version of both  x  and  y  
that we’ll call   new_x   and   new_y  :   

[new_x, new_y]=meshgrid(x,y)

 The   meshgrid   command takes the two input vectors and creates two two-
dimensional matrices. Each of the resulting matrices has the same number of rows 
and columns. The number of columns is determined by the number of elements in 
the  x  vector, and the number of rows is determined by the number of elements in 
the  y  vector. This operation is called  mapping the vectors into a two-dimensional array :      

new_x =
1  2  3  4  5
1  2  3  4  5
1  2  3  4  5

new_y =
1  1  1  1  1
2  2  2  2  2
3  3  3  3  3

 Notice that all the rows in   new_x   are the same and all the columns in   new_y   are 
the same. Now, it’s possible to multiply   new_x   by   new_y   and get the two-dimensional 
grid of results we really want:   

A = new_x.*new_y
A =

1  2  3   4   5
2  4  6   8  10
3  6  9  12  15

 KEY IDEA 
 Use the meshgrid function 
to map two one-
dimensional variables into 
two-dimensional variables 
of equal size 

  PRACTICE EXERCISES 4.2 

 Using Meshgrid 
    1.   The area of a rectangle ( Figure   4.2   ) is length times width (area = 

length × width). Find the areas of rectangles with lengths of 1, 3, and 5 cm 
and with widths of 2, 4, 6, and 8 cm. (You should have 12 answers.)   

   2.   The volume of a circular cylinder is, volume =  πr  2  h . Find the volume of 
cylindrical containers with radii from 0 to 12 m and heights from 10 to 20 m. 
Increment the radius dimension by 3 m and the height by 2 m as you 
span the two ranges.    

Height, h

Radius, r

Width, w

Length, l

 Figure 4.2 
 Dimensions of a rectangle 
and a circular cylinder.       



 4.2 Problems with Two Variables 131

Height of the
mountain

Radius of the
earth, RRadius

of the
earth

Radius plus the height
of the mountain, R h

Distance to the
horizon, d

Distance to
the horizon

  DISTANCE TO THE HORIZON 
 You’ve probably experienced standing on the top of a hill or a mountain and feeling like 
you can see forever. How far can you really see? It depends on the height of the moun-
tain and the radius of the earth, as shown in  Figure   4.3   . The distance to the horizon is 
quite different on the moon than on the earth, because the radius is different for each.  

 Using the Pythagorean theorem, we see that 

   R 

2 � d 

2 � (R � h)2   

 and solving for  d  yields,    d �2h2 � 2Rh   . 
 From this last expression, fi nd the distance to the horizon on the earth and on 

the moon, for mountains from 0 to 8000 m. (Mount Everest is 8850 m tall.) The 
radius of the earth is 6378 km and the radius of the moon is 1737 km. 

   1.   State the Problem 
  Find the distance to the horizon from the top of a mountain on the moon and 

on the earth.  
  2.   Describe the Input and Output   

  Input    

 Radius of the moon       1737 km 
 Radius of the earth        6378 km 
 Height of the mountains       0 to 8000 m 

  Output    

 Distance to the horizon, in kilometers.   

3.   Develop a Hand Example 

   d �2h2 � 2Rh   

  Using the radius of the earth and an 8000-m mountain yields 

   d � 2(8 km)2 � 2 � 6378 km � 8 km � 319 km    

4.   Develop a MATLAB ®  Solution   

%Example 4.2
%Find the distance to the horizon
%Define the height of the mountains

  EXAMPLE 4.2

 Figure 4.3 
 Distance to the horizon.       

(continued)
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%in meters
clear, clc
format bank
%Define the height vector
height=0:1000:8000;
%Convert meters to km
height=height/1000;
%Define the radii of the moon and earth
radius = [1737 6378];
%Map the radii and heights onto a 2D grid
[Radius,Height]=meshgrid(radius,height);
%Calculate the distance to the horizon
distance=sqrt(Height.^2 + 2*Height.*Radius)

  Executing the preceding M-fi le returns a table of the distances to the horizon 
on both the moon and the earth:   

distance =
0 0

58.95 112.95
83.38 159.74
102.13 195.65
117.95 225.92
131.89 252.60
144.50 276.72
156.10 298.90
166.90 319.55

  5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. The distance to the 

horizon from near the top of Mount Everest (8000 m) is over 300 km and 
matches the value calculated in MATLAB ® .    

  FREE FALL 
 The general equation for the distance that a freely falling body has traveled (neglect-
ing air friction) is 

   d �
1
2

gt2   

 where 

d = distance  
g  = acceleration due to gravity  
t  = time.   

 When a satellite orbits a planet, it is in free fall. Many people believe that when 
the space shuttle enters orbit, it leaves gravity behind; gravity, though, is what keeps 
the shuttle in orbit. The shuttle (or any satellite) is actually falling toward the earth 

  EXAMPLE 4.3
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( Figure   4.4   ). If it is going fast enough horizontally, it stays in orbit; if it’s going too 
slowly, it hits the ground.  

 The value of the constant  g , the acceleration due to gravity, depends on the 
mass of the planet. On different planets,  g  has different values ( Table   4.2   ).  

 Find how far an object would fall at times from 0 to 100 seconds on each planet 
in our solar system and on our moon. 

1.   State the Problem 
  Find the distance traveled by a freely falling object on planets with different 

gravities.  
2.   Describe the Input and Output   

  Input     Value of  g , the acceleration due to gravity, on each of the planets and 
the moon    

 Time = 0 to 100 s   
  Output   Distances calculated for each planet and the moon.  

3.   Develop a Hand Example 

    d � 1>2 gt2, so on Mercury at 100 seconds:   

    d � 1>2 � 3.7 m>s2 � 1002 s2    

    d � 18,500 m     

 Figure 4.4 
 The space shuttle is 
constantly falling toward 
the earth. (Courtesy of 
NASA/Jet Propulsion 
Laboratory.)       

 Table 4.2   Acceleration Due to Gravity in Our Solar System 

 Mercury   g  = 3.7 m/s 2  

 Venus   g  = 8.87 m/s 2  

 Earth   g  = 9.8 m/s 2  

 Moon   g  = 1.6 m/s 2  

 Mars   g  = 3.7 m/s 2  

 Jupiter   g  = 23.12 m/s 2  

 Saturn   g  = 8.96 m/s 2  

 Uranus   g  = 8.69 m/s 2  

 Neptune   g  = 11.0 m/s 2  

 Pluto   g  = .58 m/s 2  

(continued)
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4.   Develop a MATLAB ®  Solution   

%Example 4.3
%Free fall
clear, clc
%Try the problem first with only two planets, and a coarse
% grid
format bank
%Define constants for acceleration due to gravity on
%Mercury and Venus
acceleration_due_to_gravity = [3.7, 8.87];
time=0:10:100; %Define time vector
%Map acceleration_due_to_gravity and time into 2D matrices
[g,t]=meshgrid(acceleration_due_to_gravity, time);
%Calculate the distances
distance=1/2*g.*t.^2

  Executing the preceding M-fi le returns the following values of distance traveled 
on Mercury and on Venus.   

distance =
0 0

185.00 443.50
740.00 1774.00
1665.00 3991.50
2960.00 7096.00
4625.00 11087.50
6660.00 15966.00
9065.00 21731.50
11840.00 28384.00
14985.00 35923.50
18500.00 44350.00

  5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. We can see that the 

distance traveled on Mercury at 100 seconds is 18,500 m, which corresponds to 
the hand calculation. 

 The M-fi le included the calculations for just the fi rst two planets and was 
performed fi rst to work out any programming diffi culties. Once we’ve con-
fi rmed that the program works, it is easy to redo with the data for all the planets:   

%Redo the problem with all the data
clear, clc
format bank
%Define constants
acceleration_due_to_gravity = [3.7, 8.87, 9.8, 1.6, 3.7, 
23.12 8.96, 8.69, 11.0, 0.58];
time=0:10:100;
%Map acceleration_due_to_gravity and time into 2D matrices
[g,t]=meshgrid(acceleration_due_to_gravity,time);
%Calculate the distances
d=1/2*g.*t.^2
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  There are several important things to notice about the results shown in  Figure   4.5   . 
First, look at the workspace window—  acceleration_due_to_gravity   is a 
1 × 10 matrix (one value for each of the planets and the moon), and   time   is a 
1 × 11 matrix (11 values of time). However, both  g  and  t  are 11 × 10 matrices—
the result of the   meshgrid   operation. The results shown in the command win-
dow were formatted with the   format bank command to make the output easier 
to read; otherwise there would have been a common scale factor.     

 Figure 4.5 
 Results of the distance 
calculations for an object 
falling on each of the 
planets.       

  HINT    
 As you create a MATLAB ®  program in the editing window, you may want to 
comment out those parts of the code which you know work and then uncom-
ment them later. Although you can do this by adding one % at a time to each 
line, it’s easier to select  text  from the menu bar. Just highlight the part of the 
code you want to comment out, and then choose  comment  from the  text  
drop-down menu. To delete the comments, highlight and select  uncomment  
from the  text  drop-down menu (text :  uncomment). You can also access 
this menu by right-clicking in the edit window.   

  4.3   SPECIAL MATRICES 

 MATLAB ®  contains a group of functions that generate special matrices; we present 
some of these functions in  Table   4.3   . 
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  Table 4.3   Functions to Create and Manipulate Matrices 

  zeros(m)   Creates an  m  ×  m  matrix of zeros.  zeros(3) 
     ans = 
     0 0 0 
     0 0 0 
     0 0 0 
  zeros(m,n)   Creates an  m  ×  n  matrix of zeros.  zeros(2,3) 
     ans = 
     0 0 0 
     0 0 0 
  ones(m)   Creates an  m  ×  m  matrix of ones.  ones(3) 
     ans = 
     1  1  1 
     1  1  1 
     1  1  1 
  ones(m,n)   Creates an  m  ×  n  matrix of ones.  ones(2,3) 
     ans = 
     1  1  1 
     1  1  1 
  diag(A)   Extracts the diagonal of a 

two-dimensional matrix A. 
 A=[1 2 3; 3 4 5; 1 2 3];
 diag(A)  

     ans = 
     1 
     4 
     3 
   For any vector  A , creates a square 

matrix with  A  as the diagonal. 
Check the  help  function for other 
ways the  diag  function can be used. 

 A=[1 2 3]; 
 diag(A) 
 ans =

 1  0  0  
     0  2  0 
     0  0  3 
  fl iplr   Flips a matrix into its mirror image, 

from right to left. 
 A=[1 0 0; 0 2 0; 0 0 3];
fl iplr(A) 

     ans = 
     0  0  1 
     0  2  0 
     3  0  0 
  fl ipud   Flips a matrix vertically.   fl ipud(A)  
     ans = 
     0  0  3 
     0  2  0 
     1  0  0 
  magic(m)   Creates an  m  ×  m  “magic” matrix.  magic(3) 
     ans = 
     8  1  6 
     3  5  7 
     4  9  2 

  4.3.1   Matrix of Zeros 

 It is sometimes useful to create a matrix of all zeros. When the  zeros  function is 
used with a single scalar input argument, a square matrix is generated:   

A = zeros(3)
A =

0  0  0
0  0  0
0  0  0
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 If we use two scalar arguments, the fi rst value specifi es the number of rows and the 
second the number of columns:   

B = zeros(3,2)
B =

0  0
0  0
0  0

  4.3.2   Matrix of Ones 

 The   ones   function is similar to the   zeros   function, but creates a matrix of ones:      

A = ones(3)
A =

1  1  1
1  1  1
1  1  1

 As with the   zeros   function, if we use two inputs, we can control the number of 
rows and columns:   

B = ones(3,2)
B =

1  1
1  1
1  1

 The   zeros   and   ones   functions are useful for creating matrices with “placeholder” 
values that will be fi lled in later. For example, if you wanted a vector of fi ve num-
bers, all of which were equal to π, you might fi rst create a vector of ones:   

a = ones(1,5)

 This gives   

a =
1  1  1  1  1

 Then, multiply by π.   

b = a*pi

 The result is   

b =

3.1416  3.1416  3.1416  3.1416  3.1416

 The same result could be obtained by adding π to a matrix of zeros. For example,   

a = zeros(1,5);
b = a+pi

 gives   

b =
3.1416  3.1416  3.1416  3.1416  3.1416

 A placeholder matrix is especially useful in MATLAB ®  programs with a loop struc-
ture, because it can reduce the time required to execute the loop.  

 KEY IDEA 
 Use a matrix of zeros or 
ones as placeholders for 
future calculations. 
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  4.3.3   Diagonal Matrices 

 We can use the   diag   function to extract the diagonal from a matrix. For example, 
if we defi ne a square matrix   

A = [1 2 3; 3 4 5; 1 2 3];

 then using the function   

diag(A)

 extracts the main diagonal and gives the following results:   

ans =
1.00
4.00
3.00

 Other diagonals can be extracted by defi ning a second input,   k  , to   diag  . Positive 
values of   k   specify diagonals in the upper right-hand corner of the matrix, and 
negative values specify diagonals in the lower left-hand corner (see  Figure   4.6   ).  

 Thus, the command   

diag(A,1)

 returns   

ans =
2
5

 If, instead of using a two-dimensional matrix as input to the   diag   function, we use 
a vector such as   

B = [1 2 3];

 then, MATLAB ®  uses the vector for the values along the diagonal of a new matrix 
and fi lls in the remaining elements with zeros:   

diag(B)
ans =

1  0  0
0  2  0
0  0  3

 By specifying a second parameter, we can move the diagonal to any place in the 
matrix:   

diag(B,1)
ans =

0  1  0  0
0  0  2  0
0  0  0  3
0  0  0  0

  4.3.4   Magic Matrices 

 MATLAB ®  includes a matrix function called   magic   that generates a matrix with 
unusual properties. At the present time, there does not seem to be any practical use 

k  1

k 1 1       2        3

1       2        3

3       4        5 A

 Figure 4.6 
 Each diagonal in a matrix 
can be described by means 
of the parameter   k.         
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for magic matrices—except that they are interesting. In a magic matrix, the sums of 
the columns are the same, as are the sums of the rows. An example is   

A = magic(4)
A =

16   2   3  13
5  11  10   8
9   7   6  12
4  14  15   1

sum(A)
ans =

34  34  34  34

 To fi nd the sums of the rows, we need to transpose the matrix:   

sum(A')
ans =

34  34  34  34

 Not only are the sums of all the columns and rows the same, but the sums of the 
diagonals are the same. The diagonal from left to right is   

diag(A)
ans =

16
11
6
1

 The sum of the diagonal is the same number as the sums of the rows and columns:   

sum(diag(A))
ans =

34

 Finally, to fi nd the diagonal from lower left to upper right, we fi rst have to “fl ip” the 
matrix and then fi nd the sum of the diagonal:   

fliplr(A)
ans =

13   3   2  16
8  10  11   5
12   6   7   9
1  15  14   4

diag(ans)
ans =

13
10
7
4

sum(ans)
ans =

34
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  Figure   4.7    shows one of the earliest documented examples of a magic square—
Albrecht Dürer’s woodcut “Melancholia,” created in 1514. Scholars believe the 
square was a reference to alchemical concepts popular at the time. The date 1514 is 
included in the two middle squares of the bottom row (see  Figure   4.8   ).   

 Magic squares have fascinated both professional and amateur mathematicians 
for centuries. For example, Benjamin Franklin experimented with magic 
squares. You can create magic squares of any size greater than 2 × 2 in MATLAB ® . 
MATLAB ® ’s solution is not the only one; other magic squares are possible. 

 Figure 4.7 
 “Melancholia” by Albrecht 
Dürer, 1514. (Courtesy of 
the Library of Congress.)       

 Figure 4.8 
 Albrecht Dürer included the 
date of the woodcut (1514) 
in the magic square. 
(Courtesy of the Library of 
Congress.)       
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  PRACTICE EXERCISES 4.3 

    1.   Create a 3 × 3 matrix of zeros.  
   2.   Create a 3 × 4 matrix of zeros.  
   3.   Create a 3 × 3 matrix of ones.  
   4.   Create a 5 × 3 matrix of ones.  
   5.   Create a 4 × 6 matrix in which all the elements have a value of pi.  
   6.   Use the   diag   function to create a matrix whose diagonal has values of 

1, 2, 3.  
   7.   Create a 10 × 10 magic matrix. 

   a.   Extract the diagonal from this matrix.  
  b.   Extract the diagonal that runs from lower left to upper right from 

this matrix.  
  c.   Confi rm that the sums of the rows, columns, and diagonals are all 

the same.         

     SUMMARY 

 This chapter concentrated on manipulating matrices, a capability that allows the 
user to create complicated matrices by combining smaller ones. It also lets you 
extract portions of an existing matrix. The colon operator is especially useful for 
these operations. The colon operator should be interpreted as “all of the rows” or 
“all of the columns” when used in place of a row or column designation. It should 
be interpreted as “from _ to _” when it is used between row or column numbers. For 
example,   

A(:,2:3)

 should be interpreted as “all the rows in matrix  A , and all the columns from 2 to 3.” 
When used alone as the sole index, as in  A ( : ), it creates a matrix that is a single col-
umn from a two-dimensional representation. The computer actually stores all array 
information as a list, making both single-index notation and row-column notation 
useful alternatives for specifying the location of a value in a matrix. 

 The   meshgrid   function is extremely useful, since it can be used to map vec-
tors into two-dimensional matrices, making it possible to perform array calculations 
with vectors of unequal size. 

 MATLAB ®  contains a number of functions that make it easy to create special 
matrices: 

   •    zeros , which is used to create a matrix composed entirely of zeros  
  •    ones , which is used to create a matrix composed entirely of ones  
  •    diag , which can be used to extract the diagonal from a matrix or, if the input is a 

vector, to create a square matrix  
  •    magic , which can be used to create a matrix with the unusual property that all the 

rows and columns add up to the same value, as do the diagonals.   

 In addition, a number of functions were included that allow the user to “fl ip” the 
matrix either from left to right or from top to bottom. 
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  MATLAB ®  SUMMARY 

 The following MATLAB ®  summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter.   

 Special Characters   

 :  colon operator 

 ...  ellipsis, indicating continuation on the next line 

 []  empty matrix 

  Commands and Functions    

  meshgrid   maps vectors into a two-dimensional array 

  zeros   creates a matrix of zeros 

  ones   creates a matrix of ones 

  diag   extracts the diagonal from a matrix 

  fl iplr   fl ips a matrix into its mirror image, from left to right 

  fl ipud   fl ips a matrix vertically 

  magic   creates a “magic” matrix 

 elements 
 index numbers 

 magic matrices 
 mapping 

 subscripts  

  KEY TERMS 

 Manipulating Matrices 

   4.1    Create the following matrices, and use them in the exercises that follow: 

   a � £15 3 22
3 8 5
14 3 82

§   b � £15
6
§   c � 312 18 5 24    

   (a)   Create a matrix called   d   from the third column of matrix   a  .  
  (b)   Combine matrix b   and matrix   d   to create matrix   e  , a two-dimensional 

matrix with three rows and two columns.  
  (c)   Combine matrix   b   and matrix   d   to create matrix   f  , a one-dimensional 

matrix with six rows and one column.  
  (d)   Create a matrix   g   from matrix  a  and the fi rst three elements of matrix  c , 

with four rows and three columns.  
  (e)   Create a matrix   h   with the fi rst element equal to  a  1,3 , the second ele-

ment equal to  c  1,2 , and the third element equal to  b  2,1 .     

  PROBLEMS 
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   4.2    Load the fi le  thermo_scores.dat  provided by your instructor, or enter the matrix 
at the top of page 137 and name it  thermo_scores . (Enter only the numbers.) 

   (a)   Extract the scores and student number for student 5 into a row vector 
named  student_5 .  

  (b)   Extract the scores for Test 1 into a column vector named  test_1 .  
  (c)   Find the standard deviation and variance for each test.  
  (d)   Assuming that each test was worth 100 points, fi nd each student’s fi nal 

total score and fi nal percentage. (Be careful not to add in the student 
number.)  

  (e)   Create a table that includes the fi nal percentages and the scores from 
the original table.   

  Student No.    Test 1    Test 2    Test 3  

  1  68  45  92 
  2  83  54  93 
  3  61  67  91 
  4  70  66  92 
  5  75  68  96 
  6  82  67  90 
  7  57  65  89 
  8   5  69  89 
  9  76  62  97 
 10  85  52  94 
 11  62  34  87 
 12  71  45  85 
 13  96  56  45 
 14  78  65  87 
 15  76  43  97 
 16  68  76  95 
 17  72  65  89 
 18  75  67  88 
 19  83  68  91 
 20  93  90  92 

  (f)   Sort the matrix on the basis of the fi nal percentage, from high to low 
(in descending order), keeping the data in each row together. (You may 
need to consult the  help  function to determine the proper syntax.)     

   4.3    Consider the following table:   

  Time    Thermocouple 1    Thermocouple 2    Thermocouple 3  
  (h)    °F    °F    °F  

 0  84.3  90.0  86.7 
 2  86.4  89.5  87.6 
 4  85.2  88.6  88.3 
 6  87.1  88.9  85.3 
 8  83.5  88.9  80.3 

 10  84.8  90.4  82.4 
 12  85.0  89.3  83.4 
 14  85.3  89.5  85.4 
 16  85.3  88.9  86.3 
 18  85.2  89.1  85.3 
 20  82.3  89.5  89.0 
 22  84.7  89.4  87.3 
 24  83.6  89.8  87.2 
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   (a)   Create a column vector named  times  going from 0 to 24 in 2-hour 
 increments.  

  (b)   Your instructor may provide you with the thermocouple temperatures 
in a fi le called  thermocouple.dat , or you may need to create a matrix 
named  thermocouple  yourself by typing in the data.  

  (c)   Combine the  times  vector you created in part (a) with the data from 
 thermocouple  to create a matrix corresponding to the table in this 
problem.  

  (d)   Recall that both the  max  and  min  functions can return not only the 
maximum values in a column, but also the element number where 
those values occur. Use this capability to determine the values of  times  
at which the maxima and minima occur in each column.     

   4.4    Suppose that a fi le named  sensor.dat  contains information collected from a 
set of sensors. Your instructor may provide you with this fi le, or you may 
need to enter it by hand from the following data:   

  Time (s)    Sensor 1    Sensor 2    Sensor 3    Sensor 4    Sensor 5  

  0.0000  70.6432  68.3470  72.3469  67.6751  73.1764 
  1.0000  73.2823  65.7819  65.4822  71.8548  66.9929 
  2.0000  64.1609  72.4888  70.1794  73.6414  72.7559 
  3.0000  67.6970  77.4425  66.8623  80.5608  64.5008 
  4.0000  68.6878  67.2676  72.6770  63.2135  70.4300 
  5.0000  63.9342  65.7662   2.7644  64.8869  59.9772 
  6.0000  63.4028  68.7683  68.9815  75.1892  67.5346 
  7.0000  74.6561  73.3151  59.7284  68.0510  72.3102 
  8.0000  70.0562  65.7290  70.6628  63.0937  68.3950 
  9.0000  66.7743  63.9934  77.9647  71.5777  76.1828 
 10.0000  74.0286  69.4007  75.0921  77.7662  66.8436 
 11.0000  71.1581  69.6735  62.0980  73.5395  58.3739 
 12.0000  65.0512  72.4265  69.6067  79.7869  63.8418 
 13.0000  76.6979  67.0225  66.5917  72.5227  75.2782 
 14.0000  71.4475  69.2517  64.8772  79.3226  69.4339 
 15.0000  77.3946  67.8262  63.8282  68.3009  71.8961 
 16.0000  75.6901  69.6033  71.4440  64.3011  74.7210 
 17.0000  66.5793  77.6758  67.8535  68.9444  59.3979 
 18.0000  63.5403  66.9676  70.2790  75.9512  66.7766 
 19.0000  69.6354  63.2632  68.1606  64.4190  66.4785 

  Each row contains a set of sensor readings, with the fi rst row containing 
values collected at 0 seconds, the second row containing values collected at 
1.0 seconds, and so on. 

   (a)   Read the data fi le and print the number of sensors and the number of 
seconds of data contained in the fi le. ( Hint : Use the  size  function—
don’t just count the two numbers.)  

  (b)   Find both the maximum value and the minimum value recorded on 
each sensor. Use MATLAB ®  to determine at what times they occurred.  

  (c)   Find the mean and standard deviation for each sensor and for all the 
data values collected. Remember, column 1 does not contain sensor 
data; it contains time data.     
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   4.5    The American National Oceanic and Atmospheric Administration (NOAA) 
measures the intensity of a hurricane season with the accumulated cyclone 
energy (ACE) index. The ACE for a season is the sum of the ACE for each 
tropical storm with winds exceeding 35 knots (65 km/h). The maximum 
sustained winds (measured in knots) in the storm are measured or approxi-
mated every six hours. The values are squared and summed over the dura-
tion of the storm. The total is divided by 10,000, to make the parameter 
easier to use. 

   ACE �
�v2

max

104    

  This parameter is related to the energy of the storm, since kinetic energy is 
proportional to velocity squared. However, it does not take into account the size 
of the storm, which would be necessary for a true total energy estimate. Reliable 

 Atlantic Basin Hurricane Seasons, 1950–2010 

  Year

  

  ACE Index    # Tropical 
Storms  

  # Hurricanes
Cat. 1–5  

  # Major 
Hurricanes
Cat. 3–5  

 1950  243  13  11  8 
 1951  137  10   8  5 
 1952   87   7   6  3 
 1953  104  14   6  4 
 1954  113  11   8  2 
 1955  199  12   9  6 
 1956   54   8   4  2 
 1957   84   8   3  2 
 1958  121  10   7  5 
 1959   77  11   7  2 
 1960   88   7   4  2 
 1961  205  11   8  7 
 1962   36   5   3  1 
 1963  118   9   7  2 
 1964  170  12   6  6 
 1965   84   6   4  1 
 1966  145  11   7  3 
 1967  122   8   6  1 
 1968   35   7   4  0 
 1969  158  17  12  5 
 1970   34  10   5  2 
 1971   97  13   6  1 
 1972   28   4   3  0 
 1973   43   7   4  1 
 1974   61   7   4  2 
 1975   73   8   6  3 
 1976   81   8   6  2 
 1977   25   6   5  1 
 1978   62  11   5  2 
 1979   91   8   5  2 
 1980  147  11   9  2 
 1981   93  11   7  3 
 1982   29   5   2  1 
 1983   17   4   3  1 
 1984   71  12   5  1 

(continued)
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storm data have been collected in the Atlantic Ocean since 1950, and are 
included here. This data may also be available to you from your instructor as an 
EXCEL worksheet, ace.xlsx, and was extracted from the  Accumulated Cyclone 
Energy  article in Wikipedia. ( http://en.wikipedia.org/wiki/Accumulated_
cyclone_energy ). It was collected by the National Oceanic and Atmospheric 
Administration ( http://www.aoml.noaa.gov/hrd/tcfaq/E11.html ).      

   (a)   Import the data into MATLAB ® , and name the array  ace_data .  
  (b)   Extract the data from each column, into individual arrays. You should 

have arrays named 
    •    years   
   •    ace   
   •    tropical_storms   
   •    hurricanes   
   •    major_hurricanes     

  (c)   Use the   max   function to determine which year had the highest 
    •   ACE value  
   •   Number of tropical storms  
   •   Number of hurricanes  
   •   Number of major hurricanes    

(  d)   Determine the  mean  and the  median  values for each column in the 
array, except for the year.  

  (e)   Use the   sortrows   function to rearrange the  ace_data  array based on 
the ACE value, sorted from high to low.   

  Year

  

  ACE Index    # Tropical 
Storms  

  # Hurricanes
Cat. 1–5  

  # Major 
Hurricanes
Cat. 3–5  

 1985   88  11   7  3 
 1986   36   6   4  0 
 1987   34   7   3  1 
 1988  103  12   5  3 
 1989  135  11   7  2 
 1990   91  14   8  1 
 1991   34   8   4  2 
 1992   75   6   4  1 
 1993   39   8   4  1 
 1994   32   7   3  0 
 1995  228  19  11  5 
 1996  166  13   9  6 
 1997   40   7   3  1 
 1998  182  14  10  3 
 1999  177  12   8  5 
 2000  116  14   8  3 
 2001  106  15   9  4 
 2002   65  12   4  2 
 2003  175  16   7  3 
 2004  225  14   9  6 
 2005  248  28  15  7 
 2006   79  10   5  2 
 2007   72  15   6  2 
 2008  145  16   8  5 
 2009   51   9   3  2 
 2010  165  19  12  5 

http://www.aoml.noaa.gov/hrd/tcfaq/E11.html
http://en.wikipedia.org/wiki/Accumulated_cyclone_energy
http://en.wikipedia.org/wiki/Accumulated_cyclone_energy
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  The data presented in this problem is updated regularly. Similar data is 
available for the eastern Pacifi c and central Pacifi c oceans.   

  Problems with Two Variables  

   4.6    The area of a triangle is, area = ½ base × height (see  Figure   P4.6   ). Find the 
area of a group of triangles whose base varies from 0 to 10 m and whose 
height varies from 2 to 6 m. Choose an appropriate spacing for your calcu-
lational variables. Your answer should be a two-dimensional matrix.    

   4.7    A barometer (see  Figure   P4.7   ) is used to measure atmospheric pressure and 
is fi lled with a high-density fl uid. In the past, mercury was used, but because 
of its toxic properties it has been replaced with a variety of other fl uids. The 
pressure,  P , measured by a barometer is the height of the fl uid column,  h , 
times the density of the liquid,  r , times the acceleration due to gravity,  g , or 

   P �hrg    

 This equation could be solved for the height: 

   h �
P
rg

   

  Find the height to which the liquid column will rise for pressures from 0 to 
100 kPa for two different barometers. Assume that the fi rst uses mercury, 
with a density of 13.56 g/cm 3  (13,560 kg/m 3 ) and the second uses water, 
with a density of 1.0 g/cm 3  (1000 kg/m 3 ). The acceleration due to gravity is 
9.81 m/s 2 . Before you start calculating, be sure to check the units in this 
calculation. The metric measurement of pressure is a pascal (Pa), equal to 
l kg/m s 2 . A kPa is 1000 times as big as a Pa. Your answer should be a two-
dimensional matrix. 

      4.8    The ideal gas law,  Pv  =  RT , describes the behavior of many gases. When 
solved for  v  (the specifi c volume, m 3 /kg), the equation can be written 

   v �
RT
P

   

  Find the specifi c volume for air, for temperatures from 100 to 1000 K and for 
pressures from 100 kPa to 1000 kPa. The value of  R  for air is 0.2870 kJ/(kg K). 
In this formulation of the ideal gas law,  R  is different for every gas. There 
are other formulations in which  R  is a constant, and the molecular weight 
of the gas must be included in the calculation. You’ll learn more about this 
equation in chemistry classes and thermodynamics classes. Your answer 
should be a two-dimensional matrix.   

  Special Matrices  

   4.9    Create a matrix of zeros the same size as each of the matrices  a, b,  and  c  
from Problem 4.1. (Use the  size  function to help you accomplish this task.)   

   4.10    Create a 6 × 6 magic matrix. 

   (a)   What is the sum of each of the rows?  
  (b)   What is the sum of each of the columns?  
  (c)   What is the sum of each of the diagonals?     

   4.11    Extract a 3 × 3 matrix from the upper left-hand corner of the magic matrix 
you created in Problem 4.9. Is this also a magic matrix?   

height h

base b

 Figure P4.6 
 The area of a triangle.       

height h

 Figure P4.7 
 Barometer.       
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   4.12    Create a 5 × 5 magic matrix named  a . 

   (a)   Is  a  times a constant such as 2 also a magic matrix?  
  (b)   If you square each element of  a , is the new matrix a magic matrix?  
  (c)   If you add a constant to each element, is the new matrix  a  magic matrix?  
  (d)   Create a 10 × 10 matrix out of the following components (see  Figure   P4.12   ): 

    •   The matrix  a   
   •   2 times the matrix  a   
   •   A matrix formed by squaring each element of  a   
   •   2 plus the matrix  a

   Is your result a magic matrix? Does the order in which you arrange the com-
ponents affect your answer?      

   4.13    Albrecht Durer’s magic square ( Figure   4.8   ) is not exactly the same as the 
4 × 4 magic square created with the command 

   magic(4)   

   (a)   Recreate Durer’s magic square in MATLAB® by rearranging the columns.  
  (b)   Prove that the sum of all the rows, columns, and diagonals is the same.          

a 2*a

a^2 a 2

 Figure P4.12 
 Create a matrix out of other 
matrices.       
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  INTRODUCTION 

 Large tables of data are diffi cult to interpret. Engineers use graphing techniques to 
make the information easier to understand. With a graph, it is easy to identify trends, 
pick out highs and lows, and isolate data points that may be measurement or calcula-
tion errors. Graphs can also be used as a quick check to determine whether a com-
puter solution is yielding expected results.   

     5.1   TWO-DIMENSIONAL PLOTS 

 The most useful plot for engineers is the  x–y  plot. A set of ordered pairs is used to 
identify points on a two-dimensional graph; the points are then connected by straight 
lines. The values of  x  and  y  may be measured or calculated. Generally, the independ-
ent variable is given the name  x  and is plotted on the  x -axis, and the dependent vari-
able is given the name  y  and is plotted on the  y -axis. 

  5.1.1   Basic Plotting 

  Simple x–y Plots 
 Once vectors of  x -values and  y -values have been defi ned, MATLAB ®  makes it easy 
to create plots. Suppose a set of time versus distance data were obtained through 
measurement. 

 After reading this chapter, you 
should be able to: 
  •   Create and label two-

dimensional plots  
  •   Adjust the appearance of 

your plots  

  •   Divide the plotting window 
into subplots  

  •   Create three-dimensional 
plots  

  •   Use the interactive 
MATLAB ®  plotting tools   

     Objectives 

 Plotting 

  C H A P T E R
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 We can store the time values in a vector called  x  (the user can defi ne any con-
venient name) and the distance values in a vector called  y :   

x = [0:2:18];
y = [0, 0.33, 4.13, 6.29, 6.85, 11.19, 13.19, 13.96, 16.33, 

18.17];

 To plot these points, use the   plot   command, with  x  and  y  as arguments:   

plot(x,y)   

 Time, s  Distance, ft 

  0  0 
  2   0.33 
  4   4.13 
  6   6.29 
  8   6.85 
 10  11.19 
 12  13.19 
 14  13.96 
 16  16.33 
 18  18.17 
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20Figure 5.1
Simple plot of time versus 
distance created in 
MATLAB®.

 A graphics window automatically opens, which MATLAB ®  calls Figure 1. The 
resulting plot is shown in  Figure   5.1   . (Slight variations in scaling of the plot may 
occur, depending on the size of the graphics window.)  

  Titles, Labels, and Grids 
 Good engineering practice requires that we include axis labels and a title in our 
plot. The following commands add a title,  x - and  y -axis labels, and a background 
grid:      

plot(x,y)
xlabel('Time, sec')
ylabel('Distance, ft')
grid on

 KEY IDEA 
 Always include units on 
axis labels 
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 These commands generate the plot in  Figure   5.2   . As with any MATLAB ®  com-
mands, they could also be combined onto one or two lines, separated by commas:   

plot(x,y) , title('Laboratory Experiment 1')
xlabel('Time, sec' ), ylabel('Distance, ft'), grid

 As you type the preceding commands into MATLAB ® , notice that the text color 
changes to red when you enter a single quote ( ' ). This alerts you that you are start-
ing a string. The color changes to purple when you type the fi nal single quote ( ' ), 
indicating that you have completed the string. Paying attention to these visual aids 
will help you avoid coding mistakes. MATLAB ®  6 used different color cues, but the 
idea is the same.    

 If you are working in the command window, the graphics window will open on 
top of the other windows (see  Figure   5.3   ). To continue working, either click in the 
command window or minimize the graphics window. You can also resize the graph-
ics window to whatever size is convenient for you or add it to the MATLAB ®  desktop 
by selecting the docking arrow underneath the exit icon in the upper right-hand 
corner of the fi gure window. 
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Figure 5.2
Adding a grid, a title, and 
labels makes a plot easier 
to interpret.

 STRING 
 A list of characters 
enclosed by single quotes 

  HINT    
 Once you click in the command window, the fi gure window is hidden behind 
the current window. To see the changes to your fi gure, you will need to select 
the fi gure from the Windows task bar at the bottom of the screen, or open the 
Window menu from the main MATLAB ®  desktop and select the window of 
interest.  
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Docking
Arrow

Figure 5.3
The graphics window 
opens on top of the 
command window. You 
can resize it to a 
convenient shape, or dock 
it with the MATLAB® 
desktop.

  HINT    
 You must create a graph  before  you add the title and labels. If you specify the 
title and labels fi rst, they are erased when the plot command executes.  

  HINT    
 Because a single quote is used to end the string used in   xlabel  ,   ylabel  , 
and   title   commands, MATLAB ®  interprets an apostrophe (as in the word 
 it’s ) as the end of the string. Entering the single quote twice, as in 
  xlabel('Holly"s Data')  , will allow you to use apostrophes in your text. 
(Don’t use a double quote, which is a different character.)   

  Creating Multiple Plots 
 If you are working in an M-fi le when you request a plot, and then you continue with 
more computations, MATLAB ®  will generate and display the graphics window and 
then return immediately to execute the rest of the commands in the program. If 
you request a second plot, the graph you created will be overwritten. There are two 
possible solutions to this problem: Use the   pause   command to temporarily halt the 
execution of your M-fi le program so that you can examine the fi gure, or create a 
second fi gure, using the   figure   function. 

 The   pause   command stops the program execution until any key is pressed. If 
you want to pause for a specifi ed number of seconds, use the   pause(n)   command, 
which will cause execution to pause for   n   seconds before continuing. 
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 The   figure   command allows you to open a new fi gure window. The next time 
you request a plot, it will be displayed in this new window. For example,   

figure(2)

 opens a window named “Figure 2,” which then becomes the window used for subse-
quent plotting. Executing   figure   without an input parameter causes a new window 
to open, numbered consecutively one up from the current window. For example, if 
the current fi gure window is named “Figure 2,” executing   figure   will cause “Figure 
3” to open. The commands used to create a simple plot are summarized in  Table   5.1   .   

  Plots with More than One Line 
 A plot with more than one line can be created in several ways. By default, the execution 
of a second   plot   statement will erase the fi rst plot. However, you can layer plots on top 
of one another by using the   hold on   command. Execute the following statements to 
create a plot with both functions plotted on the same graph, as shown in  Figure   5.4   :   

x = 0:pi/100:2*pi;
y1 = cos(x*4);
plot(x,y1)

 Table 5.1   Basic Plotting Functions 

  plot   Creates an  x–y  plot   plot(x,y)  
  title   Adds a title to a plot   title('My Graph')  
  xlabel   Adds a label to the  x -axis   xlabel('Independent 

Variable')  

  ylabel   Adds a label to the  y -axis   ylabel('Dependent Variable')  
  grid   Adds a grid to the graph   grid  
      grid on  
      grid off  
  pause   Pauses the execution of the program, 

allowing the user to view the graph 
  pause  

  fi gure   Determines which fi gure will be used 
for the current plot 

  fi gure    
fi gure(2)  

  hold   Freezes the current plot, so that an 
additional plot can be overlaid 

  hold on    
hold off  

0 1 2 3 4 5 6 7
1

0.5

0

0.5

1Figure 5.4
The hold on command 
can be used to layer plots 
onto the same fi gure.
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y2 = sin(x);
hold on;
plot(x, y2)

 Semicolons are optional on both the   plot   statement and the   hold on   state-
ment.   MATLAB ®  will continue to layer the plots until the   hold off   command is 
executed:   

hold off

 Another way to create a graph with multiple lines is to request both lines in a single 
  plot   command. MATLAB ®  interprets the input to   plot   as alternating  x  and  y  vec-
tors, as in      

plot(X1, Y1, X2, Y2)

 where the variables   X1  ,   Y1   form an ordered set of values to be plotted and   X2  ,   Y2   
form a second ordered set of values. Using the data from the previous example,   

plot(x, y1, x, y2)

 produces the same graph as  Figure   5.4   , with one exception: The two lines are differ-
ent colors. MATLAB ®  uses a default plotting color (blue) for the fi rst line drawn in 
a   plot   command. In the   hold on  approach, each line is drawn in a separate plot 
command and thus is the same color. By requesting two lines in a single command, 
such as   plot(x,y1,x,y2)  , the second line defaults to green, allowing the user to 
distinguish between the two plots. 

 If the   plot   function is called with a single matrix argument, MATLAB ®  draws 
a separate line for each column of the matrix. The  x -axis is labeled with the row 
index vector, 1: k , where  k  is the number of rows in the matrix. This produces an 
evenly spaced plot, sometimes called a line plot. If   plot   is called with two argu-
ments, one a vector and the other a matrix, MATLAB ®  successively plots a line for 
each row in the matrix. For example, we can combine   y1   and   y2   into a single 
matrix and plot against   x  :   

Y = [y1; y2];
plot(x,Y)

 This creates the same plot as  Figure   5.4   , with each line a different color. 
 Here’s another more complicated example:   

X = 0:pi/100:2*pi;
Y1 = cos(X)*2;
Y2 = cos(X)*3;
Y3 = cos(X)*4;
Y4 = cos(X)*5;
Z = [Y1; Y2; Y3; Y4];
plot(X, Y1, X, Y2, X, Y3, X, Y4)

 This code produces the same result ( Figure   5.5   ) as   

plot(X, Z)

 A function of two variables, the   peaks   function produces sample data that are 
useful for demonstrating certain graphing functions. (The data are created by scal-
ing and translating Gaussian distributions.) Calling   peaks   with a single argument   n   

 KEY IDEA 
 The most common plot used 
in engineering is the  x–y  
scatter plot 



5.1 Two-Dimensional Plots 155

will create an    n � n    matrix. We can use   peaks   to demonstrate the power of using a 
matrix argument in the   plot   function. The command   

plot(peaks(100))

 results in the impressive graph in  Figure   5.6   . The input to the plot function created 
by peaks is a    100 � 100    matrix. Notice that the  x -axis goes from 1 to 100, the index 
numbers of the data. You undoubtedly can’t tell, but there are 100 lines drawn to 
create this graph—one for each column.  

  Plots of Complex Arrays 
 If the input to the   plot   command is a single array of complex numbers, MATLAB ®  
plots the real component on the  x -axis and the imaginary component on the  y -axis. 
For example, if   

A = [0+0i,1+2i, 2+5i, 3+4i]

 then   

plot(A)
title('Plot of a Single Complex Array')
xlabel('Real Component')
ylabel('Imaginary Component')

 returns the graph shown in  Figure   5.7a   . 
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5Figure 5.5
Multiple plots on the same 
graph.

0 20 40 60 80 100
10

5

0

5

10Figure 5.6
The peaks function, 
plotted with a single 
argument in the plot 
command.
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 If we attempt to use two arrays of complex numbers in the   plot   function, the 
imaginary components are ignored. The real portion of the fi rst array is used for 
the  x -values, and the real portion of the second array is used for the  y -values. To 
illustrate, fi rst create another array called   B   by taking the sine of the complex 
array   A  :   

B = sin(A)

 returns   

B =

0 3.1658 + 1.9596i 67.4789 -30.8794i 3.8537 -27.0168i

 and   

plot(A,B)
title('Plot of Two Complex Arrays')
xlabel('Real Component of the X array')
ylabel('Real Component of the Y array')

 gives us an error statement.   

Warning: Imaginary parts of complex X and/or Y arguments 
ignored.

 The data are still plotted, as shown in  Figure   5.7   b.   

  5.1.2   Line, Color, and Mark Style 

 You can change the appearance of your plots by selecting user-defi ned line styles 
and line colors and by choosing to show the data points on the graph with user-
specifi ed mark styles. The command   

help plot
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(a) Complex numbers are plotted with the real component on the x-axis and the imaginary component on the y-axis when a single array is 
used as input. (b) When two complex arrays are used in the plot function, the imaginary components are ignored.
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 returns a list of the available options. You can select solid (the default), dashed, dot-
ted, and dash-dot line styles, and you can choose to show the points. The choices 
among marks include plus signs, stars, circles, and x-marks, among others. There 
are seven different color choices. (See  Table   5.2    for a complete list.)  

 The following commands illustrate the use of line, color, and mark styles:   

x = [1:10];
y = [58.5, 63.8, 64.2, 67.3, 71.5, 88.3, 90.1, 90.6, 

89.5,90.4];
plot(x,y,':ok')

 The resulting plot ( Figure   5.8a   ) consists of a dashed line, together with data 
points marked with circles. The line, the points, and the circles are drawn in black. 

 Table 5.2   Line, Mark, and Color Options 

 Line Type  Indicator  Point Type  Indicator  Color  Indicator 

 solid  -  point  .  blue  b 

 dotted  :  circle  o  green  g 

 dash-dot  -.  x-mark  x  red  r 

 dashed  - -  plus     �      cyan  c 

     star     *     magenta  m 

     square  s  yellow  y 

     diamond  d  black  k 

     triangle down  v  white  w 

     triangle up     ̂         

     triangle left     6         

     triangle right     7         

     pentagram  p     

     hexagram  h     
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Figure 5.8
(a) Adjusting the line, mark, and color style. (b) Multiple plots with varying line styles and point styles.
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The indicators were listed inside a string, denoted with single quotes. The order in 
which they are entered is arbitrary and does not affect the output. 

 To specify line, mark, and color styles for multiple lines, add a string containing 
the choices after each pair of data points. If the string is not included, the defaults 
are used. For example,   

plot(x,y,':ok',x,y*2,'--xr',x,y/2,'-b')

 results in the graph shown in  Figure   5.8b   . 
 The   plot   command offers additional options to control the way the plot 

appears. For example, the line width can be controlled. Plots intended for over-
head presentations may look better with thicker lines. Use the   help   function to 
learn more about controlling the appearance of the plot, or use the interactive 
controls described in Section 5.5.  

  5.1.3   Axis Scaling and Annotating Plots 

 MATLAB ®  automatically selects appropriate  x -axis and  y -axis scaling. Sometimes, it is 
useful for the user to be able to control the scaling. Control is accomplished with the 
  axis   function, shown in  Table   5.3   . Executing the   axis   function without any input   

axis

 freezes the scaling of the plot. If you use the   hold on  command to add a second 
line to your graph, the scaling cannot change. To return control of the scaling to 
MATLAB ® , simply re-execute the   axis   function. 

 The   axis   function also accepts input defi ning the  x -axis and  y -axis scaling. The 
argument is a single matrix, with four values representing: 

   •   The minimum  x  value shown on the  x -axis  
  •   The maximum  x  value shown on the  x -axis  
  •   The minimum  y  value shown on the  y -axis  
  •   The maximum  y  value shown on the  y -axis   

 Thus, the command   

axis([-2, 3, 0, 10])

 fi xes the plot axes to  x  from    �2    to    �3    and  y  from 0 to 10. 

 Table 5.3   Axis Scaling and Annotating Plots 

  axis   When the  axis  function is used without inputs, it freezes the 
axis at the current confi guration. Executing the function a 
second time returns axis control to MATLAB ® . 

  axis(v)   The input to the  axis  command must be a four-element vector 
that specifi es the minimum and maximum values for both the 
 x - and  y -axes—for example,  [xmin, xmax,ymin,ymax].  

  axis equal   Forces the scaling on the  x - and  y -axis to be the same .

  legend('string1', 'string 2', etc)   Allows you to add a legend to your graph. The legend shows 
a sample of the line and lists the string you have specifi ed. 

  text(x_coordinate,y_coordinate, 
'string')  

 Allows you to add a text box to the graph. The box is 
placed at the specifi ed  x-  and  y- coordinates and contains 
the string value specifi ed. 

  gtext('string')   Similar to text. The box is placed at a location determined 
interactively by the user by clicking in the fi gure window. 
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 It is often useful to create plots where the scaling is the same on the  x-  and 
 y -axis. This is accomplished with the command   

axis equal

 MATLAB ®  offers several additional functions, also listed in  Table   5.3   , that allow 
you to annotate your plots. The   legend   function requires the user to specify a leg-
end in the form of a string for each line plotted, and displays it in the upper right-
hand corner of the plot. The   text   function allows you to add a text box to your 
plot, which is useful for describing features on the graph. It requires the user to 
specify the location of the lower left-hand corner of the box in the plot window as 
the fi rst two input fi elds, with a string specifying the contents of the text box in the 
third input fi eld. The use of both   legend   and   text   is demonstrated in the follow-
ing code, which modifi es the graph from  Figure   5.8b   .    

legend('line 1', 'line 2', 'line3')
text(1,100,'Label plots with the text command')

 We added a title,  x  and  y  labels, and adjusted the axis with the following commands:   

xlabel('My x label'), ylabel('My y label')
title('Example graph for Chapter 5'
axis([0,11,0,200])

 The results are shown in  Figure   5.9   . 
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Figure 5.9
Final version of the sample 
graph, annotated with a 
legend, a text box, a title, 
x and y labels, and a 
modifi ed axis.

  HINT    
 You can use Greek letters in your titles and labels by putting a backslash (\) 
before the name of the letter. For example,   

title('\alpha \beta \gamma')
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 creates the plot title 

   abg   

 To create a superscript, use a caret. Thus,   

title('x ^2')

 gives 

   x2   

 To create a subscript, use an underscore.   

title('x_5')

 gives 

   x5   

 If your expression requires a group of characters as either a subscript or a 
superscript, enclose them in curly braces. For example,   

title('k^{-1}')

 which returns   

k-1

 Finally, to create a title with more than one line of text, you’ll need to use a cell 
array. You can learn more about cell arrays in a later chapter, but the syntax is:   

title({'First line of text'; 'Second line of text'})

 MATLAB ®  has the ability to create other more complicated mathematical 
expressions for use as titles, axis labels, and other text strings, using the TeX 
markup language. To learn more, consult the   help   feature. (Search on “text 
properties.”)  

  PRACTICE EXERCISES 5.1 

    1.   Plot  x  versus  y  for    y � sin1x2.    Let  x  vary from 0 to    2p    in increments 
of    0.1p.     

   2.   Add a title and labels to your plot.  
   3.   Plot  x  versus    y1    and    y2    for    y1 � sin1x2    and    y2 � cos1x2.    Let  x  vary from 

0 to    2p    in increments of    0.1p.    Add a title and labels to your plot.  
   4.   Re-create the plot from Exercise 3, but make the sin (x)  line dashed and 

red. Make the cos( x ) line green and dotted.  
   5.   Add a legend to the graph in Exercise 4.  
   6.   Adjust the axes so that the  x -axis goes from    �1    to    2p � 1    and the  y -axis 

from    �1.5    to    �1.5.     
   7.   Create a new vector,     a � cos1x2.     Let  x  vary from 0 to    2p    in increments 

of    0.1p.    Plot just   a   without specifying the x values (  plot(a)  ) and 
observe the result. Compare this result with the graph produced by 
plotting  x  versus   a  .    
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  USING THE CLAUSIUS–CLAPEYRON EQUATION 
 The Clausius–Clapeyron equation can be used to fi nd the saturation vapor pressure 
of water in the atmosphere, for different temperatures. The saturation water vapor 
pressure is useful to meteorologists because it can be used to calculate relative 
humidity, an important component of weather prediction, when the actual partial 
pressure of water in the air is known. 

 The following table presents the results of calculating the saturation vapor pres-
sure of water in the atmosphere for various air temperatures with the use of the 
Clausius–Clapeyron equation:   

 Air Temperature, °F  Saturation Vapor Pressure, mbar 

    �60.0000     0.0698 

    �50.0000     0.1252 

    �40.0000     0.2184 

    �30.0000     0.3714 

    �20.0000     0.6163 

    �10.0000     1.0000 

 0  1.5888 

 10.0000  2.4749 

 20.0000  3.7847 

 30.0000  5.6880 

 40.0000  8.4102 

 50.0000  12.2458 

 60.0000  17.5747 

 70.0000  24.8807 

 80.0000  34.7729 

 90.0000  48.0098 

 100.0000  65.5257 

 110.0000  88.4608 

 120.0000  118.1931 

 Let us present these results graphically as well. 
 The Clausius–Clapeyron equation is 

   ln 1P 0>6.112 � a �Hv

Rair
b*a 1

273
�

1
T
b    

 where 

P 0          �    saturation vapor pressure for water, in mbar, at temperature  T   
�Hv      �    latent heat of vaporization for water,    2.453 � 106 J>kg     
Rair        �    gas constant for moist air, 461 J/kg  
T         �    temperature in kelvins.   

1.   State the Problem 
  Find the saturation vapor pressure at temperatures from    �60�F    to 120°F, using 

the Clausius–Clapeyron equation.  

  EXAMPLE 5.1

(continued )
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2.   Describe the Input and Output 

Input    

    �Hv � 2.453 � 106 J>kg

 Rair � 461 J>kg

 T � -60�F to 120�F      

  Since the number of temperature values was not specifi ed, we’ll choose to 
recalculate every 10°F. 

Output 

 Table of temperature versus saturation vapor pressures 
 Graph of temperature versus saturation vapor pressures    

3.   Develop a Hand Example 
  Change the temperatures from degree Fahrenheit to kelvin: 

   Tk �
1Tf � 459.62

1.8
   

 Solve the Clausius–Clapeyron equation for the saturation vapor pressure    1P 02:
   ln a P 0

6.11
b � a �Hv

Rair
b � a 1

273
�

1
T
b    

   P0 � 6.11*exp a a �Hv

Rair
b � a 1

273
�

1
T
b b    

  Notice that the expression for the saturation vapor pressure,    P 0,    is an exponential 
equation. We would thus expect the graph to have the shape shown in  Figure   5.10   .  

  4.   Develop a MATLAB ®  Solution   

%Example 5.1
%Using the Clausius–Clapeyron equation, find the
%saturation vapor pressure for water at different
%temperatures
%
TF=[-60:10:120]; %Define temp matrix in F
TK=(TF + 459.6)/1.8; %Convert temp to K
Delta_H=2.45e6; %Define latent heat of 
R_air = 461; %vaporization
 %Define ideal gas constant 
 %for air

%
%Calculate the vapor pressures
Vapor_Pressure=6.11*exp((Delta_H/R_air)*(1/273 - 1./TK));
%Display the results in a table 
 my_results = [TF',Vapor_Pressure']

%
%Create an x-y plot
plot(TF,Vapor_Pressure)
title('Clausius–Clapeyron Behavior')
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Figure 5.10
A sketch of the predicted 
equation behavior.
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xlabel('Temperature, F')
ylabel('Saturation Vapor Pressure, mbar')

 The resulting table is   

my_results =

-60.0000 0.0698
-50.0000 0.1252
-40.0000 0.2184
-30.0000 0.3714
-20.0000 0.6163
-10.0000 1.0000

0 1.5888
10.0000 2.4749
20.0000 3.7847
30.0000 5.6880
40.0000 8.4102
50.0000 12.2458
60.0000 17.5747
70.0000 24.8807
80.0000 34.7729
90.0000 48.0098
100.0000 65.5257
110.0000 88.4608
120.0000 118.1931

 A fi gure window opens to display the graphical results, shown in  Figure   5.11   .  
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Figure 5.11
A plot of the Clausius–
Clapeyron equation.
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5.   Test the Solution 
  The plot follows the expected trend. It is almost always easier to determine 

whether computational results make sense if a graph is produced. Tabular data 
are extremely diffi cult to interpret.    

  BALLISTICS 
 The range of an object (see  Figure   5.12   ) shot at an angle    u    with respect to the  x -axis 
and an initial velocity    v0    is given by 

   R1u2 �
v2

g
 sin12u2  for 0 … u …

p

2
1neglecting air resistance2   

 Use    g � 9.9 m / s2    and an initial velocity of 100 m/s. Show that the maximum 
range is obtained at    u � p>4    by computing and plotting the range for values of 
   u    from 

   0 … u …
p

2
   

 in increments of 0.05. 
 Repeat your calculations with an initial velocity of 50 m/s, and plot both sets of 

results on a single graph. 

   1.   State the Problem 
  Calculate the range as a function of the launch angle.  
  2.   Describe the Input and Output 

   Input 

             g � 9.9 m / s2    
           u � 0 to p / 2, incremented by 0.05    
     v0 � 50 m / s and 100 m / s     

  EXAMPLE 5.2

Figure 5.12
The range is zero, if the cannon is perfectly vertical or perfectly horizontal.
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(continued )

Output 

 Range  R  
 Present the results as a plot.    

3.   Develop a Hand Example 
  If the cannon is pointed straight up, we know that the range is zero, and if the 

cannon is horizontal, the range is also zero (see  Figure   5.12   ). 
 This means that the range must increase with the cannon angle up to some 

maximum and then decrease. A sample calculation at 45˚    1p>4 radians2    shows 
that 

 R1u2 �
v2

g
 sin12u2   

    Rap
4
b �

1002

9.9
sina2p

4
b � 1010 m when the initial velocity is 100 m >  s    

4.   Develop a MATLAB ®  Solution   

%Example 5.2
%The program calculates the range of a ballistic projectile
%
%Define the constants 
  g = 9.9;
  v1 = 50;
  v2 = 100;
%Define the angle vector
  angle = 0:0.05:pi/2;
%Calculate the range
  R1 = v1^2/g*sin(2*angle);
  R2 = v2^2/g*sin(2*angle);
%Plot the results

plot(angle,R1,angle,R2,':')
title('Cannon Range')
xlabel('Cannon Angle')
ylabel('Range, meters')
legend('Initial Velocity=50 m/s', 'Initial Velocity=100 m/s')

  Notice that in the   plot   command, we requested MATLAB ®  to print the sec-
ond set of data as a dashed line. A title, labels, and a legend were also added. 
The results are plotted in  Figure   5.13   .  

  5.   Test the Solution 
  Compare the MATLAB ®  results with those from the hand example. Both graphs 

start and end at zero. The maximum range for an initial velocity of 100 m/s is 
approximately 1000 m, which corresponds well to the calculated value of 1010 m. 
Notice that both solutions peak at the same angle, approximately 0.8 radian. 
The numerical value for    p>4    is 0.785 radian, confirming the hypothesis 
 presented in the problem statement that the maximum range is achieved by 
pointing the cannon at an angle of    p>4    radians (45˚).    
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 A function similar to   text   is   gtext  , which allows the user to interactively place 
a text box in an existing plot. The   gtext   function requires a single input, the 
string to be displayed.   

gtext('This string will display on the graph')

 Once executed, a crosshair appears on the graph. The user positions the cross-
hair to the appropriate position. The text is added to the graph when any key on 
the keyboard is depressed, or a mouse button is selected.    

  5.2   SUBPLOTS 

 The   subplot   command allows you to subdivide the graphing window into a grid 
of  m  rows and  n  columns. The function   

subplot(m,n,p)

 splits the fi gure into an    m � n    matrix. The variable   p   identifi es the portion of the 
window where the next plot will be drawn. For example, if the command   

subplot(2,2,1)

 is used, the window is divided into two rows and two columns, and the plot is drawn 
in the upper left-hand window ( Figure   5.14   ). 
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Figure 5.13
The predicted range 
of a projectile.

  HINT    

 To clear a fi gure, use the   clf   command. To close the active fi gure window, use 
the   close   command, and to close all open fi gure windows use   close all  . 

p  1 p  2

p  3 p  4

 Figure 5.14 
 Subplots are used to 
subdivide the fi gure 
window into an    m � n    
matrix.       
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 The windows are numbered from left to right, top to bottom. Similarly, the follow-
ing commands split the graph window into a top plot and a bottom plot:   

x = 0:pi/20:2*pi;
subplot(2,1,1)
plot(x,sin(x))
subplot(2,1,2)
plot(x,sin(2*x)

 The fi rst graph is drawn in the top window, since     p � 1.     Then the   subplot   com-
mand is used again to draw the next graph in the bottom window.  Figure   5.15    shows 
both graphs. 

 Titles are added above each subwindow as the graphs are drawn, as are  x - and 
 y -axis labels and any annotation desired. The use of the   subplot   command is illus-
trated in several of the sections that follow. 
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Figure 5.15
The subplot command 
allows the user to create 
multiple graphs in the 
same fi gure window.

  PRACTICE EXERCISES 5.2 

   1.   Subdivide a fi gure window into two rows and one column.  
  2.   In the top window, plot    y � tan1x2    for    �1.5 … x … 1.5.    Use an incre-

ment of 0.1.  
  3.   Add a title and axis labels to your graph.  
  4.   In the bottom window, plot    y � sinh1x2    for the same range.  
  5.   Add a title and labels to your graph.  
  6.   Try the preceding exercises again, but divide the fi gure window verti-

cally instead of horizontally.     
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  5.3   OTHER TYPES OF TWO-DIMENSIONAL PLOTS 

 Although simple  x–y  plots are the most common type of engineering plot, there are 
many other ways to represent data. Depending on the situation, these techniques 
may be more appropriate than an  x–y  plot. 

  5.3.1   Polar Plots 

 MATLAB ®  provides plotting capability with polar coordinates:   

polar(theta, r)

 generates a polar plot of angle theta (in radians) and radial distance  r . 
 For example, the code   

x = 0:pi/100:pi;
y = sin(x);
polar(x,y)

 generates the plot in  Figure   5.16   . A title was added in the usual way:   

title('The sine function plotted in polar coordinates is a 
circle.')
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The sine function plotted in polar coordinates is a circle.Figure 5.16
A polar plot of the sine 
function.

  PRACTICE EXERCISES 5.3 

   1.   Defi ne an array called   theta  , from 
0 to    2p,    in steps of    0.01p.    

   Defi ne an array of distances 
    r � 5*cos14*theta2.     

   Make a polar plot of   theta   versus   r    .  
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  3.   Create a new fi gure. 
   Use the   theta   array from the 

preceding exercises. 
   Assign     r � 5 � 5*sin1theta2     and 

create a new polar plot.    
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  4.   Create a new fi gure. 
   Use the   theta   array from the 

preceding exercises. 
   Assign     r � sqrt15^2*cos(2*theta))     

and create a new polar plot.    
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  5.   Create a new fi gure. 
   Defi ne a theta array such that 
     theta � pi>2:4>5*pi:4.5pi;   
   Create a six-member array of 

ones called   r  . 
   Create a new polar plot of 

  theta   versus   r  .       
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  2.   Use the   hold on  command to freeze 
the graph. 

   Assign     r � 4*cos16*theta2     and plot. 
Add a title  .  
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  5.3.2   Logarithmic Plots 

 For most plots that we generate, the  x - and  y -axes are divided into equally spaced 
intervals; these plots are called  linear  or  rectangular  plots. Occasionally, however, we 
may want to use a logarithmic scale on one or both of the axes. A logarithmic scale 
(to the base 10) is convenient when a variable ranges over many orders of magni-
tude, because the wide range of values can be graphed without compressing the 
smaller values. Logarithmic plots are also useful for representing data that vary 
exponentially. Appendix B discusses in more detail when to use the various types of 
logarithmic scaling.    

 The MATLAB ®  commands for generating linear and logarithmic plots of the 
vectors   x   and   y   are listed in  Table   5.4   .  

 Remember that the logarithm of a negative number or of zero does not exist. If 
your data include these values, MATLAB ®  will issue a warning message and will not 
plot the points in question. However, it will generate a plot based on the remaining 
points. 

 Each command for logarithmic plotting can be executed with one argument, as 
we saw in   plot(y)   for a linear plot. In these cases, the plots are generated with the 
values of the indices of the vector   y   used as   x   values. 

 As an example, plots of    y � 5x2    were created using all four scaling approaches, 
as shown in  Figure   5.17   . The linear (rectangular) plot, semilog plot along the  x -axis, 
semilog plot along the  y -axis, and log–log plot are all shown on one fi gure, plotted 
with the   subplot   function in the following code:   

x = 0:0.5:50;
y = 5*x.^2;
subplot(2,2,1)
plot(x,y)

title('Polynomial - linear/linear')
ylabel('y'), grid

subplot(2,2,2)
semilogx(x,y)

title('Polynomial - log/linear')
ylabel('y'), grid

subplot(2,2,3)
semilogy(x,y)

title('Polynomial - linear/log')
xlabel('x'), ylabel('y'), grid

subplot(2,2,4)
loglog(x,y)

title('Polynomial - log/log')
xlabel('x'), ylabel('y'), grid

 KEY IDEA 
 Logarithmic plots are 
especially useful if the data 
vary exponentially 

 Table 5.4   Rectangular and Logarithmic Plots 

  plot(x,y)   Generates a linear plot of the vectors   x   and   y   
  semilogx(x,y)   Generates a plot of the values of   x   and   y  , using a logarithmic scale 

for   x   and a linear scale for   y   

  semilogy(x,y)   Generates a plot of the values of   x   and   y  , using a linear scale for   x   
and a logarithmic scale for   y   

  loglog(x,y)   Generates a plot of the vectors   x   and   y  , using a logarithmic scale 
for both   x   and   y   
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 The indenting is intended to make the code easier to read—MATLAB ®  ignores 
white space. As a matter of style, notice that only the bottom two subplots have 
x -axis labels.    
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Figure 5.17
Linear and logarithmic plots, displayed using the subplot function.

 KEY IDEA 
 Since MATLAB ®  ignores 
white space, use it to make 
your code more readable 

  RATES OF DIFFUSION 
 Metals are often treated to make them stronger and therefore wear longer. One 
problem with making a strong piece of metal is that it becomes diffi cult to form it 
into a desired shape. A strategy that gets around this problem is to form a soft metal 
into the shape you desire and then harden the surface. This makes the metal wear 
well without making it brittle. 

 A common hardening process is called  carburizing . The metal part is exposed to 
carbon, which diffuses into the part, making it harder. This is a very slow process if 

  EXAMPLE 5.3

(continued )
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performed at low temperatures, but it can be accelerated by heating the part. The 
diffusivity is a measure of how fast diffusion occurs and can be modeled as 

   D � D0 expa � Q

RT
b    

 where 
 D � diffusivity, cm2

 / s     
 D0 � diffusion    coeffi cient,    cm2

 / s     
 Q � activation    energy, J/mol, 8.314 J/mol K  
 R � ideal    gas constant, J/mol K  
 T � temperature,    K.   

 As iron is heated, it changes structure and its diffusion characteristics change. The 
values of    D0    and  Q  are shown in the following table for carbon diffusing through 
each of iron’s structures:   

 Type of Metal     D0 (cm2/s)      Q  (J/mol K) 

 alpha Fe (BCC)  0.0062  80,000 

 gamma Fe (FCC)  0.23  148,000 

 Create a plot of diffusivity versus inverse temperature (1/ T  ), using the data pro-
vided. Try the rectangular, semilog, and log–log plots to see which you think might 
represent the results best. Let the temperature vary from room temperature (25°C) 
to 1200°C. 

   1.   State the Problem 
  Calculate the diffusivity of carbon in iron.  
  2.   Describe the Input and Output 

   Input 

 For C in alpha iron,    D0 � 0.0062 cm2
 >  s    and    Q � 80,000 J >  mol K    

 For C in gamma iron,    D0 � 0.23 cm2
 >  s    and    Q � 148,000 J >  mol K

        R � 8.314 J >  mol K    
  T  varies from 25°C to 1200°C  

  Output 

 Calculate the diffusivity and plot it.    
  3.   Develop a Hand Example 

 The diffusivity is given by 

   D � D0 expa-Q

RT
b    

  At room temperature, the diffusivity for carbon in alpha iron is 

    D � 0.0062 expa � 80,000
8.314 � 125 � 2732 b

 D � 5.9 � 10�17    

  (Notice that the temperature had to be changed from Celsius to Kelvin.)  
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4.   Develop a MATLAB ®  Solution   

% Example 5.3
% Calculate the diffusivity of carbon in iron

clear, clc
% Define the constants

D0alpha = 0.0062;
D0gamma = 0.23;
Qalpha = 80000;
Qgamma = 148000;
R = 8.314;
T = 25:5:1200;

% Change T from C to K
T = T+273;

% Calculate the diffusivity
Dalpha = D0alpha*exp(-Qalpha./(R*T));
Dgamma = D0gamma*exp(-Qgamma./(R*T));

% Plot the results
subplot(2,2,1)
plot(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

subplot(2,2,2)
semilogx(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

subplot(2,2,3)
semilogy(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

subplot(2,2,4)
loglog(1./T,Dalpha, 1./T,Dgamma)
title('Diffusivity of C in Fe')
xlabel('Inverse Temperature, K^{-1}'),
ylabel('Diffusivity, cm^2/s')
grid on

  Subplots were used in  Figure   5.18   , so that all four variations of the plot are in the 
same fi gure. Notice that  x -labels were added only to the bottom two graphs, to 
reduce clutter, and that a legend was added only to the fi rst plot. The   semilogy
plot resulted in straight lines and allows a user to read values off the graph easily 
over a wide range of both temperatures and diffusivities. This is the plotting 
scheme usually used in textbooks and handbooks to present diffusivity values. 

(continued )
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5.   Test the Solution 
  Compare the MATLAB ®  results with those from the hand example. 
  We calculated the diffusivity to be 

   5.9 � 10�17 cm2
 >  s at 25�C   

  for carbon in alpha iron. To check our answer, we’ll need to change 25°C to 
kelvins and take the inverse: 

   
1125 � 2732 � 3.36 � 10�3   

From the semilogy  graph (lower left-hand corner), we can see that the diffusiv-
ity for alpha iron is approximately    10�17.       
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 Figure 5.18 
 Diffusivity data plotted on different scales. The data follows a straight line when the log 10  of the diffusivity is plotted on the  y -axis versus 
the inverse temperature on the  x -axis.       



5.3 Other Types of Two-Dimensional Plots 175

  PRACTICE EXERCISE 5.4 

 Create appropriate   x   and   y   arrays to use in plotting each of the expressions 
that follow. Use the   subplot   command to divide your fi gures into four 
sections, and create each of these four graphs for each expression: 

   •   Rectangular  
  •   Semilogx  
  •   Semilogy  
  •   Loglog   

   1.      y � 5x � 3     
  2.      y � 3x2     
  3.      y � 12e1x�22     
  4.      y � 1 >  x      

 Physical data usually are plotted so that they fall on a straight line. Which of 
the preceding types of plot results in a straight line for each problem?   

  5.3.3   Bar Graphs and Pie Charts 

 Bar graphs, histograms, and pie charts are popular forms for reporting data. Some 
of the commonly used MATLAB ®  functions for creating bar graphs and pie charts 
are listed in  Table   5.5   .  

 Examples of some of these graphs are shown in  Figure   5.19   . The graphs make 
use of the   subplot   function to allow four plots in the same fi gure window:   

clear, clc
x = [1,2,5,4,8];
y = [x;1:5];
subplot(2,2,1)
bar(x),title('A bar graph of vector x')

subplot(2,2,2)
bar(y),title('A bar graph of matrix y')

subplot(2,2,3)
bar3(y),title('A three-dimensional bar graph')

subplot(2,2,4)
pie(x),title('A pie chart of x')

 Table 5.5   Bar Graphs and Pie Charts 

  bar(x)   When  x  is a vector, bar generates a vertical bar graph. When   x   is a two-
dimensional matrix, bar groups the data by row. 

  barh(x)   When  x  is a vector, barh generates a horizontal bar graph. When  x  is a 
two-dimensional matrix, barh groups the data by row. 

  bar3(x)   Generates a three-dimensional bar chart 

  bar3h(x)   Generates a three-dimensional horizontal bar chart 

  pie(x)   Generates a pie chart. Each element in the matrix is represented as a slice of the pie. 

  pie3(x)   Generates a three-dimensional pie chart. Each element in the matrix is represented as 
a slice of the pie. 

  hist(x)   Generates a histogram 
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  5.3.4   Histograms 

 A histogram is a special type of graph that is particularly useful for the statistical 
analysis of data. It is a plot showing the distribution of a set of values. In MATLAB ® , 
the histogram computes the number of values falling into 10 bins (categories) that 
are equally spaced between the minimum and maximum values. For example, if we 
defi ne a matrix  x  as the set of grades from the Introduction to Engineering fi nal, 
the scores could be represented in a histogram, shown in  Figure   5.20    and gener-
ated with the following code:      

x = [100,95,74,87,22,78,34,35,93,88,86,42,55,48];
hist(x)
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Figure 5.19
Sample bar graphs and pie 
charts. The subplot 
function was used to divide 
the window into quadrants.

 KEY IDEA 
 Histograms are useful in 
statistical analysis 
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A histogram of grade data.
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 The default number of bins is 10, but if we have a large data set, we may want to 
divide the data up into more bins. For example, to create a histogram with 25 bins, 
the command would be   

hist(x, 25)

 If you set the   hist   function equal to a variable, as in   

A = hist(x)

 the data used in the plot are stored in  A :   

A =
1 2 1 1 1 0 1 1 3 3

  WEIGHT DISTRIBUTIONS 
 The average 18-year-old American male weighs 152 pounds. A group of 100 young 
men were weighed and the data stored in a fi le called  weight.dat . Create a graph to 
represent the data. 

1.   State the Problem 
  Use the data fi le to create a line graph and a histogram. Which is a better rep-

resentation of the data?  
2.   Describe the Input and Output   

  Input    weight.dat , an ASCII data fi le that contains weight data 

  Output   A line plot of the data 
 A histogram of the data 

  3.   Develop a Hand Example 
  Since this is a sample of actual weights, we would expect the data to approxi-

mate a normal random distribution (a Gaussian distribution). The histogram 
should be bell shaped.  

  4.   Develop a MATLAB ®  Solution 
  The following code generates the plots shown in  Figure   5.21   :   

% Example 5.4
% Using Weight Data
%
load weight.dat
% Create the line plot of weight data
subplot(1,2,1)
plot(weight)
title('Weight of Freshman Class Men')
xlabel('Student Number')
ylabel('Weight, lb')
grid on
% Create the histogram of the data
subplot(1,2,2)
hist(weight)

  EXAMPLE 5.4

(continued )
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xlabel('Weight, lb')
ylabel('Number of students')
title('Weight of Freshman Class Men')

  5.   Test the Solution 
  The graphs match our expectations. The weight appears to average about 

150 lb and varies in what looks like a normal distribution. We can use MATLAB ®

to fi nd the average and the standard deviation of the data, as well as the maximum 
and minimum weights in the data set. The MATLAB ®  code   

average_weight = mean(weight)
standard_deviation = std(weight)
maximum_weight = max(weight)
minimum_weight = min(weight) 

 returns   

average_weight =
151.1500

standard_deviation =
32.9411

maximum_weight =
228

minimum_weight =
74
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Figure 5.21
Histograms and line plots are two different ways to visualize numeric information.

  5.3.5   X–Y Graphs with Two Y-Axes 

 Sometimes, it is useful to overlay two  x – y  plots onto the same fi gure. However, if 
the orders of magnitude of the  y -values are quite different, it may be diffi cult to 
see how the data behave. Consider, for example, a graph of sin( x ) and    ex    drawn 
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on the same fi gure. The results, obtained with the following code, are shown in 
 Figure   5.22   :   

x = 0:pi/20:2*pi;
y1 = sin(x);
y2 = exp(x);
subplot(2,1,1)
plot(x,y1,x,y2)

 The plot of sin( x ) looks like it runs straight along the line    x � 0,    because of the scale. 
The   plotyy   function allows us to create a graph with two  y  -axes, the one on the left for 
the fi rst set of ordered pairs and the one on the right for the second set of ordered pairs:   

subplot(2,1,2)
plotyy(x,y1,x,y2)

 Titles and labels were added in the usual way. The  y -axis was not labeled, 
because the results are dimensionless. 

 The   plotyy   function can create a number of different types of plots by adding a 
string with the name of the plot type after the second set of ordered pairs. In  Figure   5.23   , 
the plots were created with the following code and have a logarithmically scaled axis:   

subplot(2,1,1)
plotyy(x,y1,x,y2, 'semilogy')
subplot(2,1,2)
plotyy(x,y1,x,y2,'semilogx')

 For other problems you may need to add  y -axis labels. The left-hand  y -axis is 
easy—just add the label in the usual way   

ylabel('Left y-axis label')
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Figure 5.22
MATLAB® allows the y-axis 
to be scaled differently on 
the left-hand and right-hand 
sides of the fi gure. In the 
top graph, both lines were 
drawn using the same 
scaling. In the bottom 
graph, the sine curve was 
drawn using the scaling on 
the left axis, while the 
exponential curve was 
drawn using the scaling on 
the right axis.
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 The right-hand  y -axis label is trickier. You can add it using MATLAB ® ’s interac-
tive controls, described in a later section, or you can use handle graphics. This 
involves giving the plot a name, and then using the name to switch to the second 
axis set (which corresponds to the  y -axis on the right-hand side of the fi gure). Here 
is the code   

a = plotyy(x,y1,x,y2)
ylabel(a(2),'Right y-axis label')
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Figure 5.23
The plotyy function can 
generate several types of 
graphs, including semilogx, 
semilogy, and loglog.

  PERIODIC PROPERTIES OF THE ELEMENTS 
 The properties of elements in the same row or column in the periodic table usually 
display a recognizable trend as we move across a row or down a column. For exam-
ple, the melting point usually goes down as we move down a column, because the 
atoms are farther apart and the bonds between the atoms are therefore weaker. 
Similarly, the radius of the atoms goes up as we move down a column, because there 
are more electrons in each atom and correspondingly bigger orbitals. It is instruc-
tive to plot these trends against atomic weight on the same graph. 

   1.   State the Problem 
  Plot the melting point and the atomic radius of the Group I elements against 

the atomic weight, and comment on the trends you observe.  

  EXAMPLE 5.5
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2.   Describe the Input and Output     

Input   The atomic weights, melting points, and atomic radii of the Group I 
elements are listed in  Table   5.6   . 

Output   Plot with both melting point and atomic radius on the same graph. 

3.   Develop a Hand Example 
  We would expect the graph to look something like the sketch shown in  Figure   5.24   .  
4.   Develop a MATLAB ®  Solution 
  The following code produces the plot shown in  Figure   5.25   :   

% Example 5.5
clear, clc
% Define the variables
atomic_number = [ 3, 11, 19, 37, 55];
melting_point = [181, 98, 63, 34, 28.4];
atomic_radius = [0.152, 0.186, 0.227, 0.2480, 0.2650];
% Create the plot with two lines on the same scale
subplot(1,2,1)
plot(atomic_number,melting_point,atomic_number,atomic_radius)
title('Periodic Properties')

 Table 5.6   Group I Elements and Selected Physical Properties 

 Element  Atomic Number  Melting Point, °C  Atomic Radius, pm 

 Lithium  3  181  0.1520 

 Sodium  11  98  0.1860 

 Potassium  19  63  0.2270 

 Rubidium  37  34  0.2480 

 Cesium  55  28.4  0.2650 

Radius

Melting
point

Figure 5.24
Sketch of the predicted data 
behavior.

Figure 5.25
In the left-hand fi gure, the 
two sets of values were 
plotted using the same 
scale. Using two y-axes 
allows us to plot data with 
different units on the same 
graph, as shown in the 
right-hand fi gure.

(continued )
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xlabel('Atomic Number')
ylabel('Properties')
% Create the second plot with two different y scales
subplot(1,2,2)
h=plotyy(atomic_number,melting_point,atomic_number,atomic_
radius)
title('Periodic Properties')
xlabel('Atomic Number')
ylabel('Melting Point, C')
ylabel(h(2),'Atomic Radius, picometers')

  On the second graph, which has two different  y  scales, we used the   plotyy
function instead of the   plot   function. This forced the addition of a second 
scale, on the right-hand side of the plot. We needed it because atomic radius 
and melting point have different units and the values for each have different 
magnitudes. Notice that in the fi rst plot it is almost impossible to see the atomic-
radius line; it is on top of the  x -axis because the numbers are so small.  

5.   Test the Solution 
  Compare the MATLAB ®  results with those from the hand example. The trend 

matches our prediction. Clearly, the graph with two  y -axes is the superior repre-
sentation, because we can see the property trends.     

  5.3.6   Function Plots 

 The   fplot   function allows you to plot a function without defi ning arrays of corre-
sponding  x - and  y -values. For example,   

fplot('sin(x)',[-2*pi,2*pi])

 creates a plot ( Figure   5.26   ) of  x  versus sin( x ) for  x -values from    �2p    to    2p.    MATLAB ®

automatically calculates the spacing of  x -values to create a smooth curve. Notice 
that the fi rst argument in the   fplot   function is a string containing the function 
and the second argument is an array. For more complicated functions that may be 
inconvenient to enter as a string, you may defi ne an anonymous function and enter 
the function handle. Anonymous functions and function handles are described in a 
later chapter devoted to functions. 
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Function Plot of sin(x)Figure 5.26

Function plots do not 
require the user to defi ne 
arrays of ordered pairs.
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  5.4   THREE-DIMENSIONAL PLOTTING 

 MATLAB ®  offers a variety of three-dimensional plotting commands, several of 
which are listed in  Table   5.7   .  

  5.4.1   Three-Dimensional Line Plot 

 The   plot3   function is similar to the   plot   function, except that it accepts data in 
three dimensions. Instead of just providing  x  and  y  vectors, the user must also pro-
vide a  z  vector. These ordered triples are then plotted in three-space and connected 
with straight lines. For example,   

clear, clc
x = linspace(0,10*pi,1000);
y = cos(x);
z = sin(x);
plot3(x,y,z)
grid
xlabel('angle'), ylabel('cos(x)') zlabel('sin(x)') title('A 
Spring')

  PRACTICE EXERCISE 5.5 

 Create a plot of the functions that follow, using   fplot  . You’ll need to select 
an appropriate range for each plot. Don’t forget to title and label your 
graphs. 

   1.       f1t2 � 5t2      
  2.       f1t2 � 5 sin21t2 � t cos21t2     
  3.       f1t2 � tet      
  4.       f1t2 � ln1t2 � sin1t2        

  HINT    
 The correct MATLAB ®  syntax for the mathematical expression    sin21t2    is 
  sin(t).^2 .    

 Table 5.7   Three-Dimensional Plots 

  plot3(x,y,z)   Creates a three-dimensional line plot 

  comet3(x,y,z)   Generates an animated version of plot3

  mesh(z) or mesh(x,y,z)   Creates a meshed surface plot 

  surf(z) or surf(x,y,z)   Creates a surface plot; similar to the mesh function 

  shading interp   Interpolates between the colors used to illustrate surface plots 

  shading fl at   Colors each grid section with a solid color 

  colormap(map_name)   Allows the user to select the color pattern used on surface plots 

  contour(z) or contour(x,y,z)   Generates a contour plot 

  surfc(z) or surfc(x,y,z)   Creates a combined surface plot and contour plot 

  pcolor(z) or pcolor(x,y,z)   Creates a pseudo color plot 
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 The title, labels, and grid are added to the graph in  Figure   5.27    in the usual 
way, with the addition of   zlabel   for the  z -axis. 

 The coordinate system used with   plot3   is oriented using the right-handed 
coordinate system familiar to engineers.    
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Figure 5.27
A three-dimensional plot of 
a spring. MATLAB® uses a 
coordinate system 
consistent with the 
right-hand rule.

 KEY IDEA 
 The axes used for 
three-dimensional plotting 
correspond to the 
right-hand rule 

  HINT    
 Just for fun, re-create the plot shown in  Figure   5.27   , but this time with the 
  comet3   function:   

comet3(x,y,z)

 This plotting function “draws” the graph in an animation sequence. If your 
animation runs too quickly, add more data points. For two-dimensional line 
graphs, use the   comet   function.   

  5.4.2   Surface Plots 

 Surface plots allow us to represent data as a surface. We will be experimenting with 
two types of surface plots:   mesh   plots and   surf   plots. 

  Mesh Plots 
 There are several ways to use   mesh   plots. They can be used to good effect with a 
single two-dimensional    m � n    matrix. In this application, the value in the matrix 
represents the  z- value in the plot. The  x-  and  y- values are based on the matrix 
dimensions. Take, for example, the following very simple matrix:   

z = [1, 2, 3, 4,  5,  6,  7,  8,  9, 10;
2, 4, 6, 8, 10, 12, 14, 16, 18, 20;
3, 4, 5, 6,  7,  8,  9, 10, 11, 12];
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 The code   

mesh(z)
xlabel('x-axis')
ylabel('y-axis')
zlabel('z-axis')

 generates the graph in  Figure   5.28   . 
 The graph is a “mesh” created by connecting the points defi ned in   z   into a 

rectilinear grid. Notice that the  x -axis goes from 0 to 10 and  y  goes from 1 to 3. 
The matrix index numbers were used for the axis values. For example, note that 
   z1,5    —the value of  z  in row 1, column 5—is equal to 5. This element is circled in 
 Figure   5.28   . 

 The   mesh   function can also be used with three arguments:   mesh(x,y,z)  . In 
this case,   x   is a list of  x -coordinates,   y   is a list of  y -coordinates, and   z   is a list of 
 z -coordinates.   

x = linspace(1,50,10)
y = linspace(500,1000,3)
z = [1, 2, 3, 4,  5,  6,  7,  8,  9, 10;

2, 4, 6, 8, 10, 12, 14, 16, 18, 20;
3, 4, 5, 6,  7,  8,  9, 10, 11, 12]

 The   x   vector must have the same number of elements as the number of col-
umns in the   z   vector and the   y   vector must have the same number of elements as 
the number of rows in the   z   vector. The command   

mesh(x,y,z)

 creates the plot in  Figure   5.29a   . Notice that the  x -axis varies from 0 to 50, with data 
plotted from 1 to 50. Compare this scaling with that in  Figure   5.28   , which used the 
 z  matrix index numbers for the  x-  and  y -axes.  

  Surf Plots 
 Surf plots are similar to   mesh   plots, but   surf   creates a three-dimensional colored 
surface instead of a mesh. The colors vary with the value of  z . 

 The   surf   command takes the same input as   mesh  : either a single input—
for example,   surf(z)  , in which case it uses the row and column indices as  x - and 
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Simple mesh created with a 
single two-dimensional 
matrix.



186 Chapter 5 Plotting

 y -coordinates—or three matrices.  Figure   5.29   b was generated with the same 
commands as those used to generate  Figure   5.29   a, except that   surf   replaced 
  mesh  . 

 The shading scheme for surface plots is controlled with the shading command. 
The default, shown in  Figure   5.29   b, is “faceted.” Interpolated shading can create 
interesting effects. The plot shown in  Figure   5.29   c was created by adding   

shading interp

 to the previous list of commands. Flat shading without the grid is generated when   

shading flat

 is used, as shown in  Figure   5.29d   . 
 The color scheme used in surface plots can be controlled with the   colormap   

function. For example,      

colormap(gray)

 forces a grayscale representation for surface plots. This may be appropriate if you’ll 
be making black-and-white copies of your plots. Other available   colormaps   are   

autumn bone hot
spring colorcube hsv
summer cool pink
winter copper prism
jet (default) flag white
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Figure 5.29
Mesh and surf plots are 
created with three input 
arguments.

 KEY IDEA 
 The colormap function 
controls the colors used on 
surface plots 
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 Use the   help   command to see a description of the various options:   

help colormap

  Another Example 
 A more complicated surface can be created by calculating the values of   Z  :   

x= [-2:0.2:2];
y= [-2:0.2:2];
[X,Y] = meshgrid(x,y);
Z = X.*exp(-X.^2 - Y.^2);

 In the preceding code, the   meshgrid   function is used to create the two-dimen-
sional matrices   X   and   Y   from the one-dimensional vectors   x   and   y  . The values in   Z   
are then calculated. The following code plots the calculated values:   

subplot(2,2,1)
mesh(X,Y,Z)
title('Mesh Plot'), xlabel('x-axis'), ylabel('y-axis'), 
zlabel('z-axis')

subplot(2,2,2)

surf(X,Y,Z)
title('Surface Plot'), xlabel('x-axis'), ylabel('y-axis'), 
zlabel('z-axis')

 Either the   x  ,   y   vectors or the   X  ,   Y   matrices can be used to defi ne the  x - and 
 y -axes.  Figure   5.30a    is a   mesh   plot of the given function, and  Figure   5.30   b is a   surf   
plot of the same function.   
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are different ways of 
visualizing the same data.
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  Contour Plots 
 Contour plots are two-dimensional representations of three-dimensional sur-
faces, much like the familiar contour maps used by many hikers. The   contour   
command was used to create  Figure   5.30   c, and the   surfc   command was used to 
create  Figure   5.30d   :   

subplot(2,2,3)
contour(X,Y,Z)

xlabel('x-axis'), ylabel('y-axis'), title('Contour Plot')
subplot(2,2,4)
surfc(X,Y,Z)
xlabel('x-axis'), ylabel('y-axis')
title('Combination Surface and Contour Plot')

  Pseudo Color Plots 
 Pseudo color plots are similar to contour plots, except that instead of lines outlin-
ing a specifi c contour, a two-dimensional shaded map is generated over a grid. 
MATLAB ®  includes a sample function called   peaks   that generates the  x ,  y , and  z  
matrices of an interesting surface that looks like a mountain range:   

[x,y,z] = peaks;

 With the following code, we can use this surface to demonstrate the use of 
pseudo color plots, shown in  Figure   5.31   :   

subplot(2,2,1)
pcolor(x,y,z)

 The grid is deleted when interpolated shading is used:   

subplot(2,2,2)
pcolor(x,y,z)
shading interp

 You can add contours to the image by overlaying a contour plot:   

subplot(2,2,3)
pcolor(x,y,z)
shading interp
hold on
contour(x,y,z,20,'k')

 The number   20   specifi es that 20 contour lines are drawn, and the   'k'   indi-
cates that the lines should be black. If we hadn’t specifi ed black lines, they would 

 HINT    
 If a single vector is used in the   meshgrid   function, the program interprets it as   

[X,Y] = meshgrid(x,x)

 You could also use the vector defi nition as input to  meshgrid :   

[X,Y] = meshgrid(-2:0.2:2)

 Both of these lines of code would produce the same result as the commands 
listed in the example. 
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have been the same color as the pseudo color plot and would have disappeared into 
the image. Finally, a simple contour plot was added to the fi gure for comparison:   

subplot(2,2,4)
contour(x,y,z)

 Additional options for using all the three-dimensional plotting functions are 
included in the help window.    

  5.5   EDITING PLOTS FROM THE MENU BAR 

 In addition to controlling the way your plots look by using MATLAB ®  commands, 
you can edit a plot once you’ve created it. The plot in  Figure   5.32    was created with 
the   sphere   command, which is one of several sample functions, like   peaks  , used 
to demonstrate plotting.      

sphere

 In the fi gure, the  Insert menu  has been selected. Notice that you can insert 
labels, titles, legends, text boxes, and so on, all by using this menu. The  Tools menu  
allows you to change the way the plot looks, by zooming in or out, changing the 
aspect ratio, etc. The fi gure toolbar, underneath the menu toolbar, offers icons that 
allow you to do the same thing. 

 The plot in  Figure   5.32    doesn’t really look like a sphere; it’s also missing labels 
and a title, and the meaning of the colors may not be clear. We edited this plot by 
fi rst adjusting the shape: 

   •   Select  Edit: Axes Properties  from the menu toolbar.  
  •   From the  Property Editor—Axes   window , select More Properties :   Data 

Aspect Ratio Mode .  
  •   Set the mode to manual (see  Figure   5.33   ).   
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Figure 5.31
A variety of contour plots is 
available in MATLAB®.

 KEY IDEA 
 When you interactively edit 
a plot, your changes will 
be lost if you rerun the 
program 
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Figure 5.32
MATLAB® offers interactive 
tools, such as the insert 
tool, that allow the user to 
adjust the appearance of 
graphs.

Figure 5.33
MATLAB® allows you to 
edit plots by using 
commands from the 
toolbar.
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 Similarly, labels, a title, and a color bar were added ( Figure   5.34   ) using the 
Property Editor. They could also have been added by using  the   Insert menu  option 
on the menu bar. Editing your plot in this manner is more interactive and allows 
you to fi ne-tune the plot’s appearance. The only problem with editing a fi gure 
interactively is that if you run your MATLAB ®  program again, you will lose all of 
your improvements. 
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Edited plot of a sphere.

  HINT    
 You can force a plot to space the data equally on all the axes by using the 
  axis equal   command. This approach has the advantage that you can pro-
gram  axis equal  into an M-fi le and retain your improvements.   

  5.6   CREATING PLOTS FROM THE WORKSPACE WINDOW 

 A great feature of MATLAB ®  7 is its ability to create plots interactively from the 
workspace window. In this window, select a variable, then select the drop-down 
menu on the  plotting icon  (shown in  Figure   5.35   ). MATLAB ®  will list the plot-
ting options it “thinks” are reasonable for the data stored in your variable. 
Simply select the appropriate option, and your plot is created in the current 
 figure window . If you don’t like any of the suggested types of plot, choose  More 

plots  from the drop-down menu, and a new window will open with the complete 
list of available plotting options for you to choose from. This is especially useful, 
because it may suggest options that had not occurred to you. For example, 
 Figure   5.35    shows a scatter plot of the  x and y  matrices highlighted in the fi gure. 
The matrices were created by loading the seamount data set, which is built into 
MATLAB ® . 
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 If you want to plot more than one variable, highlight the fi rst, then hold down 
the  Ctrl  key and select the additional variables. To annotate your plots, use the inter-
active editing process described in Section 5.5. The interactive environment is a 
rich resource. You’ll get the most out of it by exploring and experimenting.  

  5.7   SAVING YOUR PLOTS 

 There are several ways to save plots created in MATLAB ® : 

   •   If you created the plot with programming code stored in an M-fi le, simply 
rerunning the code will re-create the fi gure.  

  •   You can also save the fi gure from the fi le menu, using the    Save As . . .    option. 
You’ll be presented with several choices:   
   1.   You may save the fi gure as a  .fig  fi le, which is a MATLAB ® -specifi c fi le for-

mat. To retrieve the fi gure, just double-click on the fi le name in the current 
folder. You can do the same thing programatically with the code

open <figurename.fig>

  2.   You may save the fi gure in a number of different standard graphics formats, 
such as jpeg ( .jpg ) and enhanced metafi le ( .emf ). These versions of the fi g-
ure can be inserted into other documents, such as a Word document.  

  3.   You can select Edit from the menu bar, then select  copy figure , and paste the 
fi gure into another document.  

  4.   You can use the fi le menu to create an M-fi le that will re-create the fi gure.   

Plotting icon
Figure 5.35
Plotting from the workspace 
window, using the 
interactive plotting feature.

  PRACTICE EXERCISE 5.6 

 Create a plot of    y � cos1x2.    Practice saving the fi le and inserting it into a 
Word document.    
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     SUMMARY 

 The most commonly used graph in engineering is the  x – y  plot. This two-dimensional 
plot can be used to graph data or to visualize mathematical functions. No matter 
what a graph represents, it should always include a title and  x - and  y -axis labels. Axis 
labels should be descriptive and should include units, such as ft/s or kJ/kg. 

 MATLAB ®  includes extensive options for controlling the appearance of your 
plots. The user can specify the color, line style, and marker style for each line on a 
graph. A grid can be added to the graph, and the axis range can be adjusted. Text 
boxes and a legend can be employed to describe the graph. The subplot function is 
used to divide the plot window into an    m � n    grid. Inside each of these subwin-
dows, any of the MATLAB ®  plots can be created and modifi ed. 

 In addition to  x – y  plots, MATLAB ®  offers a variety of plotting options, including 
polar plots, pie charts, bar graphs, histograms, and  x – y  graphs with two  y -axes. The scal-
ing on  x – y  plots can be modifi ed to produce logarithmic plots on either or both  x - and 
 y- axes. Engineers often use logarithmic scaling to represent data as a straight line. 

 The function   fplot   allows the user to plot a function without defi ning a vector 
of  x - and  y -values. MATLAB ®  automatically chooses the appropriate number of 
points and spacing to produce a smooth graph. Additional function-plotting capa-
bility is available in the symbolic toolbox. 

 The three-dimensional plotting options in MATLAB ®  include a line plot, a 
number of surface plots, and contour plots. Most of the options available in two-
dimensional plotting also apply to these three-dimensional plots. The   meshgrid   
function is especially useful in creating three-dimensional surface plots. 

 Interactive tools allow the user to modify existing plots. These tools are availa-
ble from the fi gure menu bar. Plots can also be created with the interactive plotting 
option from the workspace window. The interactive environment is a rich resource. 
You’ll get the most out of it by exploring and experimenting. 

 Figures created in MATLAB ®  can be saved in a variety of ways, either to be 
edited later or to be inserted into other documents. MATLAB ®  offers both propri-
etary fi le formats that minimize the storage space required to store fi gures and 
standard fi le formats suitable to import into other applications. 

  MATLAB ®  SUMMARY 

 The following MATLAB ®  summary lists all the special characters, commands, and 
functions that were defi ned in this chapter:        

 Special Characters 

 Line Type  Indicator  Point Type  Indicator  Color  Indicator 

 solid  -  point   .   blue   b  
 dotted  :  circle   o   green   g  
 dash-dot  -.  x-mark   x   red   r  
 dashed  - -  plus     +     cyan   c  
     star     *     magenta   m  
     square   s   yellow   y  
     diamond   d   black   k  

(continued)
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 Commands and Functions 

  autumn   optional colormap used in surface plots 

  axis   freezes the current axis scaling for subsequent plots or specifi es the axis dimensions 

  axis equal   forces the same scale spacing for each axis 

  bar   generates a bar graph 

  bar3   generates a three-dimensional bar graph 

  barh   generates a horizontal bar graph 

  bar3h   generates a horizontal three-dimensional bar graph 

  bone   optional colormap used in surface plots 

  clf   clear fi gure 

  close   close the current fi gure window 

  close all   close all open fi gure windows 

  colorcube   optional colormap used in surface plots 

  colormap   color scheme used in surface plots 

  comet   draws an  x – y  plot in a pseudo animation sequence 

  comet3   draws a three-dimensional line plot in a pseudo animation sequence 

  contour   generates a contour map of a three-dimensional surface 

  cool   optional colormap used in surface plots 

  copper   optional colormap used in surface plots 

  fi gure   opens a new fi gure window 

  fl ag   optional colormap used in surface plots 

  fplot   creates an  x – y  plot based on a function 

  gtext   similar to text; the box is placed at a location determined interactively by the user by 
clicking in the fi gure window 

  grid   adds a grid to the current plot only 

  grid off   turns the grid off 

  grid on   adds a grid to the current and all subsequent graphs in the current fi gure 

  hist   generates a histogram 

  hold off   instructs matlab ®   to  erase fi gure contents before adding new information 

  hold on   instructs matlab ®   not to  erase fi gure contents before adding new information 

  hot   optional colormap used in surface plots 

  hsv   optional colormap used in surface plots 

  jet   default colormap used in surface plots 

  legend   adds a legend to a graph 

  linspace   creates a linearly spaced vector 

 Special Characters  (continued)

 Line Type  Indicator  Point Type  Indicator  Color  Indicator 

     triangle down   v   white   w  
     triangle up     ̂         
     triangle left     <        
     triangle right     >        
     pentagram   p      
     hexagram   h      

(continued)
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 Commands and Functions 

  loglog   generates an  x – y  plot with both axes scaled logarithmically 

  mesh   generates a mesh plot of a surface 

  meshgrid   places each of two vectors into separate two-dimensional matrices, the size of which 
is determined by the source vectors 

  pause   pauses the execution of a program until any key is hit 

  pcolor   creates a pseudo color plot similar to a contour map 

  peaks   creates a sample matrix used to demonstrate graphing functions 

  pie   generates a pie chart 

  pie3   generates a three-dimensional pie chart 

  pink   optional colormap used in surface plots 

  plot   creates an  x – y  plot 

  plot3   generates a three-dimensional line plot 

  plotyy   creates a plot with two  y -axes 

  polar   creates a polar plot 

  prism   optional colormap used in surface plots 

  semilogx   generates an  x – y  plot with the  x -axis scaled logarithmically 

  semilogy   generates an  x – y  plot with the  y -axis scaled logarithmically 

  shading fl at   shades a surface plot with one color per grid section 

  shading inte:   shades a surface plot by interpolation 

  sphere   sample function used to demonstrate graphing 

  spring   optional colormap used in surface plots 

  subplot   divides the graphics window into sections available for plotting 

  summer   optional colormap used in surface plots 

  surf   generates a surface plot 

  surfc   generates a combination surface and contour plot 

  text   adds a text box to a graph 

  title   adds a title to a plot 

  white   optional colormap used in surface plots 

  winter   optional colormap used in surface plots 

  xlabel   adds a label to the  x -axis 

  ylabel   adds a label to the  y -axis 

  zlabel   adds a label to the  z -axis 

  Two-Dimensional ( x – y ) Plots  

   5.1    Create plots of the following functions from    x � 0    to 10. 

   (a)      y � ex     
  (b)      y � sin1x2     
  (c)      y � ax2 � bx � c,    where    a � 5, b � 2,    and    c � 4     
  (d)      y � 2x      

  Each of your plots should include a title, an  x -axis label, a  y -axis label, and a 
grid.   

  PROBLEMS 



196 Chapter 5 Plotting

   5.2    Plot the following set of data: 

   y � 312, 14, 12, 22, 8, 94    
  Allow MATLAB ®  to use the matrix index number as the parameter for the 
 x -axis.   

   5.3    Plot the following functions on the same graph for  x  values from    -p    to    p,    
selecting spacing to create a smooth plot: 

    y1 � sin1x2
 y2 � sin12x2
 y3 � sin13x2   

  ( Hint : Recall that the appropriate MATLAB ®  syntax for 2 x  is    2 * x.)      
   5.4    Adjust the plot created in Problem 5.3 so that: 

   •   Line 1 is red and dashed.  
  •   Line 2 is blue and solid.  
  •   Line 3 is green and dotted.   
  Do not include markers on any of the graphs. In general, markers are 
included only on plots of measured data, not for calculated values.   

   5.5    Adjust the plot created in Problem 5.4 so that the  x -axis goes from    �6    to 
   �6.    
   •   Add a legend.  
  •   Add a text box describing the plots.   

   x – y   Plotting with Projectiles  

 Use the following information in Problems 5.6 through 5.10: 
 The distance a projectile travels when fi red at an angle    u    is a function of time 
and can be divided into horizontal and vertical distances according to the 
formulas 

   horizontal1t2 � tV0 cos1u2   
 and 

   vertical1t2 � tV0 sin1u2 � 1
2gt2   

 where 
   horizontal = distance traveled in the  x  direction  
  vertical = distance traveled in the  y  direction  
     V0    = initial velocity  
   g  = acceleration due to gravity,    9.8 m >  s2     
   t  = time, s.      

   5.6    Suppose the projectile just described is fi red at an initial velocity of 100 m/s 
and a launch angle of    p >  4 145�2.    Find the distance traveled both horizon-
tally and vertically (in the  x  and  y  directions) for times from 0 to 20 s with a 
spacing of .01 seconds. 
   (a)   Graph horizontal distance versus time.  
  (b)   In a new fi gure window, plot vertical distance versus time (with time on 

the  x -axis).   
 Don’t forget a title and labels.   

   5.7    In a new fi gure window, plot horizontal distance on the  x -axis and vertical 
distance on the  y -axis.   

   5.8    Replot horizontal distance on the  x -axis and vertical distance on the  y -axis 
using the comet function. If the plot draws too quickly or too slowly on your 
computer, adjust the number of time values used in your calculations.   
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   5.9    Calculate three new vectors for each of the vertical    1v1, v2, v32    and hori-
zontal    1h1, h2, h32    distances traveled, assuming launch angles of    p >  2, p >  4,    
and    p >  6.    
   •   In a new fi gure window, graph horizontal distance on the  x -axis and verti-

cal distance on the  y -axis, for all three cases. (You’ll have three lines.)  
  •   Make one line solid, one dashed, and one dotted. Add a legend to iden-

tify which line is which.     
   5.10    Re-create the plot from Problem 5.9. This time, create a matrix   theta   of 

the three angles,    p >  2, p >  4,    and    p >  6.    Use the   meshgrid   function to cre-
ate a mesh of   theta   and the time vector (  t  ). Then use the two new meshed 
variables you create to recalculate vertical distance (  v  ) and horizontal dis-
tance (  h  ) traveled. Each of your results should be a    2001 � 3    matrix. Use 
the   plot   command to plot   h   on the  x -axis and  v  on the  y -axis.   

   5.11    A tensile testing machine such as the one shown in  Figure   P5.11    is used 
to determine the behavior of materials as they are deformed. In the typical 
test, a specimen is stretched at a steady rate. The force (load) required to 
deform the material is measured, as is the resulting deformation. An exam-
ple set of data measured in one such test is shown in  Table   P5.11   . These data 

Figure P5.11
A tensile testing machine is 
used to measure stress and 
strain and to characterize 
the behavior of materials 
as they are deformed. 

 Table P5.11   Tensile Testing Data

(From William Callister, Materials Science and Engineering, An Introduction, 5th ed., p. 149.) 

 load, lbf  length, inches 

      0  2 

  1650  2.002 

  3400  2.004 

  5200  2.006 

  6850  2.008 

  7750  2.010 

  8650  2.020 

  9300  2.040 

 10100  2.080 

 10400  2.120 

Moving
crosshead

Specimen

Extensio-
meter

Load cell
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can be used to calculate the applied stress and the resulting strain with the 
following equations.  

   s �
F
A
  and  e �

l � l0
l0

   

 where 
      s    = stress in    lbf>in.2    (psi)  
   F  = applied force in    lbf     
   A  = sample cross-sectional area in    in.2     
     e    = strain in in./in.  
   l  = sample length  
     l0    = original sample length   

   (a)   Use the provided data to calculate the stress and the corresponding 
strain for each data pair. The tested sample was a rod of diameter 
0.505 in., so you’ll need to fi nd the cross-sectional area to use in your 
calculations.  

  (b)   Create an  x–y  plot with strain on the  x -axis and stress on the  y -axis. 
Connect the data points with a solid black line, and use circles to mark 
each data point.  

  (c)   Add a title and appropriate axis labels.  
  (d)   The point where the graph changes from a straight line with a steep 

slope to a fl attened curve is called the yield stress or yield point. This 
corresponds to a signifi cant change in the material behavior. Before the 
yield point the material is elastic, returning to its original shape if the 
load is removed—much like a rubber band. Once the material has been 
deformed past the yield point, the change in shape becomes perma-
nent and is called plastic deformation. Use a text box to mark the yield 
point on your graph.     

   5.12    In the previous chapter, the accumulated cyclone energy index (ACE) was 
introduced (Problem 4.5). Use that data to solve the following problems. It 
may also be available to you as an EXCEL spreadsheet, named ace_data.
xlsx. 

   (a)   Create an  x–y  plot of the year (on the  x -axis) versus the ACE index val-
ues (on the  y -axis.)  

  (b)   Calculate the mean ACE value, and use it to draw the mean value on 
your graph. (Hint: You just need two points, one at the fi rst year and 
another at the fi nal year).  

  (c)   Use the   filter   function to fi nd a running weighted average of the 
ACE data, over a 10-year period, using the following syntax, assuming 
you have named the data extracted from the ACE column,   ace  .     

running_avg_ace = filter(ones(1,10)/10,1,ace); 

  Create a plot of the year (on the  x -axis) versus the ACE value and the 
weighted average on the  y -axis. (You will have two lines.) From your 
graph, do you think hurricane intensity is increasing? You can fi nd out 
more about the   filter   function by searching the   help   documentation.   

  Using Subplots  

   5.13    In Problem 5.1, you created four plots. Combine these into one fi gure with 
four subwindows, using the   subplot   function of MATLAB ® .   
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   5.14    In Problems 5.6, 5.7, and 5.9, you created a total of four plots. Combine these 
into one fi gure with four subwindows, using the   subplot   function of MATLAB ® .   

  Polar Plots  

   5.15    Create a vector of angles from 0 to    2p.    Use the   polar   plotting function to 
create graphs of the functions that follow. Remember, polar plots expect 
the angle and the radius as the two inputs to the   polar   function. Use the 
  subplot   function to put all four of your graphs in the same fi gure. 

   (a)      r � sin21u) � cos21u2     
  (b)      r � sin1u2     
  (c)      r � eu >  5     
  (d)      r � sinh1u2        

   5.16    In Practice Exercises 5.3, you created a number of interesting shapes in polar 
coordinates. Use those exercises as a help in creating the following fi gures: 

   (a)   Create a “fl ower” with three petals.  
  (b)   Overlay your fi gure with eight additional petals, half the size of the 

three original ones.  
  (c)   Create a heart shape.  
  (d)   Create a six-pointed star.  
  (e)   Create a hexagon.     

  Logarithmic Plots  

   5.17    When interest is compounded continuously, the following equation repre-
sents the growth of your savings: 

   P � P0e
rt   

 In this equation, 
       P � current    balance  
      P0 � initial    balance  
      r � growth    constant, expressed as a decimal fraction  
      t � time    invested.   
  Determine the amount in your account at the end of each year if you invest 
$1000 at 8% (0.08) for 30 years. (Make a table.) 

 Create a fi gure with four subplots. Plot time on the  x -axis and current 
balance  P  on the  y -axis. 

   (a)   In the fi rst quadrant, plot  t  versus  P  in a rectangular coordinate system.  
  (b)   In the second quadrant, plot  t  versus  P , scaling the  x -axis logarithmically.  
  (c)   In the third quadrant, plot  t  versus  P , scaling the  y -axis logarithmically.  
  (d)   In the fourth quadrant, plot  t  versus  P , scaling both axes logarithmically.   

 Which of the four plotting techniques do you think displays the data best?   
   5.18    According to Moore’s law (an observation made in 1965 by Gordon Moore, 

a cofounder of Intel Corporation; see  Figure   P5.18   ), the number of transis-
tors that would fi t per square inch on a semiconductor integrated circuit 
doubles approximately every 2 years. Although Moore’s law is often reported 
as predicting doubling every 18 months, this is incorrect. A colleague of 
Moore took into account the fact that transistor performance is also improv-
ing, and when combined with the increased number of transistors results in 
doubling of  performance  every 18 months. The year 2005 was the 40th 

Figure P5.18
Gordon Moore, a pioneer 
of the semiconductor 
industry. (Copyright © 
2005 Intel Corporation.)
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 anniversary of the law. Over the last 40 years, Moore’s projection has been 
consistently met. In 1965, the then state-of-the-art technology allowed for 
30 transistors per square inch. Moore’s law says that transistor density can 
be predicted by    d1t2 � 30 12t >  22,    where  t  is measured in years. 

   (a)   Letting    t � 0    represent the year 1965 and    t � 46    represent 2011, use 
this model to calculate the predicted number of transistors per square 
inch for the 46 years from 1965 to 2011. Let  t  increase in increments of 
2 years. Display the results in a table with two columns—one for the year 
and one for the number of transistors.  

  (b)   Using the   subplot   feature, plot the data in a linear  x – y  plot, a semilog 
 x  plot, a semilog  y  plot, and a log–log plot. Be sure to title the plots and 
label the axes.     

   5.19    The total transistor count on integrated circuits produced over the last 35 
years is shown in  Table   P5.19   . Create a semilog plot (with the  y -axis scaled 

 Table P5.19   Exponential Increase in Transistor Count on Integrated Circuits* 

 Processor 
 Transistor 

Count 
 Date of 

Introduction  Manufacturer 

 Intel 4004  2300  1971  Intel 

 Intel 8008  2500  1972  Intel 

 Intel 8080  4500  1974  Intel 

 Intel 8088  29000  1979  Intel 

 Intel 80286  134000  1982  Intel 

 Intel 80386  275000  1985  Intel 

 Intel 80486  1200000  1989  Intel 

 Pentium  3100000  1993  Intel 

 AMD K5  4300000  1996  AMD 

 Pentium II  7500000  1997  Intel 

 AMD K6  8800000  1997  AMD 

 Pentium III  9500000  1999  Intel 

 AMD K6-III  21300000  1999  AMD 

 AMD K7  22000000  1999  AMD 

 Pentium 4  42000000  2000  Intel 

 Barton  54300000  2003  AMD 

 AMD K8  105900000  2003  AMD 

 Itanium 2  220000000  2003  Intel 

 Itanium 2 with 9MB cache  592000000  2004  Intel 

 Cell  241000000  2006  Sony/IBM/Toshiba 

 Core 2 Duo  291000000  2006  Intel 

 Core 2 Quad  582000000  2006  Intel 

 G80  681000000  2006  NVIDIA 

 POWER6  789000000  2007  IBM 

 Dual-Core Itanium 2  1700000000  2006  Intel 

 Quad-Core Itanium Tukwila (processor) [1]   2000000000  2008  Intel 

 8-Core Xeon Nehalem-EX  2300000000  2010  Intel 

 10-Core Xeon Westmere-EX  2600000000  2011  Intel 

 *Data from  Wikipedia ,  http://en.wikipedia.org/wiki/Transistor_count . 

http://en.wikipedia.org/wiki/Transistor_count
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logarithmically) of the actual data, using circles only to indicate the data 
points (no lines). Include a second line representing the predicted values 
using Moore’s law, based on the 1971 count as the starting point. Add a leg-
end to your plot.   

   5.20    Many physical phenomena can be described by the Arrhenius equation. For 
example, reaction-rate constants for chemical reactions are modeled as 

   k � k0e
1-Q>RT2    

 where 
      k0  �              constant with units that depend upon the reaction  
   Q  �            activation energy, kJ/kmol  
   R   �       ideal gas constant, kJ/kmol K  
   T   �       temperature in K.   

 For a certain chemical reaction, the values of the constants are 

    Q � 1000 J>mol    

    k0 � 10 s-1    
    R � 8.314 J>mol K   

  for  T  from 300 K to 1000 K. Find the values of  k . Create the following two 
graphs of your data in a single fi gure window: 

   (a)   Plot  T  on the  x -axis and  k  on the  y -axis.  
  (b)   Plot your results as the    log10    of  k  on the  y -axis and 1/ T  on the  x -axis.     

  Bar Graphs, Pie Charts, and Histograms  

   5.21    Let the vector 

   G � [68, 83, 61, 70, 75, 82, 57, 5, 76, 85, 62, 71, 96, 78, 76, 68, 72, 75, 83, 93]   

 represent the distribution of fi nal grades in an engineering course. 

   (a)    Use MATLAB ®  to sort the data and create a bar graph of the scores.  
  (b)   Create a histogram of the scores.     

   5.22    In the engineering class mentioned in Problem 5.21, there are 
   2 A’s  
  4 B’s  
  8 C’s  
  4 D’s  
  2 E’s   

   (a)   Create a vector of the grade distribution 

grades � 32, 4, 8, 4, 24
  Create a pie chart of the grades vector. Add a legend listing the grade 

names (A, B, C, etc.)  
  (b)   Use the  menu  text option instead of a legend to add a text box to each 

slice of pie, and save your modifi ed graph as a  .fig  fi le.  
  (c)   Create a three-dimensional pie chart of the same data. Earlier versions 

of MATLAB ®  had trouble with legends for many three-dimensional fi g-
ures, so don’t be surprised if your legend doesn’t match the pie chart.     
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   5.23    The inventory of a certain type of screw in a warehouse at the end of each 
month is listed in the following table:   

   2009  2010 

  January   2345  2343 

  February   4363  5766 

  March   3212  4534 

  April   4565  4719 

  May   8776  3422 

  June   7679  2200 

  July   6532  3454 

  August   2376  7865 

  September   2238  6543 

  October   4509  4508 

  November   5643  2312 

  December   1137  4566 

 Plot the data in a bar graph.   
   5.24    Use the   randn   function to create 1000 values in a normal (Gaussian) distri-

bution of numbers with a mean of 70 and a standard deviation of 3.5. Create 
a histogram of the data set you calculated.   

  Graphs with Two  y -Axes  

   5.25    In the introduction to Problems 5.6 through 5.9, we learned that the equa-
tions for the distance traveled by a projectile as a function of time are 

   Horizontal1t2 � tV0 cos1u2   
   Vertical1t2 � tV0 sin1u2 � 1

2gt2   

  For time from 0 to 20 s, plot both the horizontal distance versus time and 
the vertical distance versus time on the same graph, using separate  y -axes 
for each line. Assume a launch angle of 45˚ (   p >  4    radians) and an initial 
velocity of 100 m/s. Assume also that the acceleration due to gravity,  g , is 9.8 
m/s. Be sure to label both  y -axes.   

   5.26    If the equation modeling the vertical distance traveled by a projectile as a 
function of time is 

   Vertical1t2 � tV0 sin1u2 � 1>2 gt2   

 then, from calculus, the velocity in the vertical direction is 

   Velocity1t2 � V0 sin1u2 � gt    

  Create a vector  t  from 0 to 20 s, and calculate both the vertical position and 
the velocity in the vertical direction, assuming a launch angle    u    of    p >  4    
radians and an initial velocity of 100 m/s. Plot both quantities on the same 
graph with separate  y -axes. Be sure to label both  y -axes. 

 The velocity should be zero at the point where the projectile is the 
highest in the vertical direction. Does your graph support this prediction?   

   5.27    For many metals, deformation changes their physical properties. In a pro-
cess called  cold work , metal is intentionally deformed to make it stronger. 
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The following data tabulate both the strength and ductility of a metal that 
has been cold worked to different degrees:   

 Percent Cold Work  Yield Strength, MPa  Ductility, % 

 10  275  43 
 15  310  30 
 20  340  23 
 25  360  17 
 30  375  12 
 40  390    7 
 50  400    4 
 60  407    3 
 68  410    2 

  Plot these data on a single  x – y  plot with two  y -axes. Be sure to label both  y -axes.   

  Three-Dimensional Line Plots  

   5.28    Create a vector  x  of values from 0 to    20 p,    with a spacing of    p>100.    Defi ne 
vectors  y  and  z  as 

   y � x sin1x2   
 and 

   z � x cos1x2   
   (a)   Create an  x–y  plot of  x  and  y .  
  (b)   Create a polar plot of  x  and  y .  
  (c)   Create a three-dimensional line plot of  x ,  y , and  z . Don’t forget a title 

and labels.     

   5.29    Figure out how to adjust your input to   plot3   in Problem 5.28 so as to cre-
ate a graph that looks like a tornado (see  Figure   P5.29   ). Use   comet3   
instead of   plot3   to create the graph.   
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Figure P5.29
Tornado plot.
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  Three-Dimensional Surface and Contour Plots  

   5.30    Create   x   and   y   vectors from    �5    to    �5    with a spacing of 0.5. Use the   mesh-
grid   function to map   x   and   y   onto two new two-dimensional matrices 
called   X   and   Y  . Use your new matrices to calculate vector   Z  , with magnitude 

   Z � sin12X 2 � Y 22   
   (a)   Use the   mesh   plotting function to create a three-dimensional plot of   Z  .  
  (b)   Use the   surf   plotting function to create a three-dimensional plot of   Z  . 

Compare the results you obtain with a single input (  Z  ) with those 
obtained with inputs for all three dimensions  (X, Y, Z) .  

  (c)   Modify your surface plot with interpolated shading. Try using different 
  colormaps  .  

  (d)   Generate a contour plot of   Z  .  
  (e)   Generate a combination surface and contour plot of   Z  .  

      

  



6  

  INTRODUCTION 

 The MATLAB ®  programming language is built around functions. A  function  is a piece 
of computer code that accepts an input argument from the user and provides output 
to the program. Functions allow us to program effi ciently, enabling us to avoid rewrit-
ing the computer code for calculations that are performed frequently. For example, 
most computer programs contain a function that calculates the sine of a number. In 
MATLAB ® ,   sin   is the function name used to call up a series of commands that per-
form the necessary calculations. The user needs to provide an angle, and MATLAB ®  
returns a result. It isn’t necessary for the programmer to know how MATLAB ®  calcu-
lates the value of   sin(x)  .   

     6.1   CREATING FUNCTION M-FILES 

 We have already explored many of MATLAB ® ’s built-in functions, but you may wish to 
defi ne your own functions—those that are used commonly in your programming. 
User-defi ned functions are stored as M-fi les and can be accessed by MATLAB ®  if they 
are in the current folder or on MATLAB®’s search path. 

 After reading this chapter, you 
should be able to: 
  •   Create and use your own 

MATLAB ®  functions with 
both single and multiple 
inputs and outputs  

  •   Store and access your own 
functions in toolboxes  

  •   Create and use anonymous 
functions  

  •   Create and use function 
handles  

  •   Create and use 
 subfunctions and nested 
subfunctions   

     Objectives 

 User-Defi ned 
Functions 

  C H A P T E R
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  6.1.1   Syntax 

 Both built-in MATLAB ®  functions and user-defi ned MATLAB ®  functions have the 
same structure. Each consists of a name, user-provided input, and calculated out-
put. For example, the function   

cos(x)

   •   is named   cos  ,  
  •   takes the user input inside the parentheses (in this case,  x ), and  
  •   calculates a result.   

 The user does not see the calculations performed, but just accepts the answer. 
User-defi ned functions work the same way. Imagine that you have created a func-
tion called   my_function  . Using   

my_function(x)

 in a program or from the command window will return a result, as long as  x  is 
defi ned and the logic in the function defi nition works. 

 User-defi ned functions are created in M-fi les. Each must start with a function-
defi nition line that contains: 

   •   The word   function    
  •   A variable that defi nes the function output  
  •   A function name  
  •   A variable used for the input argument      

 For example,   

function output = my_function(x)

 is the fi rst line of the user-defi ned function called   my_function  . It requires one 
input argument, which the program will call  x , and will calculate one output argu-
ment, which the program will call   output  . The function name and the names of 
the input and output variables are arbitrary and are selected by the programmer. 
Here’s an example of an appropriate fi rst line for a function called   calculation  :   

function result = calculation(a)

 In this case, the function name is   calculation  , the input argument will be called 
a  in any calculations performed in the function program, and the output will be 
called   result  . Although any valid MATLAB ®  names can be used, it is good pro-
gramming practice to use meaningful names for all variables and for function names. 

 KEY IDEA 
 Functions allow us to 
program more effi ciently 

 FUNCTION 
 A piece of computer code 
that accepts an input, 
performs a calculation, and 
provides an output 

  HINT    
 Students are often confused about the use of the word  input  as it refers to a 
function. We use it here to describe the input argument—the value that goes 
inside the parentheses when we call a function. In MATLAB ® , input argu-
ments are different from the   input   command.     

 Here’s an example of a very simple MATLAB ®  function that calculates the value 
of a particular polynomial:   

function output = poly(x)
%This function calculates the value of a third-order
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%polynomial
output = 3*x.^3 + 5*x.^2 - 2*x +1;

 The function name is   poly  , the input argument is  x , and the output variable is 
named   output  . 

 Before this function can be used, it must be saved into the current folder. The 
fi le name  must be the same  as the function name in order for MATLAB ®  to fi nd it. All 
of the MATLAB ®  naming conventions we learned for naming variables apply to 
naming user-defi ned functions. In particular, 

   •   The function name must start with a letter.  
  •   It can consist of letters, numbers, and the underscore.  
  •   Reserved names cannot be used.  
  •   Any length is allowed, although long names are not good programming practice.   

 Once the M-fi le has been saved, the function is available for use from the com-
mand window, from a script M-fi le, or from another function. You cannot execute a 
function M-fi le directly from the M-fi le itself. This makes sense, since the input 
parameters have not been defi ned until you call the function from the command 
window or a script M-fi le. Consider the   poly   function just created. If, in the com-
mand window, we type 

   poly(4)   

 then MATLAB ®  responds with      

ans =
265

 If we set  a  equal to 4 and use  a  as the input argument, we get the same result:   

a = 4;
poly(a)

ans =
265

 If we defi ne a vector, we get a vector of answers. Thus,   

y = 1:5;
poly(y)

 gives   

ans =
7  41  121  265  491

 If, however, you try to execute the function by selecting the save-and-run icon from 
the function menu bar, the following error message is displayed:   

???Input argument “x” is undefined.
Error in ==> poly at 3
output = 3*x.^3 + 5*x.^2 - 2*x +1;

 The value of  x  must be passed to the function when it is used—either in the com-
mand window or from within a script M-fi le program. 

 KEY IDEA 
 Name functions using the 
standard MATLAB® naming 
conventions for variables 
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  HINT    
 While you are creating a function, it may be useful to allow intermediate cal-
culations to print to the command window. However, once you complete your 
“debugging,” make sure that all your output is suppressed. If you don’t, you’ll 
see extraneous information in the command window.  

  PRACTICE EXERCISES 6.1 

 Create MATLAB ®  functions to evaluate the following mathematical func-
tions (make sure you select meaningful function names) and test them. To 
test your functions you’ll need to call them from the command window, or 
use them in a script M-fi le program. Remember, each function requires its 
own M-fi le. 

1. y1x2 � x2     
2. y1x2 � e1>x     
3. y1x2 � sin1x22      

 Create MATLAB ®  functions for the following unit conversions (you may 
need to consult a textbook or the Internet for the appropriate conversion 
factors). Be sure to test your functions, either from the command window, 
or by using them in a script M-fi le program. 

    4. Inches to feet  
   5. Calories to joules  
   6. Watts to BTU/hr  
   7. Meters to miles  
   8. Miles per hour (mph) to ft/s    

  CONVERTING BETWEEN DEGREES AND RADIANS 
 Engineers usually measure angles in degrees, yet most computer programs and 
many calculators require that the input to trigonometric functions be in radians. 
Write and test a function  DR  that changes degrees to radians and another function 
 RD  that changes radians to degrees. Your functions should be able to accept both 
scalar and matrix input. 

   1.   State the Problem 
  Create and test two functions,  DR  and  RD , to change degrees to radians and 

radians to degrees (see  Figure   6.1   ).  
  2.   Describe the Input and Output   

   Input    A vector of degree values 
    A vector of radian values 

   Output    A table converting degrees to radians 
    A table converting radians to degrees 

  EXAMPLE 6.1

 Figure 6.1 
 Trigonometric functions 
require angles to be 
expressed in radians. 
Trigonometry is regularly 
used in engineering 
drawings.       
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(continued)

3.   Develop a Hand Example   

   degrees � radians � 180>p   

   radians � degrees � p>180   

 Degrees to Radians 

 Degrees  Radians 

   0  0 

 30     301p>1802 � p>6 � 0.524    

 60     601p>1802 � p>3 � 1.047    

 90     901p>1802 � p>2 � 1.571    

  4.   Develop a MATLAB ®  Solution   

%Example 6.1
%
clear, clc
%Define a vector of degree values
degrees = 0:15:180;
% Call the DR function, and use it to find radians
radians = DR(degrees);
%Create a table to use in the output
degrees_radians = [degrees;radians]'
%Define a vector of radian values
radians = 0:pi/12:pi;
%Call the RD function, and use it to find degrees
degrees = RD(radians);
radians_degrees = [radians;degrees]'

  The functions called by the program are   

function output = DR(x)
%This function changes degrees to radians
output = x*pi/180;

 and   

function output = RD(x)
%This function changes radians to degrees
output = x*180/pi;

 Remember that in order for the script M-fi le to fi nd the functions, they must be 
in the current folder and must be named  DR.m  and  RD.m . The program gen-
erates the following results in the command window:   

degrees_radians =
0 0.000
15 0.262
30 0.524
45 0.785
60 1.047
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75 1.309
90 1.571
105 1.833
120 2.094
135 2.356
150 2.618
165 2.880
180 3.142

radians_degrees =
0.000 0.000
0.262 15.000
0.524 30.000
0.785 45.000
1.047 60.000
1.309 75.000
1.571 90.000
1.833 105.000
2.094 120.000
2.356 135.000
2.618 150.000
2.880 165.000
3.142 180.000

5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. Since the output is a 

table, it is easy to see that the conversions generated by MATLAB ®  correspond 
to those calculated by hand.    

  ASTM GRAIN SIZE 
 You may not be used to thinking of metals as crystals, but they are. If you look at a 
polished piece of metal under a microscope, the structure becomes clear, as seen in 
 Figure   6.2   . As you can see, every crystal (called a grain in metallurgy) is a different 
size and shape. The size of the grains affects the metal’s strength; the fi ner the 
grains, the stronger the metal. 

 Because it is diffi cult to determine an “average” grain size, a standard tech-
nique has been developed by ASTM (formerly known as the American Society for 
Testing and Materials, but now known just by its initials). A sample of metal is exam-
ined under a microscope at a magnifi cation of 100, and the number of grains in 
1 square inch is counted. The parameters are related by 

   N � 2n�1   

 where  n  is the ASTM grain size and  N  is the number of grains per square inch at 
   100� .    The equation can be solved for  n  to give 

   n �
1log1N2 � log1222

log122    

  EXAMPLE 6.2

 Figure 6.2 
 Typical microstructures of 
iron    1400�2.    (From  Metals 
Handbook , 9th ed., Vol. 1, 
American Society of 
Metals, Metals Park, Ohio, 
1978.)       
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(continued)

 This equation is not hard to use, but it’s awkward. Instead, let’s create a MATLAB ®

function called   grain_size  . 

1.   State the Problem 
  Create and test a function called   grain_size   to determine the ASTM grain 

size of a piece of metal.  
2.   Describe the Input and Output 
  To test the function, we’ll need to choose an arbitrary number of grains. For 

example:   

   Input    16 grains per square inch at    100�     

   Output     ASTM grain size 

3.   Develop a Hand Example 

    n �
1log1N2 � log1222

log122    

    n �
1log1162 � log1222

log122 � 5    

  4.   Develop a MATLAB ®  Solution 
  The function, created in a separate M-fi le, is   

function output = grain_size(N)
%Calculates the ASTM grain size n
output = (log10(N) + log10(2))./log10(2);

  which was saved as   grain_size.m   in the current folder. To use this function, 
we can call it from the command window:   

grain_size(16)
ans =

5

  5.   Test the Solution 
  The MATLAB ®  solution is the same as the hand solution. It might be interest-

ing to see how the ASTM grain size varies with the number of grains per square 
inch. We could use the function with an array of values and plot the results in 
 Figure   6.3   .   

%Example 6.2
%ASTM Grain Size
N = 1:100;
n = grain_size(N);
plot(N,n)
title('ASTM Grain Size')
xlabel('Number of grains per square inch at 100x')
ylabel('ASTM Grain Size')
grid

  As expected, the grain size increases as the number of grains per square inch 
increases.     
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  6.1.2   Comments 

 As with any computer program, you should comment your code liberally so that it is 
easy to follow. However, in a MATLAB ®  function, the comments on the line imme-
diately following the very fi rst line serve a special role. These lines are returned 
when the   help   function is queried from the command window. Consider, for exam-
ple, the following function:      

function results = f(x)
%This function converts seconds to minutes
results = x./60;

 Querying the   help   function from the command window   

help f

 returns   

This function converts seconds to minutes

  6.1.3   Functions with Multiple Inputs and Outputs 

 Just as the predefi ned MATLAB ®  functions may require multiple inputs and may 
return multiple outputs, more complicated user-defi ned functions can be written. 
Recall, for example, the remainder function. This predefi ned function calculates 
the remainder in a division problem and requires the user to input the dividend 
and the divisor. For the problem    53,    the correct syntax is   

rem(5,3)

 which gives   

ans =
2

0 20 40 60 80 1000

2

4

6

8

ASTM Grain Size

Number of grains per square inch at 100x

A
ST

M
 G

ra
in

 S
iz

e

 Figure 6.3 
 A plot of a function’s 
behavior is a good way to 
help determine whether 
you have programmed it 
correctly.       

 KEY IDEA 
 Function comments are 
displayed when you use 
the help feature 
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 Similarly, a user-defi ned function could be written to multiply two vectors 
together:   

function output = g(x,y)
% This function multiplies x and y together
% x and y must be the same size matrices
a = x .*y;
output = a;

 When  x  and  y  are defi ned in the command window and the function  g  is called, 
a vector of output values is returned:   

x = 1:5;
y = 5:9;
g(x,y)
ans =

5  12  21  32  45

 You can use the comment lines to let users know what kind of input is required 
and to describe the function. In this example, an intermediate calculation ( a ) was 
performed, but the only output from this function is the variable we’ve named 
  output  . This output can be a matrix containing a variety of numbers, but it’s still 
only one variable. 

 You can also create functions that return more than one output variable. Many 
of the predefi ned MATLAB ®  functions return more than one result. For example, 
  max   returns both the maximum value in a matrix and the element number at which 
the maximum occurs. To achieve the same result in a user-defi ned function, make 
the output a matrix of answers instead of a single variable, as in   

function [dist, vel, accel] = motion(t)
% This function calculates the distance, velocity, and
% acceleration of a particular car for a given value of t 
% assuming all 3 parameters are initially 0.
accel = 0.5 .*t;
vel = t.^2/4;
dist = t.^3/12;

 Once saved as   motion   in the current folder, you can use the function to fi nd 
values of   distance  ,   velocity  , and   acceleration   at specifi ed times:   

[distance, velocity, acceleration] = motion(10)

distance =
83.33

velocity =
25

acceleration =
5

 If you call the   motion   function without specifying all three outputs, only the 
fi rst output will be returned:   

motion(10)
ans =

83.333
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 Remember, all variables in MATLAB ®  are matrices, so it’s important in the pre-
ceding example to use the   .*   operator, which specifi es element-by-element multi-
plication. For example, using a vector of time values from 0 to 30 in the motion 
function   

time = 0:10:30;
[distance, velocity, acceleration] = motion(time)

 returns three vectors of answers:   

distance =
0  83.33  666.67  2250.00

velocity =
0  25.00  100.00  225.00

acceleration =
0   5.00   10.00   15.00

 It’s easier to see the results if you group the vectors together, as in   

results = [time',distance',velocity',acceleration']

 which returns   

results =

0          0             0            0
10.00   83.33     25.00    5.00
20.00   666.67    100.00   10.00
30.00   2250.00   225.00   15.00

 Because   time  ,   distance  ,   velocity  , and   acceleration   were row vectors, 
the transpose operator was used to convert them into columns. 

  PRACTICE EXERCISES 6.2 

 Assuming that the matrix dimensions agree, create and test MATLAB ®  
functions to evaluate the following simple mathematical functions with 
multiple input vectors and a single output vector: 

    1.      z1x, y2 � x � y     
   2.      z1a, b, c2 � abc     
   3.      z1w, x, y2 � we1x>y2     
   4.      z1p, t2 � p>sin1t2      
 Assuming that the matrix dimensions agree, create and test MATLAB ®  
functions to evaluate the following simple mathematical functions with a 
single input vector and multiple output vectors: 

       5. f1x2 � cos1x2
          f1x2 � sin1x2     
      6. f1x2 � 5x2 � 2        
  f1x2 � 25x2 � 2     
      7. f1x2 � exp1x2        
  f1x2 � ln1x2      
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 Assuming that the matrix dimensions agree, create, and test MATLAB ®

functions to evaluate the following simple mathematical functions with 
multiple input vectors and multiple output vectors: 

8. f1x, y2 � x � y    
f1x, y2 � x � y     

9. f1x, y2 � yex    
      f1x, y2 � xey       

  HOW GRAIN SIZE AFFECTS METAL STRENGTH: 
A FUNCTION WITH THREE INPUTS 
 Metals composed of small crystals are stronger than metals composed of fewer large 
crystals. The metal yield strength (the amount of stress at which the metal starts to 
permanently deform) is related to the average grain diameter by the  Hall–Petch 
equation : 

   s � s0 � Kd�1>2   

 where the symbols    s0    and K represent constants that are different for every metal. 
 Create a function called   HallPetch   that requires three inputs—   s0,     K , and 

 d —and calculates the value of yield strength. Call this function from a MATLAB ®

program that supplies values of    s0    and  K , then plots the value of yield strength for 
values of  d  from 0.1 to 10 mm. 

   1.   State the Problem 
  Create a function called   HallPetch   that determines the yield strength of a 

piece of metal, using the Hall–Petch equation. Use the function to create a plot 
of yield strength versus grain diameter.  

2.   Describe the Input and Output   

   Input       K � 9600 psi>2mm    
    s0 � 12,000 psi    
    d � 0.1    to 10 mm 

   Output     Plot of yield strength versus diameter 

3.   Develop a Hand Example 
  The Hall–Petch equation is 

   s � s0 � Kd�1>2   

  Substituting values of 12,000 psi and    9600 psi>2mm    for    s0    and  K , respectively, 
then 

   s � 12,000 � 9600d�1>2   

  For    d � 1 mm,    

   s � 12,000 � 9600 � 21,600    

  EXAMPLE 6.3

(continued)



216 Chapter 6 User-Defi ned Functions 

4.   Develop a MATLAB ®  Solution 
  The desired function, created in a separate M-fi le, is   

function output = HallPetch(sigma0,k,d)
%Hall–Petch equation to determine the yield
%strength of metals
output = sigma0 + K*d.^(-0.5);

  and was saved as  HallPetch.m  in the current folder:   

%Example 6.3
clear,clc
format compact
s0 = 12000
K = 9600
%Define the values of grain diameter
diameter = 0.1:0.1:10;
yield = HallPetch(s0,K,d);
%Plot the results
figure(1)
plot(diameter,yield)
title('Yield strengths found with the Hall–Petch equation')
xlabel('diameter, mm')
ylabel('yield strength, psi')

  The graph shown in  Figure   6.4    was generated by the program.  
  5.   Test the Solution 
  We can use the graph to compare the results to the hand solution.    
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 Figure 6.4 
 Yield strengths predicted 
with the Hall–Petch 
equation. Small grain 
diameters correspond to 
large values of the yield 
strength.       
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  KINETIC ENERGY: A FUNCTION WITH TWO INPUTS 
 The kinetic energy of a moving object ( Figure   6.5   ) is 

   KE � 1
 >2 mv2.   

 Create and test a function called KE to fi nd the kinetic energy of a moving car 
if you know the mass  m  and the velocity  v  of the vehicle. 

1.   State the Problem 
  Create a function called KE to fi nd the kinetic energy of a car.  
2.   Describe the Input and Output   

   Input    Mass of the car, in kilograms 
 Velocity of the car, in m/s 

   Output    Kinetic energy, in joules 
3.   Develop a Hand Example 
  If the mass is 1000 kg, and the velocity is 25 m/s, then 

   KE � 1
 >2 � 1000 kg � 125 m>s22 � 312,500 J � 312.5 kJ    

4.   Develop a MATLAB ®  Solution   

function output = ke(mass,velocity)
output = 1/2*mass*velocity.^2;

  5.   Test the Solution   

v = 25;
m = 1000;
ke(m,v)
ans =

312500

  This result matches the hand example, confi rming that the function works cor-
rectly and can now be used in a larger MATLAB ®  program.     

  EXAMPLE 6.4

 Figure 6.5 
 Race cars store a 
signifi cant amount of 
kinetic energy. (Rick 
Graves/Getty Images.)       
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  6.1.4   Functions with No Input or No Output 

 Although most functions need at least one input and return at least one output 
value, in some situations no inputs or outputs are required. For example, consider 
this function, which draws a star in polar coordinates:   

function [] = star( )
theta = pi/2:0.8*pi:4.8*pi;
r = ones(1,6);
polar(theta,r)

 The square brackets on the fi rst line indicate that the output of the function is 
an empty matrix (i.e., no value is returned). The empty parentheses tell us that no 
input is expected. If, from the command window, you type   

star

 then no values are returned, but a fi gure window opens showing a star drawn in 
polar coordinates (see  Figure   6.6   ). 
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 Figure 6.6 
 The user-defi ned function 
  star   requires no input and 
produces no output values, 
but it does draw a star in 
polar coordinates.       

  HINT    
 You may ask yourself if the  star  function is really an example of a function 
that does not return an output; after all, it does draw a star. But the output of 
a function is defi ned as a  value  that is returned when you call the function. If 
we ask MATLAB ®  to perform the calculation   

A = star 

 an error statement is generated, because the  star  function does not return 
anything! Thus, there is nothing to set  A  equal to.  



6.1 Creating Function M-Files 219

 There are numerous built-in MATLAB ®  functions that do not require any 
input. For example,      

A = clock

 returns the current time:   

A =
1.0e+003 *
Columns 1 through 4

2.0050  0.0030  0.0200  0.0150
Columns 5 through 6

0.0250  0.0277

 Also,   

A = pi

 returns the value of the mathematical constant    p:      

A =

3.1416

 However, if we try to set the MATLAB ®  function   tic   equal to a variable name, 
an error statement is generated, because   tic   does not return an output value:   

A = tic
???Error using ==> tic
Too many output arguments.

 (The   tic   function starts a timer going for later use in the  toc  function.)  

  6.1.5   Determining the Number of Input and Output Arguments 

 There may be times when you want to know the number of input arguments or out-
put values associated with a function. MATLAB ®  provides two built-in functions for 
this purpose. 

 The   nargin   function determines the number of input arguments in either a 
user-defi ned function or a built-in function. The name of the function must be 
specifi ed as a string, as, for example, in      

nargin('sin')
ans =

1

 The remainder function,   rem  , requires two inputs; thus,   

nargin('rem')
ans =

2

 When   nargin   is used inside a user-defi ned function, it determines how many 
input arguments were actually entered. This allows a function to have a variable 
number of inputs. Recall graphing functions such as   surf  . When   surf   has a single 
matrix input, a graph is created, using the matrix index numbers as the  x - and 
 y -coordinates. When there are three inputs,  x ,  y , and  z , the graph is based on the 
specifi ed  x-  and  y -values. The   nargin   function allows the programmer to deter-
mine how to create the plot, based on the number of inputs. 

 KEY IDEA 
 Not all functions require 
an input 

 KEY IDEA 
 Using the   nargin   or 
  nargout   functions is useful 
in programming functions 
with variable inputs and 
outputs 
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 The   surf   function is an example of a function with a variable number of 
inputs. If we use   nargin   from the command window to determine the number of 
declared inputs, there isn’t one correct answer. The   nargin   function returns a 
negative number to let us know that a variable number of inputs are possible:   

nargin('surf')
ans =

-1

 The   nargout   function is similar to   nargin  , but it determines the number of 
outputs from a function:   

nargout('sin')
ans =

1

 The number of outputs is determined by how many matrices are returned, not how 
many values are in the matrix. We know that  size  returns the number of rows and col-
umns in a matrix, so we might expect   nargout   to return 2 when applied to size. However,   

nargout('size')
ans =

1

 returns only one matrix, which has just two elements, as for example, in   

x = 1:10;
size(x)
ans =
1 10

 An example of a function with multiple outputs is   max  :   

nargout('max')
ans =

2

 When used inside a user-defi ned function,   nargout   determines how many 
outputs have been requested by the user. Consider this example, in which we have 
rewritten the function from Section 6.1.4 to create a star:   

function A = star1( )
theta = pi/2:0.8*pi:4.8*pi;
r = ones(1,6);
polar(theta,r)
if nargout==1

A = 'Twinkle twinkle little star';
end

 If we use   nargout   from the command window, as in   

nargout('star1')
ans =

1

 MATLAB® tells us that one output is specifi ed. If we call the function simply as   

star1
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 nothing is returned to the command window, although the plot is drawn. If we call 
the function by setting it equal to a variable, as in   

x = star1
x =
Twinkle twinkle little star

 a value for  x  is returned, based on the   if   statement embedded in the function, 
which used   nargout   to determine the number of output values. 

   If   statements are introduced in  Chapter   8   .  

  6.1.6   Local Variables 

 The variables used in function M-fi les are known as  local variables . The only way a 
function can communicate with the workspace is through input arguments and the 
output it returns. Any variables defi ned within the function exist only for the func-
tion to use. For example, consider the   g   function previously described:   

function output = g(x,y)
% This function multiplies x and y together
% x and y must be the same size matrices
a = x .*y;
output = a;

 The variables   a  ,   x  ,   y  , and   output   are local variables. They can be used for 
additional calculations inside the   g   function, but they are not stored in the work-
space. To confi rm this, clear the workspace and the command window and then call 
the   g   function:      

clear, clc
g(10,20)

 The function returns   

g(10,20)
ans =

200

 Notice that the only variable stored in the workspace window is   ans  , which is 
characterized as follows:   

 Name  Value   Size  Bytes  Class 

  ans     200    1 × 1        8    double array  

 Just as calculations performed in the command window or from a script M-fi le can-
not access variables defi ned in functions, functions cannot access the variables defi ned 
in the workspace. This means that functions must be completely self-contained: The 
only way they can get information from your program is through the input arguments, 
and the only way they can deliver information is through the function output. 

 Consider a function written to fi nd the distance an object falls due to gravity:   

function result = distance(t)
%This function calculates the distance a falling object
%travels due to gravity
g = 9.8 %meters per second squared
result = 1/2*g*t.^2;

 LOCAL VARIABLE 
 A variable that only has 
meaning inside a program 
or function 
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 The value of   g   must be included  inside  the function. It doesn’t matter whether 
  g   has or has not been used in the main program. How   g   is defi ned is hidden to the 
distance function unless   g   is specifi ed inside the function. 

 Of course, you could also pass the value of   g   to the function as an input argument:   

function result = distance(g,t)
%This function calculates the distance a falling object
%travels due to gravity
result = 1/2*g*t.^2;

  HINT    
 The same matrix names can be used in both a function and the program that 
references it. However, they do not  have  to be the same. Since variable names 
are local to either the function or the program that calls the function, the 
variables are completely separate. As a beginning programmer, you would be 
wise to use different variable names in your functions and your programs—
just so you don’t confuse  yourself.    

  6.1.7   Global Variables 

 Unlike local variables, global variables are available to all parts of a computer 
 program. In general,   it is a bad idea   to defi ne global variables. However, MATLAB® 
protects users from unintentionally using a global variable by requiring that it be 
identifi ed both in the command-window environment (or in a script M-fi le) and in 
the function that will use it.    

 Consider the distance function once again:      

function result = distance(t)
%This function calculates the distance a falling object
%travels due to gravity
global G
result = 1/2*G*t.^2;

 The   global   command alerts the function to look in the workspace for the 
value of  G .  G  must also have been defi ned in the command window (or script 
M-fi le) as a global variable:   

global G
G = 9.8;

 This approach allows you to change the value of  G  without needing to redefi ne 
the distance function or providing the value of  G  as an input argument to the dis-
tance function. 

 KEY IDEA 
 It is usually a bad idea to 
defi ne global variables 

 GLOBAL VARIABLE 
 A variable that is available 
from multiple programs 

  HINT    
 As a matter of style, always make the names of global variables uppercase. 
MATLAB® doesn’t care, but it is easier to identify global variables if you use a 
consistent naming convention.  
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  6.1.8   Accessing M-File Code 

 The functions provided with MATLAB® are of two types. One type is built in, and 
the code is not accessible for us to review. The other type consists of M-fi les, stored 
in toolboxes provided with the program. We can see these M-fi les (or the M-fi les 
we’ve written) with the   type   command. For example, the   sphere   function creates 
a three-dimensional representation of a sphere; thus,   

type sphere

 or   

type('sphere')

 returns the contents of the  sphere.m  fi le:   

function [xx,yy,zz] = sphere(varargin)
%SPHERE Generate sphere.
%  [X,Y,Z] = SPHERE(N) generates three (N+1)-by-(N+1)
%  matrices so that SURF(X,Y,Z) produces a unit sphere.
%
%  [X,Y,Z] = SPHERE uses N = 20.
%
%  SPHERE(N) and just SPHERE graph the sphere as a SURFACE
%  and do not return anything.
%
%  SPHERE(AX,(. . .) plots into AX instead of GCA.
%
%  See also ELLIPSOID, CYLINDER.
%  Clay M. Thompson 4-24-91, CBM 8-21-92.
%  Copyright 1984-2002 The MathWorks, Inc.
%  $Revision: 5.8.4.1 $ $Date: 2002/09/26 01:55:25 $

%  Parse possible Axes input
error(nargchk(0,2,nargin));
[cax,args,nargs] = axescheck(varargin{:});

n = 20;
if nargs > 0, n = args{1}; end
% -pi <= theta <= pi is a row vector.
% -pi/2 <= phi <= pi/2 is a column vector.

  HINT    
 It may seem like a good idea to use global variables because they can simplify 
your programs. However, consider this example of using global variables in 
your everyday life: It would be easier to order a book from an online book-
seller if you had posted your credit card information on a site where any 
retailer could just look it up. Then the bookseller wouldn’t have to ask you to 
type in the number. However, this might produce some unintended conse-
quences (like other people using your credit card without your permission or 
knowledge!). When you create a global variable, it becomes available to other 
functions and can be changed by those functions, sometimes leading to unin-
tended consequences.   
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theta = (-n:2:n)/n*pi;
phi = (-n:2:n)'/n*pi/2;
cosphi = cos(phi); cosphi(1) = 0; cosphi(n+1) = 0;
sintheta = sin(theta); sintheta(1) = 0; sintheta(n+1) = 0;

x = cosphi*cos(theta);
y = cosphi*sintheta;
z = sin(phi)*ones(1,n+1);

if nargout == 0
cax = newplot(cax);
surf(x,y,z,'parent',cax)

else
xx = x; yy = y; zz = z;

end

  HINT    
 Notice that the   sphere   function uses   varargin   to indicate that it will accept 
a variable number of input arguments. The function also makes use of the 
  nargin   and   nargout   functions. Studying this function may give you ideas 
on how to program your own function M-fi les. The   sphere   function also uses 
an if/else structure, which is introduced in a subsequent chapter of this text.    

  6.2   CREATING YOUR OWN TOOLBOX OF FUNCTIONS 

 When you call a function in MATLAB®, the program fi rst looks in the current folder 
to see if the function is defi ned. If it can’t fi nd the function listed there, it starts 
down a predefi ned search path, looking for a fi le with the function name. To view 
the path the program takes as it looks for fi les, select    

   File     :      Set Path   

 from the menu bar or type   

pathtool

 in the command window ( Figure   6.7   ). 
 As you create more and more functions to use in your programming, you may 

wish to modify the path to look in a directory where you’ve stored your own personal 
tools. For example, suppose you have stored the degrees-to-radians and radians-to-
degrees functions created in  Example   6.1    in a directory called  My_functions . 

 You can add this directory (folder) to the path by selecting  Add Folder  from 
the list of option buttons in the Set Path dialog window, as shown in  Figure   6.7   . 
You’ll be prompted to either supply the folder location or browse to fi nd it, as 
shown in  Figure   6.8   . 

 MATLAB® now fi rst looks into the current folder for function defi nitions and 
then works down the modifi ed search path, as shown in  Figure   6.9   . 

 Once you’ve added a folder to the path, the change applies only to the current 
MATLAB® session, unless you save your changes permanently. Clearly, you should 
never make permanent changes to a public computer. However, if someone else has 
made changes you wish to reverse, you can select the default button as shown in 
 Figure   6.9    to return the search path to its original settings. 

 KEY IDEA 
 Group your functions 
together into toolboxes 
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 Figure 6.7 
 The path tool allows you to 
change where MATLAB® 
looks for function 
defi nitions.       

 Figure 6.8 
 The Browse for Folder 
window.       

 The path tool allows you to change the MATLAB® search path interactively; 
however, the   addpath   function allows you to insert the logic to add a search path 
to any MATLAB® program. Consult   

help addpath

 if you wish to modify the path in this way. 
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 MATLAB® provides access to numerous toolboxes developed at The MathWorks 
or by the user community. For more information, see the fi rm’s website, www.
mathworks.com.  

  6.3   ANONYMOUS FUNCTIONS AND FUNCTION HANDLES 

 Normally, if you go to the trouble of creating a function, you will want to store it for 
use in other programming projects. However, MATLAB® includes a simpler kind of 
function, called an  anonymous function . New to MATLAB® 7, anonymous functions 
are defi ned in the command window or in a script M-fi le and are available—much 
as are variable names—only until the workspace is cleared. To create an anonymous 
function, consider the following example:      

ln = @(x) log(x)

   •   The @ symbol alerts MATLAB® that  ln  is a function.  
  •   Immediately following the @ symbol, the input to the function is listed in 

parentheses.  
  •   Finally, the function is defi ned.   

 The function name appears in the variable window, listed as a function_handle:   

 Name  Value  Size  Bytes  Class 

  ln    @(x) log(x)    1×1    16    function_handle  

 Figure 6.9 
 Modifi ed MATLAB® search 
path.       

 KEY IDEA 
 Anonymous functions may 
be included in M-fi le 
programs with other 
commands or may be 
defi ned from the command 
window 

  HINT    
 Think of a function handle as a nickname for the function.  

 Anonymous functions can be used like any other function—for example,   

ln(10)
ans =

2.3026

www.mathworks.com
www.mathworks.com
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 Once the workspace is cleared, the anonymous function no longer exists. 
Anonymous functions can be saved as .mat fi les, just like any variable, and can be 
restored with the   load   command. For example to save the anonymous function 
  ln  , type:   

save my_ln_function ln

 A fi le named  my_ln_function.mat  is created, which contains the anonymous   ln   
function. Once the workspace is cleared, the   ln   function no longer exists, but it 
can be reloaded from the .mat fi le   

load my_ln_function

 It is possible to assign a function handle to any M-fi le function. Earlier in this 
chapter we created an M-fi le function called distance.m.   

function result = distance(t)
result = 1/2*9.8*t.^2;

 The command   

distance_handle = @(t) distance(t)

 assigns the handle  distance_handle  to the distance function. 
 Anonymous functions and the related function handles are useful in functions 

that require other functions as input (function functions).  

  6.4   FUNCTION FUNCTIONS 

 MATLAB®’s function functions have an odd, but descriptive name. They are func-
tions that require other functions as input. One example of a MATLAB® built-in 
function function is the function plot,   fplot  . This function requires two inputs: a 
function or a function handle, and a range over which to plot. We can demonstrate 
the use of   fplot   with the function handle   ln  , defi ned as   

ln = @(x) log(x)

 The function handle can now be used as input to the   fplot   function:   

fplot(ln,[0.1, 10])

 The result is shown in  Figure   6.10   . We could also use the   fplot   function with-
out the function handle. We just need to insert the function syntax directly, as a 
string:   

fplot('log(x)',[0.1, 10])

  The advantage to using function handles isn’t obvious from this example, but con-
sider instead this anonymous function describing a particular fi fth-order polynomial:   

poly5 = @(x) -5*x.^5 + 400*x.^4 + 3*x.^3 + 20*x.^2 - x + 5;

 Entering the equation directly into the   fplot   function would be awkward. 
Using the function handle is considerably simpler.   

fplot(poly5,[-30,90])

 The results are shown in  Figure   6.11   . 
  A wide variety of MATLAB® functions accept function handles as input. For 

example, the   fzero   function fi nds the value of  x  where  f ( x ) is equal to 0. It accepts 

 KEY IDEA 
 Function functions require 
functions or function 
handles as input 
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 Figure 6.10 
 Function handles can be 
used as input to a function 
function, such as   fplot  .       

 Figure 6.11 
 This fi fth-order polynomial 
was plotted using the 
  fplot   function function, 
with a function handle as 
input.       

a function handle and a rough guess for  x . From  Figure   6.11   , we see that our fi fth-
order polynomial probably has a zero between    75    and    85,    so a rough guess for the 
zero point might be    x � 75.      

fzero(poly5,75)
ans =

80.0081

  6.5   SUBFUNCTIONS 

 More complicated functions can be created by grouping functions together in a 
single fi le as subfunctions. These subfunctions can be called only from the primary 
function, so they have limited utility. Subfunctions can be used to modularize your 
code and to make the primary function easier to read. 
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  Each MATLAB® function M-fi le has  one  primary function. The name of the 
M-fi le must be the same as the  primary  function name. Thus, the primary function 
stored in the M-fi le my_function.m must be named   my_function  . Subfunctions 
are added after the primary function, and can have any legitimate MATLAB® vari-
able name.  Figure   6.12    shows a very simple example of a function that both adds 
and subtracts two vectors. The primary function is named   subfunction_demo  . 
The fi le includes two subfunctions:   add   and   subtract  . 

  Notice in the editing window that the contents of each function are identifi ed 
with a gray bracket. Each code section can be either collapsed or expanded, to 
make the contents easier to read, by clicking on the    �    or    �    sign included with the 
bracket. MATLAB® uses the term “folding” for this functionality. You can also access 
folding from the “Text” menu on the menu bar. 

 When could you use subfunctions effectively? Imagine that your instructor has 
assigned three homework problems, each requiring you to create and test a function. 

   •   Problem 1 Create and test a function called   square   to square values of  x . 
Assume  x  varies between    �3    and    �3.     

  •   Problem 2 Create and test a function called   cold_work   to fi nd the percent 
cold work experienced by a metallic rod, as it is drawn into a wire. Cold work is 
described by the following equation 

% Cold Work �
r 2

i � r 2
f

r 2
i

� 100

  where    ri    is the initial radius of the rod, and    rf    is the fi nal radius of the rod. To 
test your function let    ri � 0.5 cm    and let    rf � 0.25 cm.     

  •   Problem 3 Create and test a function called   potential_energy   to deter-
mine the potential energy change of a given mass. The change in potential 
energy is given by 

�PE � m � g � �z

 HINT    
 You should not attempt to create code using subfunctions until you have 
 mastered function M-fi les containing a single function. 

 Figure 6.12 
 MATLAB® allows the user 
to create subfunctions 
within a function M-fi le. 
This fi le includes the 
primary function, 
  subfunction_demo  , and 
two subfunctions   add   and 
  subtract  .       
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  Your function should have three inputs:  m ,  g , and    �z.    Use the following data to 
test your function. 

 m � 31 2 34  kg 1The array represents three different masses.2
 g � 9.8 m>s2

 �z � 5 m

 To complete the assignment you would need to create four M-fi les: one for 
each function and one to call and test the functions. We can use subfunctions to 
reduce the number of M-fi les to one, as shown in  Figure   6.13.    

  Note the primary function has no input and no output. To execute the primary 
function, type the function name at the command prompt:   

sample_homework

 or select the save and run icon. 
 When the primary function executes, it calls the subfunctions, and the results 

are displayed in the command window, as follows:   

Problem 1
The squares of the input values are listed below

9   4   1   0   1   4    9
Problem 2
The percent cold work is 

 Figure 6.13 
 This M-fi le is an example of 
a function with sequential 
subfunctions.       
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ans = 
    0.7500
Problem 3
The change in potential energy is 
ans = 
  49 98 147

 In this example, the four functions (primary and three subfunctions) are listed 
sequentially. An alternate approach is to list the subfunction  within  the primary 
function, usually placed near the portion of the code from which it is called. This is 
called  nesting . When functions are nested, we need to indicate the end of each indi-
vidual function with the   end   command (see Figure 6.14).   

 Figure 6.14 
 This function M-fi le includes 
nested subfunctions.       

 MATLAB® contains a wide variety of built-in functions. However, you will often fi nd 
it useful to create your own MATLAB® functions. The most common type of user-
defi ned MATLAB® function is the function M-fi le, which must start with a function-
defi nition line that contains 

        SUMMARY 
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  Special Characters  
  

  @   identifi es a function handle, such as that 
used with anonymous functions 

  %   comment 

 Commands and Functions 

  addpath   adds a directory to the MATLAB® search path 
  fminbnd   a function function that accepts a function handle or function defi nition as input 

and fi nds the function minimum between two bounds 
  Fplot   a function function that accepts a function handle or function defi nition as input 

and creates the corresponding plot between two bounds 

   •   the word   function  ,  
  •   a variable that defi nes the function output,  
  •   a function name, and  
  •   a variable used for the input argument.   

 For example, 
function output � my_function(x)

 The function name must also be the name of the M-fi le in which the function is 
stored. Function names follow the standard MATLAB® naming rules. 

 Like the built-in functions, user-defi ned functions can accept multiple inputs 
and can return multiple results. 

 Comments immediately following the function-defi nition line can be accessed 
from the command window with the   help   command. 

 Variables defi ned within a function are local to that function. They are not 
stored in the workspace and cannot be accessed from the command window. Global 
variables can be defi ned with the   global   command used in both the command 
window (or script M-fi le) and a MATLAB® function. Good programming style sug-
gests that you defi ne global variables with capital letters. In general, however, it is 
not wise to use global variables. 

 Groups of user-defi ned functions, called “toolboxes,” may be stored in a com-
mon directory and accessed by modifying the MATLAB® search path. This is accom-
plished interactively with the path tool, either from the menu bar, as in 

   File: Set Path   

 or from the command line, with 

   pathtool   

 MATLAB® provides access to numerous toolboxes developed at The MathWorks 
or by the user community. 

 Another type of function is the anonymous function, which is defi ned in a 
MATLAB® session or in a script M-file and exists only during that session. 
Anonymous functions are especially useful for very simple mathematical expres-
sions or as input to the more complicated function functions. 

MATLAB® SUMMARY 

 The following MATLAB® summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter:     
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 Commands and Functions 

  Fzero   a function function that accepts a function handle or function defi nition as input 
and fi nds the function zero point nearest a specifi ed value 

  function   identifi es an M-fi le as a function 

global  defi nes a variable that can be used in multiple sections of code 

  meshgrid   maps two input vectors onto two two-dimensional matrices 

  nargin   determines the number of input arguments in a function 

  nargout   determines the number of output arguments from a function 

  pathtool   opens the interactive path tool 

  varargin   indicates that a variable number of arguments may be input to a function 

 anonymous 
 argument 
 comments 
 directory 
 fi le name 
 folder 

 folding 
 function 
 function function 
 function handle 
 function name 
 global variable 

 in-line 
 input argument 
 local variable 
 M-fi le 
 nesting 
 toolbox  

          KEY TERMS 

 Function M-Files 

 As you create functions in this section, be sure to comment them appropriately. 
Remember that, although many of these problems could be solved without a func-
tion, the objective of this chapter is to learn to write and use functions. Each of 
these functions (except for the anonymous functions) must be created in its own 
M-fi le and then called from the command window or a script M-fi le program. 
   6.1    As described in  Example   6.2   , metals are actually crystalline materials. Metal 

crystals are called grains. When the average grain size is small, the metal is 
strong; when it is large, the metal is weaker. Since every crystal in a particu-
lar sample of metal is a different size, it isn’t obvious how we should describe 
the average crystal size. The American Society for Testing and Materials 
(ASTM) has developed the following correlation for standardizing grain-
size measurements: 

   N � 2n �  1   

  The ASTM grain size ( n ) is determined by looking at a sample of a metal under 
a microscope at a magnifi cation of    100 �    (100 power). The number of grains 
in a 1-square-inch area (actual dimensions of    0.01 in � 0.01 in   ) is estimated 
( N ) and used in the preceding equation to fi nd the ASTM grain size. 

   (a)   Write a MATLAB® function called   num_grains   to fi nd the number of 
grains in a 1-square-inch area ( N ) at    100 �    magnifi cation when the 
ASTM grain size is known.  

  PROBLEMS 
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  (b)   Use your function to fi nd the number of grains for ASTM grain sizes 
   n � 10    to 100.  

  (c)   Create a plot of your results.     

   6.2    Perhaps the most famous equation in physics is 

   E � mc2   

  which relates energy  E  to mass  m . The speed of light in a vacuum,  c , is the 
property that links the two together. The speed of light in a vacuum is 
   2.9979 � 108 m>s.    

   (a)   Create a function called   energy   to fi nd the energy corresponding to a 
given mass in kilograms. Your result will be in joules, since 
   1 kg m2>s2 � 1 J.     

  (b)   Use your function to fi nd the energy corresponding to masses from 1 kg 
to    106 kg.    Use the   logspace   function (consult   help     logspace  ) to 
create an appropriate mass vector.  

  (c)   Create a plot of your results. Try using different logarithmic plotting 
approaches (e.g.,   semilogy  ,   semilogx  , and   loglog  ) to determine 
the best way to graph your results.     

   6.3    The future-value-of-money formula relates how much a current investment 
will be worth in the future, assuming a constant interest rate. 

   FV � PV � 11 � I2n   

 where 
   FV is the future value  
  PV is the present value or investment  
   I  is the interest rate expressed as a fractional amount per 
compounding period—i.e., 5% is expressed as .05  
   n  is the number of compounding periods.   

   (a)   Create a MATLAB® function called   future_value   with three inputs: 
the investment (present value), the interest rate expressed as a fraction, 
and the number of compounding periods.  

  (b)   Use your function to determine the value of a $1000 investment in 10 
years, assuming the interest rate is 0.5% per month, and the interest is 
compounded monthly.     

   6.4    In freshman chemistry, the relationship between moles and mass is 
 introduced: 

   n �
m

MW
   

 where 
    n     �     number of moles of a substance  
   m     �     mass of the substance  
  MW � molecular weight (molar mass) of the substance.   

   (a)   Create a function M-fi le called   nmoles   that requires two vector inputs—
the mass and molecular weight—and returns the corresponding num-
ber of moles. Because you are providing vector input, it will be necessary 
to use the   meshgrid   function in your calculations.  
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  (b)   Test your function for the compounds shown in the following table, for 
masses from 1 to 10 g:   

 Compound  Molecular Weight (Molar Mass) 

 Benzene    78.115 g/mol 

 Ethyl alcohol   46.07 g/mol 

 Refrigerant R134a 
(tetrafl uoroethane) 

 102.3 g/mol 

    Your result should be a    10 � 3    matrix.     

   6.5    By rearranging the preceding relationship between moles and mass, you 
can fi nd the mass if you know the number of moles of a compound: 

   m � n � MW   

   (a)   Create a function M-fi le called   mass   that requires two vector inputs—
the number of moles and the molecular weight—and returns the cor-
responding mass. Because you are providing vector input, it will be 
necessary to use the   meshgrid   function in your calculations.  

  (b)   Test your function with the compounds listed in the previous problem, 
for values of  n  from 1 to 10.     

   6.6    The distance to the horizon increases as you climb a mountain (or a hill). 
The expression 

   d � 22rh � h2   

 where 
       d � distance to the horizon     
      r � radius of the earth      
      h � height of the hill       

 can be used to calculate that distance. The distance depends on how high 
the hill is and on the radius of the earth (or another planetary body). 

   (a)   Create a function M-fi le called   distance   to fi nd the distance to the 
horizon. Your function should accept two vector inputs—radius and 
height—and should return the distance to the horizon. Don’t forget 
that you’ll need to use   meshgrid   because your inputs are vectors.  

  (b)   Create a MATLAB® program that uses your distance function to fi nd 
the distance in miles to the horizon, both on the earth and on Mars, for 
hills from 0 to 10,000 feet. Remember to use consistent units in your 
calculations. Note that 

    •   Earth’s    diameter � 7926 miles     
   •   Mars’    diameter � 4217 miles        

 Report your results in a table. Each column should represent a different 
planet, and each row a different hill height.   

   6.7    A rocket is launched vertically. At time    t � 0,    the rocket’s engine shuts 
down. At that time, the rocket has reached an altitude of 500 m and is rising 
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at a velocity of 125 m/s. Gravity then takes over. The height of the rocket as 
a function of time is 

   h1t2 � -
9.8
2

 t2 � 125t � 500 for t 7 0   

   (a)   Create a function called   height   that accepts time as an input and 
returns the height of the rocket. Use your function in your solutions to 
parts b and c.  

  (b)   Plot   height   versus time for times from 0 to 30 seconds. Use an incre-
ment of 0.5 second in your time vector.  

  (c)   Find the time when the rocket starts to fall back to the ground. (The 
  max   function will be helpful in this exercise.)     

   6.8    The distance a freely falling object travels is 

   x �
1
2

 gt2   

 where 
      g � acceleration    due to gravity,    9.8 m>s2     
     t � time    in seconds  
     x � distance    traveled in meters.   

 If you have taken calculus, you know that we can fi nd the velocity of the 
object by taking the derivative of the preceding equation. That is, 

   
dx
dt

� v � gt    

 We can fi nd the acceleration by taking the derivative again: 

   
dv
dt

� a � g    

   (a)   Create a function called   free_fall   with a single input vector  t  that 
returns values for distance  x , velocity  v , and acceleration   g  .  

  (b)   Test your function with a time vector that ranges from 0 to 20 seconds.     

   6.9    Create a function called   polygon   that draws a polygon with any number of 
sides. Your function should require a single input: the number of sides 
desired. It should not return any value to the command window but should 
draw the requested polygon in polar coordinates.    

  Creating Your Own Toolbox 

    6.10    This problem requires you to generate temperature-conversion tables. Use 
the following equations, which describe the relationships between tempera-
tures in degrees Fahrenheit    1TF2,    degrees Celsius    1TC2,    kelvins    1TK2,    and 
degrees Rankine    1TR2,    respectively: 

   TF � TR �  459.67�R   

TF �
9
5

TC � 32�F

   TR �
9
5

TK   
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 You will need to rearrange these expressions to solve some of the problems. 

   (a)   Create a function called   F_to_K   that converts temperatures in 
Fahrenheit to Kelvin. Use your function to generate a conversion table 
for values from 0°F to 200°F.  

  (b)   Create a function called   C_to_R   that converts temperatures in Celsius 
to Rankine. Use your function to generate a conversion table from 0°C 
to 100°C. Print 25 lines in the table. (Use the   linspace   function to 
create your input vector.)  

  (c)   Create a function called   C_to_F   that converts temperatures in Celsius 
to Fahrenheit. Use your function to generate a conversion table from 
0°C to 100°C. Choose an appropriate spacing.  

  (d)   Group your functions into a folder (directory) called   my_temp_ 
conversions  . Adjust the MATLAB® search path so that it fi nds your 
folder. (Don’t save any changes on a public computer!)       

  Anonymous Functions and Function Handles 

    6.11    Barometers have been used for almost 400 years to measure pressure 
changes in the atmosphere. The fi rst known barometer was invented by 
Evangelista Torricelli (1608–1647), a student of Galileo during his fi nal 
years in Florence, Italy. The height of a liquid in a barometer is directly pro-
portional to the atmospheric pressure, or 

   P � rgh   

  where  P  is the pressure,    r    is the density of the barometer fl uid, and  h  is the 
height of the liquid column. For mercury barometers, the density of the 
fl uid is    13,560 kg>m3.    On the surface of the earth, the acceleration due to 
gravity,  g , is approximately    9.8 m>s2.    Thus, the only variable in the equation 
is the height of the fl uid column,  h , which should have the unit of meters. 

   (a)   Create an anonymous function   P   that fi nds the pressure if the value of 
 h  is provided. The units of your answer will be 

kg

m3

m
s2 m �

kg
m

1
s2 � Pa

  (b)   Create another anonymous function to convert pressure in Pa (Pascals) to 
pressure in atmospheres (atm). Call the function   Pa_to_atm  . Note that 

1 atm � 101,325 Pa

  (c)   Use your anonymous functions to fi nd the pressure for fl uid heights 
from 0.5 m to 1.0 m of mercury.  

  (d)   Save your anonymous functions as  .mat  fi les     

   6.12    The energy required to heat water at constant pressure is approximately equal to 

   E � mCp �T    

 where 
    m     �     mass of the water, in grams  
     Cp    = heat capacity of water, 1 cal/g K  
     �T � change    in temperature, K.   
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   (a)   Create an anonymous function called   heat   to fi nd the energy required 
to heat 1 gram of water if the change in temperature is provided as the 
input.  

  (b)   Your result will be in calories: 

g
cal
g

1
K

K � cal

 Joules are the unit of energy used most often in engineering. Create another 
anonymous function   cal_to_J   to convert your answer from part (a) into 
joules. (There are 4.2 J/cal.)  

  (c)   Save your anonymous functions as  .mat  fi les.     

   6.13.        (a)   Create an anonymous function called   my_function  , equal to 

-x2 � 5x � 3 � ex

  (b)   Use the   fplot   function to create a plot from    x � � 5    to    x � � 5.    
Recall that the   fplot   function can accept a function handle as input.  

  (c)   Use the   fminbnd   function to fi nd the minimum function value in this 
range. The   fminbnd   function is an example of a function function, 
since it requires a function or function handle as input. The syntax is 

fminbnd(function_handle, xmin, xmax)

 Three inputs are required: the function handle, the minimum value of  x , 
and the maximum value of  x . The function searches between the minimum 
value of  x  and the maximum value of  x  for the point where the function 
value is a minimum.     

   6.14    In Problem 6.7, you created an M-fi le function called   height   to evaluate 
the height of a rocket as a function of time. The relationship between time, 
 t , and height,  h ( t ), is: 

   h1t2 � -  
9.8
2

t2 � 125t � 500 for t 7 0   

   (a)   Create a function handle to the   height   function called   height_ 
handle  .  

  (b)   Use   height_handle   as input to the   fplot   function, and create a 
graph from 0 to 60 seconds.  

  (c)   Use the   fzero   function to fi nd the time when the rocket hits the 
ground (i.e., when the function value is zero). The   fzero   function is 
an example of a function function, since it requires a function or func-
tion handle as input. The syntax is 

fzero(function_handle, x_guess)

 The   fzero   function requires two inputs—a function handle and your 
guess as to the time value where the function is close to zero. You can select 
a reasonable   x_guess   value by inspecting the graph created in part (b).       
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  Subfunctions 

    6.15    In Problem 6.10 you were asked to create and use three different temperature-
conversion functions, based on the following conversion equations: 

   TF � TR � 459.67�R   

   TF �
9
5

TC � 32�F   

   TR �
9
5

TK   

 Recreate Problem 6.10 using nested subfunctions. The primary function 
should be called   temperature_conversions   and should include the 
subfunctions   

F_to_K
C_to_R
C_to_F

 Within the primary function use the subfunctions to: 

   (a)   Generate a conversion table for values from 0°F to 200°F. Include a col-
umn for temperature in Fahrenheit and Kelvin.  

  (b)   Generate a conversion table from 0°C to 100°C. Print 25 lines in the 
table. (Use the   linspace   function to create your input vector.) Your 
table should include a column for temperature in Celsius and Rankine.  

  (c)   Generate a conversion table from 0°C to 100°C. Choose an appropriate 
spacing. Include a column for temperature in Celsius and Fahrenheit.   

 Recall that you will need to call your primary function from the command 
window or from a script M-fi le.       



7  

INTRODUCTION 

 So far, we have explored the use of MATLAB ®  in two modes: in the command window 
as a scratch pad and in the editing window to write simple programs (script M-fi les). 
The programmer has been the user. Now we move on to more complicated programs, 
written in the editing window, where the programmer and the user may be different 
people. That will make it necessary to use input and output commands to communi-
cate with the user, instead of rewriting the actual code to solve similar problems. 
MATLAB ®  offers built-in functions to allow a user to communicate with a program as it 
executes. The   input   command pauses the program and prompts the user for input; 
the   disp   and   fprintf   commands provide output to the command window.   

     7.1   USER-DEFINED INPUT 

 Although we have written programs in script M-fi les, we have assumed that the pro-
grammer (you) and the user are the same person. To run the program with different 
input values, we actually changed some of the code. We can create more general 
 programs by allowing the user to input values of a matrix from the keyboard while the 

 After reading this chapter, you 
should be able to: 
  •   Prompt the user for input 

to an M-fi le program  
  •   Create output with the 

  disp   function  
  •   Create formatted output by 

using   fprintf    

  •   Create formatted output 
for use in other functions 
with the   sprintf   function  

  •   Use graphical techniques 
to provide program input  

•      Use the cell mode to 
 modify and run M-fi le 
 programs     

     Objectives 

 User-Controlled 
Input and Output 

  C H A P T E R
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program is running. The   input   function allows us to do this. It displays a text 
string in the command window and then waits for the user to provide the requested 
input. For example,   

z = input('Enter a value')

 displays   

Enter a value

 in the command window. If the user enters a value such as   

5

 the program assigns the value 5 to the variable  z . If the   input   command does not 
end with a semicolon, the value entered is displayed on the screen:   

z =
5

 The same approach can be used to enter a one- or two-dimensional matrix. The 
user must provide the appropriate brackets and delimiters (commas and semico-
lons). For example,   

z = input('Enter values for z in brackets')

 requests the user to input a matrix such as   

[1, 2, 3; 4, 5, 6]

 and responds with   

z =
1 2 3
4 5 6

 This input value of  z  can then be used in subsequent calculations by the script 
M-fi le. 

 Data entered with   input   does not need to be numeric information. Suppose 
we prompt the user with the command   

x = input('Enter your name in single quotes')

 and enter   

'Holly'

 when prompted. Because we haven’t used a semicolon at the end of the   input   
command, MATLAB ®  will respond   

x =
Holly

 Notice in the workspace window that  x  is listed as a    1 � 5    character array:   

 KEY IDEA 
 The   input   function can be 
used to communicate with 
the program user 

 Name  Value  Size  Bytes  Class 

 abc x  ‘Holly’  1 × 5  6  char 

    If you are entering a string (in MATLAB ® , strings are character arrays), you 
must enclose the characters in single quotes. However, an alternative form of the 
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input command alerts the function to expect character input without the single 
quotes by specifying string input in the second fi eld:   

x = input('Enter your name', 's')

 Now you need only enter the characters, such as   

Ralph

 and the program responds with   

x =
Ralph

  PRACTICE EXERCISES 7.1 

 1.   Create an M-fi le to calculate the area  A  of a triangle: 

   A �
1
2

 base height   

   Prompt the user to enter the values for the base and for the height.  
 2.   Create an M-fi le to fi nd the volume  V  of a right circular cylinder: 

   V � pr2h   
   Prompt the user to enter the values of  r  and  h .  
 3.   Create a vector from 0 to  n , allowing the user to enter the value of  n .  
 4.   Create a vector that starts at  a , ends at  b , and has a spacing of  c . Allow 

the user to input all of these parameters.    

  EXAMPLE 7.1
  FREELY FALLING OBJECTS 
 Consider the behavior of a freely falling object under the infl uence of gravity (see 
 Figure   7.1   ). 

 Figure 7.1 
 The Leaning Tower of 
Pisa. (Courtesy of Tim 
Galligan.)       
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  The position of the object is described by

     d �
1
2

gt2    

 where d � distance the object travels 
          g � acceleration due to gravity   
   t � elapsed time.    

 We shall allow the user to specify the value of  g —the acceleration due to gravity—and 
a vector of time values. 

1.   State the Problem 
  Find the distance traveled by a freely falling object and plot the results.  
2.   Describe the Input and Output   

Input  Value of  g , the acceleration due to gravity, provided by the user 
Time, provided by the user 

Output  DistancesPlot of distance versus time 
3.   Develop a Hand Example 

    d �
1
2

gt2, so, on the moon at 100 seconds,   

    d �
1
2

� 1.6 m>s2 � 1002 s2    

    d � 8000 m     

4.   Develop a MATLAB ®  Solution   

% Example   7.1   
%Free fall
clear, clc
%Request input from the user
g = input('What is the value of acceleration due to 
 gravity?')
start = input('What starting time would you like?')
finish = input('What ending time would you like?')
incr = input('What time increments would you like 
 calculated?')
time = start:incr:finish;
%Calculate the distance
distance = 1/2*g*time.^2;
%Plot the results
loglog(time,distance)
title('Distance Traveled in Free Fall')
xlabel('time, s'),ylabel('distance, m')
%Find the maximum distance traveled
final_distance = max(distance)

 The interaction in the command window is:   

What is the value of acceleration due to gravity? 1.6
g =

1.6000

(continued )
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What starting time would you like? 0
start =
0

What ending time would you like? 100
finish =

100
What time increments would you like calculated? 10
incr =
10

final_distance =
8000

  The results are plotted in  Figure   7.2   . 
5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. Since the user can 

control the input, we entered the data used in the hand solution. MATLAB ®

tells us that the fi nal distance traveled is 8000 m, which, since we entered 100 
seconds as the fi nal time, corresponds to the distance traveled after 100 seconds.     

101 102
101

102

103

104
Distance Traveled in Free Fall

Time, s

D
is

ta
nc

e,
 m

 Figure 7.2 
 Distance traveled when 
the acceleration is 
1.6 m/s.    Notice that 
the fi gure is a loglog 
plot.       

  7.2   OUTPUT OPTIONS 

 There are several ways to display the contents of a matrix. The simplest is to enter the 
name of the matrix, without a semicolon. The name will be repeated, and the values of 
the matrix will be displayed, starting on the next line. For example, fi rst defi ne a matrix   x  :   

x = 1:5;

 Because there is a semicolon at the end of the assignment statement, the values 
in  x  are not repeated in the command window. However, if you want to display  x
later in your program, simply type in the variable name   

x
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 which returns   

X =
1      2      3      4      5

 MATLAB ®  offers two other approaches to displaying results: the   disp   function 
and the   fprintf   function. 

  7.2.1   Display Function 

 The display (  disp  ) function can be used to display the contents of a matrix without 
printing the matrix name. It accepts a single array as input. Thus,   

disp(x)

 returns   

  1  2  3  4  5  

 The display command can also be used to display a string (text enclosed in sin-
gle quotation marks). For example,   

disp('The values in the x matrix are:');

 returns   

The values in the x matrix are:

 When you enter a string as input into the   disp   function, you are really enter-
ing an array of character information. Try entering the following on the command 
line:   

'The values in the x matrix are:'

 MATLAB ®  responds   

ans =
'The values in the x matrix are:'

 The workspace window lists   ans   as a    1 � 32    character array.     

 KEY IDEA 
 The   disp   function can 
display either character 
arrays or numeric arrays 

 CHARACTER ARRAY 
 Stores character 
information 

 Name  Size  Bytes  Class 

  abc ans    1 � 32    90    char array  

     Character arrays store character information in arrays similar to numerical 
arrays. Characters can be letters, numbers, punctuation, and even some nondis-
played characters. Each character, including spaces, is an element in the character 
array. 

 When we execute the two display functions   

disp('The values in the x matrix are:');
disp(x)

 MATLAB ®  responds   

The values in the x matrix are:
1 2 3 4 5

 Notice that the two   disp   outputs are displayed on separate lines. You can get 
around this feature by creating a combined matrix of your two outputs, using the 

 KEY IDEA 
 Characters can be letters, 
numbers, or symbols 
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  num2str   (number to string) function. The process is called concatenation and 
creates a single character array. Thus,   

disp(['The values in the x array are:' num2str(x)])

 returns   

The values in the x array are: 1 2 3 4 5

 The   num2str   function changes an array of numbers into an array of charac-
ters. In the preceding example, we used   num2str   to transform the  x  matrix to a 
character array, which was then combined with the fi rst string (by means of square 
brackets, [ ]) to make a bigger character array. You can see the resulting matrix by 
typing   

A = ['The values in the x array are: ' num2str(x)]

 which returns   
A =

The values in 1 2 3 4 5 the x array are: 
 Checking in the workspace window, we see that  A  is a    1 � 45    matrix. The work-

space window also tells us that the matrix contains character data instead of numeric 
information. This is evidenced both by the icon in front of  A  and in the class 
 column.   

 Name  Size  Bytes  Class 

  ab A    1 × 45    90    char array  

     HINT 
 If you want to include an apostrophe in a string, you need to enter the apos-
trophe twice. If you don’t do this, MATLAB ®  will interpret the apostrophe as 
terminating the string. An example of the use of two apostrophes is   

disp('The moon"s gravity is 1/6th that of the earth')

 You can use a combination of the   input   and   disp   functions to mimic a conversa-
tion. Try creating and running the following M-fi le:   

disp('Hi There');
disp('I'm your MATLAB program');
name = input('Who are you?','s');
disp(['Hi',name]);
answer = input('Don''t you just love computers?','s');
disp([answer,'?']);
disp('Computers are very useful');
disp('You''ll use them a lot in college!!');
disp('Good luck with your studies')
pause(2);
disp('Bye bye')

 This interaction made use of the   pause   function. If you execute   pause   with-
out any input, the program waits until the user hits the Enter key. If a value is used 
as input to the   pause   function, the program waits for the specifi ed number of sec-
onds, and then continues.  



7.2 Output Options 247

  7.2.2   Formatted Output—The fprintf Function 

 The   fprintf   function (formatted print function) gives you even more control 
over the output than you have with the   disp   function. In addition to displaying 
both text and matrix values, you can specify the format to be used in displaying the 
values, and you can specify when to skip to a new line. If you are a C programmer, 
you will be familiar with the syntax of this function. With few exceptions, the 
MATLAB ®    fprintf   function uses the same formatting specifi cations as the C 
  fprintf   function. This is hardly surprising, since MATLAB ®  was written in C. (It 
was originally written in Fortran and then later rewritten in C.) 

 The general form of the   fprintf   command contains two arguments, one a 
string and the other a list of matrices:   

fprintf(format-string, var,. . .)

 Consider the following example:   

cows = 5;
fprintf('There are %f cows in the pasture', cows)

 The string, which is the fi rst argument inside the   fprintf   function, contains a 
placeholder (  %  ) where the value of the variable (in this case,   cows  ) will be inserted. 
The placeholder also contains formatting information. In this example, the   %f   tells 
MATLAB ®  to display the value of   cows   in a default fi xed-point format. The default 
format displays six places after the decimal point:   

There are 5.000000 cows in the pasture

 Besides defaulting to a fi xed-point format, MATLAB ®  allows you to specify an 
exponential format,   %e  , or lets you allow MATLAB ®  to choose whichever is shorter, 
fi xed point or exponential (  %g  ). It also lets you display character information (  %c) 
or a string of characters (  %s  ). The decimal format (  %d  ) is especially useful if the 
number you wish to display is an integer.   

fprintf('There are %d cows in the pasture', cows)
There are 5 cows in the pasture

  Table   7.1    illustrates the various formats supported by   fprintf  , and the related 
  sprintf   functions. 

  MATLAB ®  does not automatically start a new line after an   fprintf   function is 
executed. If you tried out the preceding   fprintf   command example, you proba-
bly noticed that the command prompt is on the same line as the output:   

There are 5.000000 cows in the pasture>>

 KEY IDEA 
 The   fprintf   function 
allows you to control how 
numbers are displayed 

 Table 7.1   Type Field Format 

 Type Field  Result 

  %f   fi xed-point notation 

  %e   exponential notation 

  %d   decimal notation—does not include trailing zeros if the value displayed is an 
integer. If the number includes a fractional component, it is displayed using 
exponential notation. 

  %g   whichever is shorter,   %f   or   %e   

  %c   character information (displays one character at a time) 

  %s   string of characters (displays the entire string) 

Additional type fi elds are described in the help feature.
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 If we execute another command, the results will appear on the same line 
instead of moving down. Thus, if we issue the new commands   

cows = 6;
fprintf('There are %f cows in the pasture', cows);

   from an M-fi le, MATLAB ®  continues the command window display on the same 
line:   

There are 5.000000 cows in the pasture There are 6.000000 cows 
in the pasture

 To cause MATLAB ®  to start a new line, you’ll need to use  \n , called a linefeed, 
at the end of the string. For example, the code   

cows = 5;
fprintf('There are %f cows in the pasture \n', cows)
cows = 6;
fprintf('There are %f cows in the pasture \n', cows)

 returns the following output:   

There are 5.000000 cows in the pasture
There are 6.000000 cows in the pasture

 KEY IDEA 
 The   fprintf   function 
allows you to display both 
character and numeric 
information with a single 
command 

  HINT 
 The backslash (\) and forward slash (/) are different characters. It’s a com-
mon mistake to confuse them—and then the linefeed command doesn’t 
work! Instead, the output to the command window will be   

There are 5.000000 cows in the pasture /n

 Other special format commands are listed in  Table   7.2   . The tab ( \t ) is especially 
useful for creating tables in which everything lines up neatly. 

  You can further control how the variables are displayed by using the optional 
  width field   and   precision field   with the format command. The   width
field   controls the minimum number of characters to be printed. It must be a 
positive decimal integer. The   precision field   is preceded by a period ( . ) and 
specifi es the number of decimal places after the decimal point for exponential and 
fi xed-point types. For example,   %8.2f   specifi es that the minimum total width avail-
able to display your result is eight digits, two of which are after the decimal point. 
Thus, the code   

voltage = 3.5;
fprintf(‘The voltage is %8.2f millivolts \n',voltage);

 Table 7.2   Special Format Commands 

 Format Command  Resulting Action 

  \n   Linefeed 

  \r   carriage return (similar to linefeed) 

  \t   tab 

  \b   backspace 
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 returns   

The voltage is   3.50 millivolts

 Notice the empty space before the number 3.50. This occurs because we 
reserved six spaces (eight total, two after the decimal) for the portion of the num-
ber to the left of the decimal point. 

 Often when you use the   fprintf   function, your variable will be a matrix—for 
example,   

x = 1:5;

 MATLAB ®  will repeat the string in the   fprintf   command until it uses all the 
values in the matrix. Thus,   

fprintf(‘%8.2f \n',x);

 returns   

1.00
2.00
3.00
4.00
5.00

 If the variable is a two-dimensional matrix, MATLAB ®  uses the values one  col-
umn  at a time, going down the fi rst column, then the second, and so on. Here’s a 
more complicated example:   

feet = 1:3;
inches = feet.*12;

 Combine these two matrices:   

table = [feet;inches]

 MATLAB ®  then returns   

table =
1   2   3
12  24  36

 Now we can use the   fprintf   function to create a table that is easier to inter-
pret. For instance,   

fprintf(‘%4.0f %7.2f \n',table)

 sends the following output to the command window:   

1  12.00
2  24.00
3  36.00

 Why don’t the two outputs look the same? The   fprintf   statement we created 
uses two values at a time. It goes through the   table   array one  column  at a time to 
fi nd the numbers it needs. Thus, the fi rst two numbers used in the   fprintf   output 
are from the fi rst column of the   table   array. 

 The   fprintf   function can accept a variable number of matrices after the 
string. It uses all of the values in each of these matrices, in order, before moving on 



250 Chapter 7 User-Controlled Input and Output

to the next matrix. As an example, suppose we wanted to use the feet and inches 
matrices without combining them into the table matrix. Then we could type   

fprintf(‘%4.0f %7.2f \n', feet, inches)
1    2.00
3   12.00
24   36.00

 The function works through the values of   feet   fi rst and then uses the values in 
  inches  . It is unlikely that this is what you really want the function to do (in this 
example it wasn’t), so the output values are almost always grouped into a single 
matrix to use in   fprintf  . 

 The   fprintf   command gives you considerably more control over the form of 
your output than MATLAB ® ’s simple format commands. It does, however, require 
some care and forethought to use. 

 In addition to creating formatted output for display in the command window, 
the   fprintf   function can be used to send formatted output to a fi le. First, you’ll 
need to create and open an output fi le and assign it a fi le identifi er (nickname). 
You do this with the   fopen   function   

file_id = fopen('my_output_file.txt', 'wt');

 The fi rst fi eld is the name of the fi le, and the second fi eld makes it possible for us to 
write data to the fi le (hence the string ‘wt’). Once the fi le has been identifi ed and 
opened for writing, we use the   fprintf   function, adding the fi le identifi er as the 
fi rst fi eld in the function input.   

fprintf(file_id, 'Some example output is %4.2f \n', pi*1000)

 This form of the function sends the result of the formatted string   

Some example output is 3141.59

 to   my_output_file.txt  . To the command window the function sends a count 
of the number of bytes transferred to the fi le.   

ans =
32

  HINT    
 A common mistake new programmers make when using   fprintf   is to for-
get to include the fi eld type identifi er, such as   f,   in the placeholder sequence. 
The   fprintf function won’t work, but no error message is returned either.  

  HINT    
 If you want to include a percentage sign in an   fprintf   statement, you need 
to enter the  %  twice. If you don’t, MATLAB ®  will interpret the   %   as a place-
holder for data. For example,   

fprintf('The interest rate is %5.2f %% \n', 5)

 results in   

The interest rate is 5.00 %
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  EXAMPLE 7.2
  FREE FALL: FORMATTED OUTPUT 
 Let’s redo  Example   7.1   , but this time let’s create a table of results instead of a plot, and 
let’s use the   disp   and   fprintf   commands to control the appearance of the output. 

   1.   State the Problem 
  Find the distance traveled by a freely falling object.  
  2.   Describe the Input and Output   

Input   Value of  g , the acceleration due to gravity, provided by the user 
Time  t , provided by the user 

Output    Distances calculated for each planet and the moon 
3.   Develop a Hand Example 

   d �
1
2

gt2, so, on the moon at 100 seconds,   

   d �
1
2
 �  1.6 m>s2 �  1002 s2    

   d � 8000 m     

4.   Develop a MATLAB ®  Solution   

   % Example   7.2        
   %Free Fall     
   clear, clc     
   %Request input from the user     
   g = input('What is the value of acceleration due to 
 gravity?')     
   start = input('What starting time would you like?')     
   finish = input('What ending time would you like?')     
   incr = input('What time increments would you like 
 calculated?')     
   time = start:incr:finish;     
   %Calculate the distance     
   distance = 1/2*g*time.^2;     
   %Create a matrix of the output data     
   table = [time;distance];     
   %Send the output to the command window     
   fprintf('For an acceleration due to gravity of %5.1f seconds 
 \n the following data were calculated \n', g)     
   disp('Distance Traveled in Free Fall')     
   disp('time, s distance, m')     
   fprintf('%8.0f %10.2f\n',table)   

 This M-fi le produces the following interaction in the command window:   

What is the value of acceleration due to gravity? 1.6     
   g =     
     1.6000     
   What starting time would you like? 0     
   start =     
     0     (continued)
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   What ending time would you like? 100     
   finish =     
      100     
   What time increments would you like calculated? 10     
   incr =     
      10     
   For an acceleration due to gravity of 1.6 seconds the following 
 data were calculate  d     
   Distance Traveled in Free Fall     
   time, s distance, m     
    0 0.00     
    10 80.00     
    20 320.00     
    30 720.00     
    40 1280.00     
    50 2000.00     
    60 2880.00     
    70 3920.00     
    80 5120.00     
    90 6480.00     
    100 8000.00    

5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. Since the output is a table, 

it is easy to see that the distance traveled at 100 seconds is 8000 m. Try using other 
data as input, and compare your results with the graph produced in  Example   7.1   .    

  PRACTICE EXERCISES 7.2   

In an M-file,  
1.   Use the   disp   command to create a title for a table that converts inches 

to feet.  
   2.   Use the   disp   command to create column headings for your table.  
3.   Create an   inches   vector from 0 to 120 with an increment of 10.  
4.   Calculate the corresponding values of   feet  .  
5.   Group the   inch   vector and the   feet   vector together into a   table   matrix.  
6.   Use the   fprintf   command to send your table to the command window.     

  7.2.3   Formatted Output—The sprintf Function 

 The   sprintf   function is similar to   fprintf  , but instead of just sending the result 
of the formatted string to the command window,   sprintf   assigns it a name and 
sends it to the command window.   

a = sprintf('Some example output is %4.2f \n', pi*1000) =
a =

Some example output is 3141.59

 When would this be useful? In  Example   7.3   , the   sprintf   function is used to specify 
the contents of a text box, which is shown as an annotation on a graph. 

 KEY IDEA 
 The   sprintf   function is 
similar to   fprintf   and is 
useful for annotating plots 
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  EXAMPLE 7.3
  PROJECTILE MOTION: ANNOTATING A GRAPH 
 Recall from earlier examples that the equation describing the range of a projectile 
fi red from a cannon is 

   R1u2 �
v2

g
sin12u2   

 where 
      R1u2    is the range in meters  
   v  is the initial projectile velocity in m/s  
     u    is the launch angle  
   g  is the acceleration due to gravity, 9.9 m>s2   

 Plot the angle on the  x -axis versus the range on the  y -axis and add a text box indicat-
ing the value of the maximum range. 

   1.   State the Problem 
  Find and plot the distance traveled by projectile, as a function of launch angle. 

Annotate a plot, indicating the maximum range.  
  2.   Describe the Input and Output   

      3.   Develop a Hand Example 
  We know from physics and from previous examples that the maximum range 

occurs at a launch angle of 45°. Substituting into the provided equation, 

   R � (45�) �
1002m2/s2

9.9 m/s2  sin(2 * 45�)   

  Since the angle is specifi ed in degrees, you must either set your calculator to 
accept degrees into the sine function or else convert 45° to the corresponding 
number of radians    1p>42.    After you have done so, the result is 

   R145�2 � 1010 m    

  4.   Develop a MATLAB ®  Solution   

% Example 7.3
% Find the maximum projectile range
% Create an annotated graph of the results
% Define the input parameters 
  g=9.9;  %Acceleration due to gravity 
  velocity = 100; %Initial velocity, m/s^2 
  theta = [0:5:90]  %Launch angle in degrees
% Calculate the range 
  range = velocity^2/g*sind(2*theta);
% Calculate the maximum range 
  m = max(range);
%  Create the input for the textbox 

tinput=sprintf('Max range was %4.0f me \n',m);

Input  Acceleration due to gravity,    g � 9.9 m>s2    
    Launch angle 
    Initial projectile velocity, 100 m/s 

Output  An annotated graph indicating the maximum range. 

(continued)
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% Plot the results 
  plot(theta,range) 
  title('Range of a Projectile') 
  xlabel('Angle, degrees'), ylabel('Range, meters') 
  text(10,m,tinput) 

  There are several things to notice about this program. First, we took advantage 
of the   sind   function to calculate the value of sine, using degrees as input. 
Second, the location of the text box will always start on the graph at 10° (meas-
ured on the  x -axis), but the  y  location depends on the maximum range. 

  This M-fi le produces the graph shown in  Figure   7.3a   . 
5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. The text box used to 

annotate the graph lists the maximum range as 1010 m, the same value calcu-
lated by hand. We could also test the program with a different initial velocity, 
for example, 110 m/s. The result is shown in  Figure   7.3   .      
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 Figure 7.3 
 The contents of the text box change, depending on the input to the program, and are controlled by the   sprintf   Function.       

  7.3   GRAPHICAL INPUT 

 MATLAB ®  offers a technique for entering ordered pairs of  x - and  y -values graphi-
cally. The   ginput   command allows the user to select points from a fi gure window 
and converts the points into the appropriate  x - and  y -coordinates. In the statement   

[x,y] = ginput(n)

 MATLAB ®  requests the user to select  n  points from the fi gure window. If the value 
of   n   is not included, as in   

[x,y] = ginput

 MATLAB ®  accepts points until the return key is pressed. 
 This technique is useful for picking points off a graph. Consider the graph in 

 Figure   7.4   . 
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  The fi gure was created by defi ning  x  from 5 to 30 and calculating  y :   

x = 5:30;
y = x.^2 - 40.*x + 400;
plot(x,y)
axis([5,30,-50,250])

 The axis values were defi ned so that the graph would be easier to trace. 
 Once the   ginput   function has been executed, as in   

[a,b] = ginput

 MATLAB ®  adds a fl oating cross hair to the graph, as shown in  Figure   7.4   . After this 
cross hair is positioned to the user’s satisfaction, right-clicking and then selecting 
Return (Enter) sends the values of the  x - and  y -coordinates to the program:   

a =
24.4412

b =
19.7368

  7.4   MORE CELL MODE FEATURES 

 A useful feature to use in conjunction with cell mode is Publish. It allows the user to 
publish an M-fi le program to an HTML fi le. MATLAB ®  runs the program and creates 
a report showing the code in each cell, as well as the calculational results that were 
sent to the command window. Any fi gures created are also included in the report. 
 Figure   7.5    shows part of an M-fi le created to solve the homework problems from a 
previous chapter. It was created using cell mode, as can be seen from the cell dividers. 
A portion of the report created using the publish feature is shown in  Figure   7.6   .   

Floating
cross hair

 Figure 7.4 
 The   ginput function 
allows the user to pick 
points off a graph.       

 KEY IDEA 
 Cell mode allows you to 
create reports in HTML, 
Word, and PowerPoint 
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    If you prefer a report in a different format, such as Word, PowerPoint or pdf, 
you can use the menu bar option 

   File: Publish Configuration for ...   

 to publish the results in your choice of several different formats. You’ll need to 
select “edit publish confi gurations” and then the “output fi le format” setting, and 

 Figure 7.5 
 M-Files such as this script, 
which was used to solve 
homework problems from a 
previous chapter, can be 
published using MATLAB ® ’s 
publish feature.       

 Figure 7.6 
 HTML report created from 
a MATLAB ®  M-fi le using the 
 Publish  feature.       
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change it from html to your desired format, as shown in  Figure   7.7   . The publish 
feature does not work well if you have programmed user interactions such as 
prompts for data input into the fi le. During the publishing process, the M-fi le pro-
gram is executed, but no values are available for the user input. This results in an 
error message, which is included in the published version of the fi le. The publish 
feature can be used to publish M-fi le programs that do not contain cells. The result 
is equivalent to a program that consists of only one cell.  

  The cell toolbar also includes a set of value-manipulation tools, as shown in 
 Figure   7.8   . Whatever number is closest to the cursor (in  Figure   7.8   , it’s the number 2) 

Increment and
decrement
value

Divide and
multiply value

 Figure 7.8 
 Value manipulation tools 
allow the user to 
experiment with changing 
values in calculations.       

 Figure 7.7 
 Change the output fi le 
format in the edit 
confi guration window to 
create reports in a number 
of popular formats, 
including Word documents 
and pdf fi les.       
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can be adjusted by the factor shown on the toolbar by selecting the appropriate 
icon    (- ,+ , , , or � ).    When this feature is used in combination with the  evaluate
cell  tool, you can repeat a set of calculations multiple times while easily adjusting 
a variable of interest. 

   EXAMPLE 7.4
  INTERACTIVELY ADJUSTING PARAMETERS 
 On the basis of an energy balance calculation, you know that the change in enthalpy 
of a 1-kmol (29-kg) sample of air going from state 1 to state 2 is 8900 kJ. You’d like 
to know the fi nal temperature, but the equation relating the change in enthalpy to 
temperature, namely, 

   �h �L
2

1

CpdT    

 where 

   Cp � a � bT � cT 2 � dT 3   

 is too complicated to solve for the fi nal temperature. However, using techniques 
learned in calculus, we fi nd that 

   �h � a(T2 � T12 �
b
2
1T 2

2 � T2
12 �

c
3
1T 3

2 � T 3
12 �

d
4
1T 4

2 � T 4
12   

 If we know the starting temperature    1T12    and the values of  a ,  b ,  c , and  d , we can 
guess values of the fi nal temperature    1T22    until we get the correct value of    �h.    The 
interactive ability to modify variable values in the cell mode makes solving this prob-
lem easy. 

   1.   State the Problem 
  Find the fi nal temperature of air when you know the starting temperature and 

the change in internal energy.  
  2.   Describe the Input and Output   

  Input   Used in the equation for    Cp,    these values of  a ,  b ,  c , and  d  will give a 
heat capacity value in kJ/kmol K: 

       a � 28.90    
       b � 0.1967 � 10�2    
       c � 0.4802 � 10�5    
       d � -1.966 � 10�9    
       �h � 8900 kJ    
       T1 � 300 K    

  Output    For every guessed value of the fi nal temperature, an estimate of    �h    
should print to the screen. 

3.   Develop a Hand Example 
  If we guess a fi nal temperature of 400 K, then 

    �h � a(T2 � T1) �
b
2

(T 2
2 � T 2

1) �
c
3

(T 3
2 � T 3

1) �
d
4

(T 4
2 � T 4

1)    

    �h � 28.91400 � 3002 �
0.1967 � 10�2

2
14002 � 30022 �

0.4802 � 10�5

3
   

� 14003 � 30032 � %  
-1.966 � 10�9

4
14004 � 30042   



7.4 More Cell Mode Features 259

 which gives 

   �h � 3009.47    

4.   Develop a MATLAB ®  Solution   

%%  Example   7.4        
% Interactively Adjusting Parameters
clear,clc
a = 28.90;
b = 0.1967e-2;
c = 0.4802e-5;
d = -1.966e-9;     
T1 = 300
%% guess T2 and adjust     
T2 = 400
format bank
delta_h = a*(T2-T1) + b*(T2.^2 - T1.^2)/2 + c*(T2.^3-T1.^3)/
3 + d*(T2.^4-T1.^4)/4

 Run the program once, and MATLAB ®  returns   

T1 � 300.00   
T2 � 400.00   
delta_h � 3009.47   

 Now position the cursor near the   T2=400   statement, as shown in  Figure   7.9   . 
  (In this example, the edit window was docked with the MATLAB ®  desktop.) 

 Figure 7.9 
 The original guess gives 
us an idea of how far 
away we are from the 
fi nal answer       .
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 By selecting the Increment Value icon, with the value set at 100, we can quickly try 
several different temperatures (see  Figure   7.10   ). Once we’re close, we can change 
the increment and zero in the answer. 

  A    T2    value of 592 K gave a calculated    �h    value of 8927, which is fairly close to 
our goal. We could get closer if we believed that the added accuracy was justifi ed.  
  5.   Test the Solution 
  Substitute the calculated value of    T2    into the original equation, and check the 

results with a calculator: 

    �h � 28.91592 � 3002 �
0.1967 � 10�2

2
15922 � 30022   

�
0.4802 � 10�5

3
15923 � 30032 �

-1.966 � 10�9

4
15924 � 30042

    �h � 8927.46       

 Figure 7.10 
 Adjust the value closest 
to the cursor by 
selecting one of the 
Increment/Decrement 
icons and adjusting the 
step size shown on the 
cell-mode toolbar. 

  7.5   READING AND WRITING DATA FROM FILES 

 Data are stored in many different formats, depending on the devices and programs 
that created the data and on the application. For example, sound might be stored 
in a .wav fi le, and an image might be stored in a .jpg fi le. Many applications store 
data in Excel spreadsheets (.xls fi les). The most generic of these fi les is the ASCII 
fi le, usually stored as a .dat or a .txt fi le. You may want to import these data into 

 KEY IDEA 
 MATLAB ®  can import data 
from fi les using a variety of 
formats 
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MATLAB ®  to analyze in a MATLAB ®  program, or you might want to save your data 
in one of these formats to make the fi le easier to export to another application. 

  7.5.1   Importing Data 

  Import Wizard 
 If you select a data fi le from the current folder and double-click on the fi le name, 
the Import Wizard launches. The Import Wizard determines what kind of data is in 
the fi le and suggests ways to represent the data in MATLAB ® .  Table   7.3    is a list of 
some of the data types MATLAB ®  recognizes. Not every possible data format is sup-
ported by MATLAB ® . You can fi nd a complete list by typing 

  doc fileformats

 in the command window. 
 The Import Wizard can be used for simple ASCII fi les and for Excel spread-

sheet fi les. Many of the other formats can also be imported with the Import Wizard, 
which can be launched from the command line, using the   uiimport   function:   

uiimport(' filename.extension ')

 For example, it is easy to record sound fi les using a variety of software tools, or 
to fi nd existing fi les on the Internet.  To import a sound fi le, such as one called 
  decision.wav  , type   

uiimport(' decision.wav ')

 The Import Wizard then opens, as shown in  Figure   7.11   . 
  Either technique for launching the Import Wizard (double-clicking on the fi le 

name in the current folder window, or using the uiimport function in the com-
mand window) requires an interaction with the user (through the Wizard). If you 
want to load a data fi le from a MATLAB ®  program, you’ll need a different 
approach.  

 Table 7.3   Some of the Data File Types Supported by MATLAB ®  

 File Type  Extension  Remark 

 Text  .mat  MATLAB ®  workspace 
    .dat  ASCII data 
    .txt  ASCII data 
    .csv  Comma-separated values ASCII data 

 Other common scientifi c  .cdf  common data format 

 data formats  .fi ts  fl exible image transport system data 
    .hdf  hierarchical data format 

 Spreadsheet data  .xls, xlxx  Excel spreadsheet 
    .wk1  Lotus 123 

 Image data  .tiff  tagged image fi le format 
    .bmp  bit map 
    .jpeg or jpg  joint photographics expert group 
    .gif  graphics interchange format 

 Audio data  .au, snd  audio 
    .wav  Microsoft wave fi le 

 Movie  .avi  audio/video interleaved fi le 
    mpg  motion picture experts group 
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  Import Commands 
 You can bypass the Wizard interactions by using one of the functions that are espe-
cially designed to read each of the supported fi le formats. For example, to read in a 
.wav fi le, use the   wavread   function:   

[data,fs] = wavread('decision.wav')

 Clearly, you need to understand what kind of data to expect, so that you can 
name the created variables appropriately. Recall that you can fi nd a list of import 
functions by typing   

doc fileformats

 To use the fi les you have imported, you’ll need to use a function appropriate to 
the data. In the case of a .wav fi le, the sound function is appropriate, so the code to 
play the decision.wav fi le is   

sound(data,fs)

 You should be aware that data storage formats are constantly changing, which 
can affect MATLAB ® ’s ability to interpret them. For example, some but not all .wav 
fi les use a data compression algorithm not supported by MATLAB ® .   

  7.5.2   Exporting Data 

 The easiest way to fi nd the appropriate function for writing a fi le is to use the   help   
tutorial to fi nd the correct function to read it and then to follow the links to the 
  write   function. For example, to read an Excel spreadsheet fi le (.xls), we’d use 
  xlsread  :   

xlsread('filename.xls')

 At the end of the tutorial page, we are referred to the correct function for writ-
ing an Excel fi le, namely,   

xlswrite('filename.xls', M)

 where   M   is the array you want to store in the Excel spreadsheet.   

 Figure 7.11 
 The Import Wizard 
launches when the 
  uiimport   command is 
executed.       
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  7.6   DEBUGGING YOUR CODE 

 A software bug is a problem that exists in the code you have written. It can be a mis-
take that results in the code not working at all (a coding error), or it can be a logic 
error that results in a wrong answer. The term “bug” has its genesis in electronics, 
where actual insects sometimes caused equipment failure. Perhaps the most famous 
example is the moth ( Figure   7.12   ) found in the innards of one of the earliest com-
puters, the Harvard Mark II Aiken Relay Calculator, in 1947. 

  MATLAB ®  includes a number of tools to help you debug your code, including 
the error bar and more comprehensive tools that allow you to step through the code. 

  7.6.1   Error Bar 

 Whenever you use an M-fi le, notice that along the right-hand side of the fi gure win-
dow a vertical bar appears, that marks locations where there are actual errors or 
where MATLAB ®  has issued warnings. The portion of the code that concerns 
MATLAB ®  is highlighted. For example, in  Figure   7.13    there are several places 
marked with a light orange highlight, which indicates a warning. If you run your 
cursor over the highlight (either in the code or along the bar), a message appears 
with a suggested fi x for the problem. Not every warning corresponds to a real prob-
lem. For example, the warnings issued for the program in  Figure   7.13    resulted from 
lines of code without semicolons at the end of the line. In this particular case we 
wanted the code to report answers to the command window; in other cases you 
might want to suppress the output. You can edit which error messages are shown by 
selecting  

   File → Preferences → Code Analyser  

 If the errors shown on the error bar are marked in red, they will cause the 
M-fi le to stop executing. In  Figure   7.14   , the code was adjusted to introduce such an 
error. On line 22 the right-hand parentheses are missing, as indicated by the error 
message. You can walk through the warnings and actual error messages by clicking 
on the square at the top of the error bar. 

 Figure 7.12 
 The moth found trapped 
between in a relay in 
Harvard’s Mark II Aiken 
Relay Calculator. This is 
often erroneously reported to 
be the fi rst use of the term 
“bug” as a synonym for a 
computer problem. This 
page from the computer log 
book is currently on exhibit 
in the Smithsonian Institute’s 
National Museum of 
American History. (Image 
courtesy of the Naval 
Surface Warfare Center, 
Dalgren, VA, 1988       .)

 KEY IDEA 
 MATLAB ®  includes 
debugging tools to help 
you fi nd errors in your 
code 
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Error Bar

 Figure 7.13 
 The error bar on the 
right-hand side of the 
screen identifi es lines of 
code with potential errors. 
Locations in the code with 
potential errors are 
indicated with a light 
orange highlight.       

 Figure 7.14 
 M-fi le with an error on 
line 22      . 
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    7.6.2   Debugging Toolbar 

 When trying to fi nd logic errors in a piece of code, it is often useful to run sections 
of the program, then to stop, evaluate what has happened, and continue. Using cell 
mode is one way to accomplish this, but a more comprehensive approach is offered 
by the debugging toolbar. It allows you to set breakpoints (places in the code where 
the execution stops while you evaluate results) and to step through the code one 
line at a time. Breakpoints can’t be enabled until all of the syntax errors have been 
resolved. 

 To set a breakpoint, click next to the line number on the left-hand side of the 
editing window, or select the set/clear breakpoint icon on the toolbar. A red circle 
should appear, as shown in  Figure   7.15   . If the circle is gray, syntax errors still exist 
in the program, or you have not saved the most recent version of the code. When 
you run the program, the execution will pause at the breakpoint, and mark the 
location with a green arrow. To continue, select the continue icon from the break-
point toolbar. 

  You can also choose to step through the code one line at a time, using the step 
icon. If your code includes calls to user-defi ned functions, you can step into the 
function and then step through the function code one line at a time, using the step 
in icon. To leave the user-defi ned function, select the step out icon. For example, 
 Figure   7.16    shows an M-fi le program that calls the user-defi ned function, RD. Both 
M-fi les are displayed in the editing window by selecting the arrange documents 
icon. Notice that the line where we “stepped out” of the main program and into the 
function is marked with a white arrow. 

The execution is
paused here

Breakpoint

Step icon

Set/clear
breakpoint icon

Continue to the
next breakpoint

 Figure 7.15 
 Breakpoints enable the user 
to move through the code 
in small pieces.       
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  While you are executing the M-fi le using breakpoints to pause the code, the 
command window prompt is   

  K>> 

 The prompt returns to the standard symbol   

  >>  

 when you have completed the process.    

Step in Step out

Arrange
docu-

 Figure 7.16 
 The step in icon makes it 
possible to step through 
user-defi ned functions one 
line at a time, as they are 
called by the main 
program.       

     SUMMARY 

 MATLAB ®  provides functions that allow the user to interact with an M-fi le program 
and allow the programmer to control the output to the command window. 

 The   input   function pauses the program and sends a prompt determined by 
the programmer to the command window. Once the user has entered a value or 
values and hits the return key, program execution continues. 

 The display (  disp  ) function allows the programmer to display the contents of 
a string or a matrix in the command window. Although the   disp   function is ade-
quate for many display tasks, the   fprintf   function gives the programmer consid-
erably more control over the way results are displayed. The programmer can 
combine text and calculated results on the same line and specify the number for-
mat used. The   sprintf   function behaves exactly the same way as the   fprintf   
function. However, the result of   sprintf   is assigned a variable name and can be 
used with other functions that require strings as input. For example, the functions 
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used to annotate graphs such as   title  ,   text  , and   xlabel   all accept strings as 
input and therefore will accept the result of the   sprintf   function as input. 

 For applications in which graphical input is required, the   ginput   command allows 
the user to provide input to a program by selecting points from a graphics window. 

 Cell mode includes a number of useful features, past just dividing up M-fi les 
into convenient sections. The  publish  tool creates a report containing both the 
M-fi le code and results as well as any fi gures generated when the program executes. 
The Increment and Decrement icons on the cell toolbar allow the user to auto-
matically change the value of a parameter each time the code is executed, making 
it easy to test the result of changing a variable. 

 MATLAB ®  includes functions that allow the user to import and export data in 
a number of popular fi le formats. A complete list of these formats is available in the 
  help   tutorial on the File Formats page (doc fi leformats). The   fprintf   function 
can also be used to export formatted output to a text fi le.   

  The error bar, located on the right-hand side of the M-fi le window, identifi es 
lines of code with potential errors. Warnings are indicated in orange and errors 
that will cause the execution of the code to terminate are shown in red. More exten-
sive debugging tools are available from the debugging toolbar.   

   MATLAB®   SUMMARY 

 The following MATLAB ®  summary lists all the special characters, commands, and 
functions that were defi ned in this chapter:     

  Special Characters    

  ’   begins and ends a string 
  %   placeholder used in the fprintf command 
  %f    fi xed-point, or decimal, notation 
  %d   signed integer notation 
  %e   exponential notation 
  %g   either fi xed point or exponential notation 
  %s   string notation 
  %%   cell divider 
  \n   linefeed 
  \r   carriage return (similar to linefeed) 
  \t   tab 
  \b   backspace 

  Comma j261d Functions    

  disp    displays a string or a matrix in the command window 

  fprintf   creates formatted output which can be sent to the command window or to a fi le 

  ginput   allows the user to pick values from a graph 

  input   allows the user to enter values 

  num2str   changes a number to a string 

  pause   pauses the program 

  sound   plays MATLAB ®  data through the speakers 

  sprintf   similar to  fprintf  creates formatted output which is assigned to a  variable name 
and stored as a character array 

  uiimport   launches the Import Wizard 

  wavread   reads wave fi les 

  xlsimport   imports Excel data fi les 

  xlswrite   exports data as an Excel fi le 
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 cell 
 cell mode 
 character array 

 formatted output 
 precision fi eld 

 string 
 width fi eld  

          KEY TERMS 

  Input Function  

   7.1    Create an M-fi le that prompts the user to enter a value of  x  and then calcu-
lates the value of sin( x ).   

   7.2    Create an M-fi le that prompts the user to enter a matrix and then use the 
  max   function to determine the largest value entered. Use the following 
matrix to test your program:   

  [1, 5, 3, 8, 9, 22]    

   7.3    The volume of a cone is 

   V � 1
3 � area of the base � height   

  Prompt the user to enter the area of the base and the height of the cone 
( Figure   P7.3   ). Calculate the volume of the cone. 

     Disp Function  

   7.4    One of the fi rst computer programs many students write is called “Hello, 
World.” The only thing the program does is print this message to the com-
puter screen. Write a “Hello, World” program in an M-fi le, using the   disp   
function.   

   7.5    Use two separate   input   statements to prompt a user to enter his or her 
fi rst and last names. Use the   disp   function to display those names on 
one line. (You’ll need to combine the names and some spaces into an 
array.)   

   7.6    Prompt the user to enter his or her age. Then use the   disp   function to 
report the age back to the command window. If, for example, the user 
enters 5 when prompted for her age, your display should read   

   Your age is 5   

  This output requires combining both character data (a string) and numeric 
data in the   disp   function—which can be accomplished by using the 
  num2str   function.   

   7.7    Prompt the user to enter an array of numbers. Use the   length   function to 
determine how many values were entered, and use the   disp   function to 
report your results to the command window.   

  fprintf  

   7.8    Repeat Problem 7.7, and use   fprintf   to report your results.   

  PROBLEMS 

r

h

 Figure P7.3 
 Volume of a cone.       
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   7.9    Use   fprintf   to create the multiplication tables from 1 to 13 for the num-
ber 6. Your table should look like this. 

  1 times 6 is 6  
  2 times 6 is 12  
  3 times 6 is 18  

     o        
   7.10    Before calculators were readily available (about 1974), students used tables 

to determine the values of mathematical functions like sine, cosine, and 
log. Create such a table for sine, using the following steps: 

   •   Create a vector of angle values from 0 to    2p    in increments of    p>10.     
  •   Calculate the sine of each of the angles, and group your results into a 

table that includes the angle and the sine.  
  •   Use   disp   to create a title for the table and a second   disp   command to 

create column headings.  
  •   Use the   fprintf   function to display the numbers. Display only two val-

ues past the decimal point.     

   7.11    Very small dimensions—those on the atomic scale—are often measured in 
angstroms. An angstrom is represented by the symbol Å and corresponds to 
a length of    10�10 m.    Create an inches-to-angstroms conversion table as fol-
lows for values of inches from 1 to 10: 

   •   Use   disp   to create a title and column headings.  
  •   Use   fprintf   to display the numerical information.  
  •   Because the length represented in angstroms is so big, represent your 

result in scientifi c notation, showing two values after the decimal point. 
This corresponds to three signifi cant fi gures (one before and two after 
the decimal point).     

   7.12    Use your favorite Internet search engine and World Wide Web browser to 
identify recent currency conversions for British pounds sterling, Japanese 
yen, and the European euro to US dollars. Use the conversion tables to cre-
ate the following tables (use the   disp   and   fprintf   commands in your 
solution, which should include a title, column labels, and formatted output): 

   (a)   Generate a table of conversions from yen to dollars. Start the yen col-
umn at 5 and increment by 5 yen. Print 25 lines in the table.  

  (b)   Generate a table of conversions from the euros to dollars. Start the euro 
column at 1 euro and increment by 2 euros. Print 30 lines in the table.  

  (c)   Generate a table with four columns. The fi rst should contain dollars, 
the second the equivalent number of euros, the third the equivalent 
number of pounds, and the fourth the equivalent number of yen. Let 
the dollar column vary from 1 to 10.     

  Problems Combining the input, disp, and fprintf Commands  

   7.13    This problem requires you to generate temperature conversion tables. Use 
the following equations, which describe the relationships between tempera-
tures in degrees Fahrenheit    1TF2,    degrees Celsius    1TC2,    kelvins    1TK2,    and 
degrees Rankine    1TR2,    respectively: 

    TF � TR � 459.67�R   

 TF �
9
5

TC � 32�F

    TR �
9
5

TK    
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  You will need to rearrange these expressions to solve some of the problems. 

   (a)   Generate a table of conversions from Fahrenheit to Kelvin for values 
from 0°F to 200°F. Allow the user to enter the increments in degrees F 
between lines. Use   disp   and   fprintf   to create a table with a title, 
column headings, and appropriate spacing.  

  (b)   Generate a table of conversions from Celsius to Rankine. Allow the user 
to enter the starting temperature and the increment between lines. 
Print 25 lines in the table. Use   disp   and   fprintf   to create a table 
with a title, column headings, and appropriate spacing.  

  (c)   Generate a table of conversions from Celsius to Fahrenheit. Allow the 
user to enter the starting temperature, the increment between lines, 
and the number of lines for the table. Use   disp   and   fprintf   to create 
a table with a title, column headings, and appropriate spacing.     

   7.14    Engineers use both English and SI (Système International d’Unités) units 
on a regular basis. Some fi elds use primarily one or the other, but many 
combine the two systems. For example, the rate of energy input to a steam 
power plant from burning fossil fuels is usually measured in Btu/hour. 
However, the electricity produced by the same plant is usually measured in 
joules/s (watts). Automobile engines, by contrast, are often rated in horse-
power or in    ft lbf>s.    Here are some conversion factors relating these differ-
ent power measurements: 

   1 kW � 3412.14 Btu>h � 737.56 ft lbf>s   

   1 hp � 550 ft lbf>s � 2544.5 Btu>h   

   (a)   Generate a table of conversions from kW to hp. The table should start 
at 0 kW and end at 15 kW. Use the   input   function to let the user defi ne 
the increment between table entries. Use   disp   and   fprintf   to create 
a table with a title, column headings, and appropriate spacing.  

  (b)   Generate a table of conversions from    ft lbf>s    to Btu/h. The table should 
start at    0 ft lbf>s    but let the user defi ne the increment between table 
entries and the fi nal table value. Use   disp   and   fprintf   to create a 
table with a title, column headings, and appropriate spacing.  

  (c)   Generate a table that includes conversions from kW to Btu/h, hp, and 
   ft lbf>s.    Let the user defi ne the initial value of kW, the fi nal value of kW, 
and the number of entries in the table. Use   disp   and   fprintf   to cre-
ate a table with a title, column headings, and appropriate spacing.     

  ginput  

   7.15    At time    t � 0,    when a rocket’s engine shuts down, the rocket has reached 
an altitude of 500 m and is rising at a velocity of 125 m/s. At this point, grav-
ity takes over. The height of the rocket as a function of time is 

   h1t2 � -
9.8
2

t2 � 125t � 500 for t 7 0   

 Plot the height of the rocket from 0 to 30 seconds, and 

   •   Use the   ginput   function to estimate the maximum height the rocket 
reaches and the time when the rocket hits the ground.  

  •   Use the   disp   command to report your results to the command window.     
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   7.16    The   ginput   function is useful for picking distances off a graph. 
Demonstrate this feature by doing the following: 

   •   Create a graph of a circle by defi ning an array of angles from 0 to    2p,    with 
a spacing of    p>100.     

  •   Use the   ginput   function to pick two points on the circumference of the 
circle.  

  •   Use   hold on   to keep the fi gure from refreshing, and plot a line between 
the two points you picked.  

  •   Use the data from the points to calculate the length of the line between 
them. ( Hint : Use the Pythagorean theorem in your calculation.)     

   7.17    In recent years, the price of gasoline has increased dramatically. Automobile 
companies have responded with more fuel-effi cient cars, in particular, 
hybrid models. But will you save money by purchasing a hybrid such as the 
Toyota Camry rather than a Camry with a standard engine? The hybrid 
vehicles are considerably more expensive, but get better gas mileage. 
Consider the vehicle prices and gas effi ciencies shown in  Table   P7.17   . 

 Table P7.17   A Comparison of Standard and Hybrid Vehicles 

 Year  Model  Base 
MSRP 

 Gas Effi ciency, 
in-town/highway 

 2008  Toyota Camry  $18,720  21/31 mpg 
 2008  Toyota Camry Hybrid  $25,350  33/34 mpg 

 2008  Toyota Highlander 4WD  $28,750  17/23 mpg 

 2008  Toyota Highlander 4WD Hybrid  $33,700  27/25 mpg (hybrids may actually get 
better mileage in town than on the road) 

 2008  Ford Escape 2WD  $19,140  24/28 mpg 

 2008  Ford Escape 2WD Hybrid  $26,495  34/30 mpg 

  One way to compare two vehicles is to fi nd the “cost to own.” 

     Cost to own � Purchase cost � Upkeep � Gasoline cost     

  Assume for this exercise that the upkeep costs are the same, so in our 
comparison we’ll set them equal to zero. 

   (a)   What do you think the cost of gasoline will be over the next several 
years? Prompt the user to enter an estimate of gasoline cost in dollars/
gallon.  

  (b)   Find the “cost to own” as a function of the number of miles driven for a 
pair of vehicles from the table, based on the fuel price estimate from 
part a. Plot your results on an  x–y  graph. The point where the two lines 
cross is the break-even point.  

  (c)   Use the   ginput   function to pick the break-even point off the graph.  

  (d)   Use   sprintf   to create a string identifying the break-even point, and 
use the result to create a text-box annotation on your graph. Position 
the text box using the   gtext   function.     

  Cell Mode  

   7.18    Publish your program and results from Problem 7.17 to HTML, using the 
 publish to HTML  feature from the cell toolbar. Unfortunately, because this 
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chapter’s assignment requires interaction with the user, the published 
results will include errors.   

   7.19    Revisit Problem 7.17, which compares the cost to own for hybrids versus 
standard-engine vehicles. 

   (a)   Instead of allowing the user to enter an estimate of fuel cost, assume 
that gasoline will cost $2.00 per gallon for the next several years.  

  (b)   Use the incremental value adjustment tool on the cell-mode toolbar to 
change the value of the gasoline cost, until the break-even point occurs 
at less than 100,000 miles.        



8  

  INTRODUCTION 

 One way to think of a computer program (not just MATLAB ® ) is to consider how the 
statements that compose it are organized. Usually, sections of computer code can be 
categorized as  sequences ,  selection   structures , and  repetition structures  (see  Figure   8.1   ). So 
far, we have written code that contains sequences but none of the other structures:   

   •   A sequence is a list of commands that are executed one after another.  
  •   A selection structure allows the programmer to execute one command (or set of 

commands) if some criterion is true and a second command (or set of com-
mands) if the criterion is false. A selection statement provides the means of choos-
ing between these paths, based on a  logical condition . The conditions that are 
evaluated often contain both  relational  and  logical  operators or functions.  

  •   A repetition structure, or loop, causes a group of statements to be executed mul-
tiple times. The number of times a loop is executed depends on either a counter 
or the evaluation of a logical condition.    

 After reading this chapter, you 
should be able to: 
  •   Understand how 

MATLAB ®  interprets 
 relational and logical 
 operators  

  •   Use the   find   function  
  •   Understand the appropri-

ate uses of the   if/else   
 family of commands  

  •   Understand the   switch/
case   structure   

     Objectives 

 Logical Functions 
and Selection 
Structures 

  C H A P T E R
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     8.1   RELATIONAL AND LOGICAL OPERATORS 

 The selection and repetition structures used in MATLAB ®  depend on relational 
and logical operators. MATLAB ®  has six relational operators for comparing two 
matrices of equal size, as shown in  Table   8.1   .  

 Comparisons are either true or false, and most computer programs (including 
MATLAB ® ) use the number 1 for true and 0 for false. (MATLAB ®  actually takes any 
number that is not 0 to be true.) If we defi ne two scalars   

x = 5;
y = 1;

 and use a relational operator such as <, the result of the comparison   

x<y

 is either true or false. In this case,  x  is not less than  y , so MATLAB ®  responds   

ans =
0

 indicating that the comparison is false. MATLAB ®  uses this answer in selection 
statements and in repetition structures to make decisions. 

 Of course, variables in MATLAB ®  usually represent entire matrices. If we rede-
fi ne   x   and   y  , we can see how MATLAB ®  handles comparisons between matrices. 
For example,   

x = 1:5;
y = x -4;
x<y

Repetition
(loop)

Sequence Selection Figure 8.1 
 Programming structures 
used in MATLAB ®.        

 Table 8.1   Relational Operators 

 Relational Operator   Interpretation 

  <    less than  

  <=    less than or equal to  

  >    greater than  

  >=    greater than or equal to  

  ==    equal to  

  ~=    not equal to  

 KEY IDEA 
 Relational operators 
compare values 
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 returns   
ans =

0  0  0  0  0

 MATLAB ®  compares corresponding elements and creates an answer matrix of 
zeros and ones. In the preceding example,  x  was greater than  y  for every compari-
son of elements, so every comparison was false and the answer was a string of zeros. 
If, instead, we have   

x = [ 1, 2, 3, 4, 5];
y = [-2, 0, 2, 4, 6];
x<y

 then     

ans =
0  0  0  0  1 

 The results tell us that the comparison was false for the fi rst four elements, but 
true for the last. For a comparison to be true for an entire matrix, it must be true for 
 every  element in the matrix. In other words, all the results must be ones. 

 MATLAB ®  also allows us to combine comparisons with the logical operators 
 and ,  not , and  or  (see  Table   8.2   ).     

 The code   

x = [ 1, 2, 3, 4, 5];
y = [-2, 0, 2, 4, 6];
z = [ 8, 8, 8, 8, 8];
z>x & z>y

 returns   

ans =
1  1  1 1  1

 because  z  is greater than both  x  and  y  for every element. The statement   

x>y | x>z

 is read as “ x  is greater than  y  or  x  is greater than  z ” and returns   

ans =
1  1  1  0  0

 This means that the condition is true for the fi rst three elements and false for 
the last two. 

 These relational and logical operators are used in both selection structures and 
loops to determine what commands should be executed.  

 KEY IDEA 
 Logical operators are used 
to combine comparison 
statements 

 Table 8.2   Logical Operators 

 Logical Operator  Interpretation 

  &    and  

  ~    not  

  |    or  

  xor    exclusive or  
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  8.2   FLOWCHARTS AND PSEUDOCODE 

 With the addition of selection and repetition structures to your group of program-
ming tools, it becomes even more important to plan your program before you start 
coding. Two common approaches are to use fl owcharts and pseudocode. A fl ow-
chart is a graphical approach to creating your coding plan, and pseudocode is a 
verbal description of your plan. You may want to use either or both for your pro-
gramming projects. 

 For simple programs, pseudocode may be the best (or at least the simplest) 
planning approach:       

   •   Outline a set of statements describing the steps you will take to solve a problem.  
  •   Convert these steps into comments in an M-fi le.  
  •   Insert the appropriate MATLAB ®  code into the fi le between the comment 

lines.   

 Here’s a really simple example: Suppose you’ve been asked to create a program 
to convert mph to ft/s. The output should be a table, complete with a title and col-
umn headings. Here’s an outline of the steps you might follow: 

   •   Defi ne a vector of mph values.  
  •   Convert mph to ft/s.  
  •   Combine the mph and ft/s vectors into a matrix.  
  •   Create a table title.  
  •   Create column headings.  
  •   Display the table.   

 Once you’ve identifi ed the steps, put them into a MATLAB ®  M-fi le as comments:   

%Define a vector of mph values
%Convert mph to ft/s
%Combine the mph and ft/s vectors into a matrix
%Create a table title
%Create column headings
%Display the table

 Now you can insert the appropriate MATLAB ®  code into the M-fi le   

%Define a vector of mph values
mph = 0:10:100;

%Convert mph to ft/s
fps = mph*5280/3600;

%Combine the mph and ft/s vectors into a matrix
table = [mph;fps]

%Create a table title
disp('Velocity Conversion Table')

%Create column headings
disp('  mph  f/s')

%Display the table
fprintf('%8.0f  %8.2f \n',table)

 If you put some time into your planning, you probably won’t need to change 
the pseudocode much, once you start programming. 

 Flowcharts alone or fl owcharts combined with pseudocode are especially appro-
priate for more complicated programming tasks. You can create a “big picture” of 
your program graphically and then convert your project to pseudocode suitable to 

 KEY IDEA 
 Flow charts and 
pseudocode are used to 
plan programming tasks 

 FLOWCHART 
 A pictoral representation of 
a computer program 
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enter into the program as comments. Before you can start fl owcharting, you’ll need 
to be introduced to some standard fl owcharting symbols (see  Table   8.3   ). 

  Figure   8.2    is an example of a fl owchart for the mph-to-ft/s problem. For a prob-
lem this simple, you would probably never actually create a fl owchart. However, as 
problems become more complicated, fl owcharts become an invaluable tool, allow-
ing you to organize your thoughts.  

 Once you’ve created a fl owchart, you should transfer the ideas into comment 
lines in an M-fi le and then add the appropriate code between the comments. 

 Remember, both fl owcharts and pseudocode are tools intended to help you 
create better computer programs. They can also be used effectively to illustrate the 
structure of a program to nonprogrammers, since they emphasize the logical pro-
gression of ideas over programming details.   

  8.3   LOGICAL FUNCTIONS 

 MATLAB ®  offers both traditional selection structures, such as the family of  if  func-
tions, and a series of logical functions that perform much the same task. The pri-
mary logical function is   find  , which can often be used in place of both traditional 
selection structures and loops.    

  8.3.1   Find 

 The   find   command searches a matrix and identifi es which elements in that matrix 
meet a given criterion. For example, the U.S. Naval Academy requires applicants to 
be at least    5�6�(66�)    tall. Consider this list of applicant heights:   

height = [63,67,65,72,69,78,75]

 You can fi nd the index numbers of the elements that meet our criterion by 
using the   find   command:   

accept = find(height>=66 )

 This command returns   

accept =
2  4  5  6  7

Start

Define a vector of
mph

Calculate the
ft/s vector

Combine into a
table

Create an output
table, using disp
and fprintf

End

 Figure 8.2 
 Flowcharts make it easy to 
visualize the structure of a 
program.       

 Table 8.3   Flowcharting for Designing Computer Programs 

        

  An oval is used to indicate the beginning 
or the end of a section of code.  

        

  A parallelogram is used to indicate input 
or output processes.  

        

  A diamond indicates a decision point.  

        

  Calculations are placed in rectangles.  

 PSEUDOCODE 
 A list of programming 
tasks necessary to create 
a program 
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 The   find   function returns the index numbers from the matrix that meet the 
criterion. If you want to know what the actual heights are, you can call each element, 
using the index number:      

height(accept)
ans =

67  72  69  78  75

 An alternative approach would be to nest the commands   

height(find(height(>=66)))

 You could also determine which applicants do  not  meet the criterion. Use   

decline = find(height<66)

 which gives   

decline =
1  3

 To create a more readable report use the   disp   and   fprintf   functions:   

disp('The following candidates meet the height requirement');
fprintf('Candidate # %4.0f is %4.0f 
inches tall \n', [accept;height(accept)])

 These commands return the following table in the command window:   

The following candidates meet the height requirement
Candidate #  2 is  67 inches tall
Candidate #  4 is  72 inches tall
Candidate #  5 is  69 inches tall
Candidate #  6 is  78 inches tall
Candidate #  7 is  75 inches tall

 Clearly, you could also create a table of those who do not meet the requirement:   

disp('The following candidates do not meet the height 
 requirement')
fprintf('Candidate # %4.0f is %4.0f inches tall \n', 
 [decline;height(decline)])

 Similar to the previous code, the following table is returned in the command 
window:   

The following candidates do not meet the height requirement
Candidate #  1 is  63 inches tall
Candidate #  3 is  65 inches tall

 You can create fairly complicated search criteria that use the logical operators. 
For example, suppose the applicants must be at least 18 years old and less than 35 
years old. Then your data might look like this:      

 KEY IDEA 
 Logical functions are often 
more effi cient programming 
tools than traditional 
selection structures 

  Height, Inches    Age, Years  

 63  18 
 67  19 
 65  18 
 72  20 
 69  36 
 78  34 
 75  12 
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 Now we defi ne the matrix and fi nd the index numbers of the elements in column 1 
that are greater than 66. Then we fi nd which of those elements in column 2 are also 
greater than or equal to 18 and less than or equal to 35. We use the commands   

applicants = [ 63, 18; 67, 19; 65, 18; 72, 20; 69, 36; 78, 
      34; 75, 12]
pass = find(applicants(:,1)>=66 & applicants(:,2)>=18 
      & applicants(:,2) < 35)

 which return   

pass =
2
4
6

 the list of applicants that meet all the criteria. We could use   fprintf   to create a 
nicer output. First create a table of the data to be displayed:   

results = [pass,applicants(pass,1),applicants(pass,2)]';

 Then use   fprintf   to send the results to the command window:   

fprintf('Applicant # %4.0f is %4.0f inches tall and 
 %4.0f years old\n',results)

 The resulting list is   

Applicant #  2 is  67 inches tall and 19 years old
Applicant #  4 is  72 inches tall and 20 years old
Applicant #  6 is  78 inches tall and 34 years old

 So far, we’ve used   find   only to return a single index number. If we defi ne two 
outputs from   find  , as in   

[row, col] = find( criteria)

 it will return the appropriate row and column numbers (also called the row and 
column index numbers or subscripts). 

 Now, imagine that you have a matrix of patient temperature values measured in 
a clinic. The column represents the number of the station where the temperature 
was taken. Thus, the command   

temp = [95.3, 100.2, 98.6; 97.4,99.2, 98.9; 100.1,99.3, 97]

 gives   

temp =
95.3000 100.2000 98.6000
97.4000 99.2000 98.9000
100.1000 99.3000 97.0000

 and   

element = find(temp>98.6)

 gives us the element number for the single-index representation:   

element =
3
4
5
6
8
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 When the   find   command is used with a two-dimensional matrix, it uses an 
element-numbering scheme that works down each column one at a time. For 
example, consider our    3 � 3    matrix. The element index numbers are shown in 
 Figure   8.3   . The elements that contain values greater than 98.6 are shown in bold.  

 In order to determine the row and column numbers, we need the syntax   

[row, col] = find(temp>98.6)

 which gives us the following row and column numbers:      

row =
3
1
2
3
2

col =
1
2
2
2
3

 Together, these numbers identify the elements shown in  Figure   8.4   .  
 Using   fprintf  , we can create a more readable report. For example,   

fprintf('Patient%3.0f at station%3.0f had a temp of%6.1f 
\n', [row,col,temp(element)]')

 returns   

Patient 3 at station 1 had a temp of 100.1
Patient 1 at station 2 had a temp of 100.2
Patient 2 at station 2 had a temp of 99.2
Patient 3 at station 2 had a temp of 99.3
Patient 2 at station 3 had a temp of 98.9

  8.3.2   Flowcharting and Pseudocode for Find Commands 

 The   find   command returns only one answer: a vector of the element numbers 
requested. For example, you might fl owchart a sequence of commands as shown in 
 Figure   8.5   . If you use   find   multiple times to separate a matrix into categories, you 
may choose to employ a diamond shape, indicating the use of   find   as a selection 
structure.    

%Define a vector of x-values
x = [1,2,3; 10, 5,1; 12,3,2;8, 3,1]
%Find the index numbers of the values in x >9
element = find(x>9)
%Use the index numbers to find the x-values

2

1

5
6

4

3 9
8
7

 Figure 8.3 
 Element-numbering 
sequence for a matrix.       

 KEY IDEA 
 MATLAB ®  is column 
dominant 

1, 2 
2, 2 
3, 2 

1, 3 
2, 3 
3, 3 

1, 1 
2, 1 
3, 1 

 Figure 8.4 
 Row, element designation 
for a    3 � 3    matrix. The 
elements that meet the 
criterion are shown in bold.       

Start

Define a vector of 
x-values.

Find the index numbers
in the x matrix for values
greater than 9.

Use the index numbers to
find the x-values.

Create an output table
using disp and fprintf.

End

 Figure 8.5 
 Flowchart illustrating the 
  find   command.       
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%greater than 9 by plugging them into x
values = x(element)
% Create an output table
disp('Elements greater than 9')
disp('Element # Value')
fprintf('%8.0f %3.0f \n', [element';values'])

  SIGNAL PROCESSING USING THE SINC FUNCTION 
 The sinc function is used in many engineering applications, but especially in signal 
processing ( Figure   8.6   ). Unfortunately, this function has two widely accepted 
 defi nitions:  

   f11x2 �
sin(px2
px

 and f2(x2 �
sin x

x
   

 Both of these functions have an indeterminate form of 0/0 when    x � 0.    In this 
case, l’Hôpital’s theorem from calculus can be used to prove that both functions are 
equal to 1 when    x � zero.    For values of  x  not equal to zero, the two functions have 
a similar form. The fi rst function,    f1(x),    crosses the  x -axis when  x  is an integer; the 
second function crosses the  x -axis when  x  is a multiple of    p.    

 Suppose you would like to defi ne a function called   sinc_x   that uses the sec-
ond defi nition. Test your function by calculating values of   sinc_x   for   x   from    �5p
to    �5p    and plotting the results. 

1.   State the Problem 
  Create and test a function called   sinc_x  , using the second defi nition: 

   f2(x) �
sin x

x
    

2.   Describe the Input and Output   

  Input   Let  x  vary from    �5p    to    �5p.    

  Output   Create a plot of  sinc_x  versus  x . 

3.   Develop a Hand Example  
4.   Develop a MATLAB ®  Solution 
  Outline your function in a fl owchart, as shown in  Figure   8.7   . Then convert the 

fl owchart to pseudocode comments, and insert the appropriate MATLAB ®  code.    

  EXAMPLE 8.1

 Figure 8.6 
 Oscilloscopes are widely 
used in signal-processing 
applications. (Courtesy of 
Agilent Technologies, Inc.)       

  Once we’ve created the function, we should test it in the command window:   

sinc_x(0)
ans =

1
sinc_x(pi/2)
ans =

0.6366
sinc_x(pi)
ans =

3.8982e-017
sinc_x(-pi/2)
ans =

0.6366 (continued )
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function output = sinc_x(x)
%This function finds the value of sinc,
%using the second definition,
% sin(x)/x
%Determine the index #s of the
%elements in the x array that are close to 0

set1 = find(abs(x)<0.0001);
%Set those elements in the output 
%array equal to 1
output(set1) = 1;

%Determine the index #s of the
%elements in the x array that are not
%close to 0

set2 = find(abs(x)>=0.0001);
%Calculate sin(x)/x for the elements
%that are not close to 0,
% and assign the results to the corresponding
% output array elements

output(set2) = sin(x(set2))./x(set2);

  Figure 8.7 
 Flowchart of the sinc 
function.       

  Notice that   sinc_x(pi/2)   equals a very small number, but not zero. That is 
because MATLAB ®  treats    p    as a fl oating-point number and uses an approxima-
tion of its real value ( Table   8.4   ).   

  5.   Test the Solution 
  When we compare the results with those of the hand example, we see that the 

answers match. Now we can use the function confi dently in our problem. 
 We have   

%Example 8.1
clear, clc

%Define an array of angles
x = -5*pi:pi/100:5*pi;

%Calculate sinc_x
y = sinc_x(x);

%Create the plot
plot(x,y)
title('Sinc Function'), xlabel('angle,
radians'),ylabel('sinc')

 Table 8.4   Calculating the Sinc Function 

  x    sin(x)      sinc_x(x) = sin(x)/x    

     0  0 0>0 � 1    

      p>2     1 1>(p>2) � 0.637    

          p     0  0 

    �p>2        �1    �1>(p>2) � �0.637 

output  1

output sin(x)/x

End

Find the index #s of the
elements of x close to zero

x<abs(.0001)

x> abs(.0001)

Start sinc_x(x)

Find the index #s of the
elements of x not close to zero
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 which generates the plot in  Figure   8.8   . 
 The plot also supports our belief that the function is working properly. Testing 

sinc_x   with one value at a time validated its answers for a scalar input; however, 
the program that generated the plot sent a vector argument to the function. The 
plot confi rms that it also performs properly with vector input. 

 If you have trouble understanding how this function works, remove the semico-
lons that are suppressing the output, then run the program. Understanding the 
output from each line will help you understand the program logic better.     

20 10 0 10 20
0.4

0

0.2

0.6

0.4

0.2

1

0.8

Sinc Function

angle, radians

si
nc

 Figure 8.8 
 The sinc function.       

 In addition to   find  , MATLAB ®  offers two other logical functions:   all   and   any  . 
The   all   function checks to see if a logical condition is true for  every  member of an 
array, and the   any   function checks to see if a logical condition is true for  any  mem-
ber of an array. Consult MATLAB ® ’s built-in   help   function for more information. 

  PRACTICE EXERCISES 8.1 

 Consider the following matrices: 

   x � ≥ 1 10 42 6
5 8 78 23
56 45 9 13
23 22 8 9

¥  y � £1 2 3
4 10 12
7 21 27

§  z � 310 22 5 134    
    1.   Using single-index notation, fi nd the index numbers of the elements 

in each matrix that contain values greater than 10.  
   2.   Find the row and column numbers (sometimes called subscripts) of 

the elements in each matrix that contain values greater than 10.  
   3.   Find the values in each matrix that are greater than 10.  
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   4.   Using single-index notation, fi nd the index numbers of the elements 
in each matrix that contain values greater than 10 and less than 40.  

   5.   Find the row and column numbers for the elements in each matrix 
that contain values greater than 10 and less than 40.  

   6.   Find the values in each matrix that are greater than 10 and less than 
40.  

   7.   Using single-index notation, fi nd the index numbers of the elements 
in each matrix that contain values between 0 and 10 or between 70 and 
80.  

   8.   Use the   length   command together with results from the   find   
command to determine how many values in each matrix are between 0 
and 10 or between 70 and 80.      

 KEY IDEA 
   if   statements usually work 
best with scalars 

  8.4   SELECTION STRUCTURES 

 Most of the time, the   find   command can and should be used instead of an   if   
statement. In some situations, however, the   if   statement is required. This section 
describes the syntax used in   if   statements. 

  8.4.1   The Simple If 

 A simple   if   statement has the following form:   

if comparison
statements

end

 If the comparison (a logical expression) is true, the statements between the   if   
statement and the   end   statement are executed. If the comparison is false, the pro-
gram jumps immediately to the statement following   end  . It is good programming 
practice to indent the statements within an   if   structure for readability. However, 
recall that MATLAB ®  ignores white space. Your programs will run regardless of 
whether you do or do not indent any of your lines of code. 

 Here’s a really simple example of an   if   statement:   

if G<50
disp('G is a small value equal to:')
disp(G);

end

 This statement (from   if   to   end  ) is easy to interpret if  G  is a scalar. If  G  is less 
than 50, then the statements between the   if   and the   end   lines are executed. For 
example, if  G  has a value of 25, then      

G is a small value equal to:
25

 is displayed on the screen. However, if   G   is not a scalar, then the   if   statement consid-
ers the comparison true  only if it is true for every element ! Thus, if   G   is defi ned 
from 0 to 80,   

G = 0:10:80;

 the comparison is false, and the statements inside the   if   statement are not exe-
cuted! In general,   if   statements work best when dealing with scalars.  
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  8.4.2   The If/Else Structure 

 The simple   if   allows us to execute a series of statements if a condition is true and 
to skip those steps if the condition is false. The   else   clause allows us to execute one 
set of statements if the comparison is true and a different set if the comparison is 
false. Suppose you would like to take the logarithm of a variable  x . You know from 
basic algebra classes that the input to the   log   function must be greater than 0. 
Here’s a set of   if/else statements that calculates the logarithm if the input is 
positive and sends an error message if the input to the function is 0 or negative:   

if x >0
y = log(x)

else
disp('The input to the log function must be positive')

end

 When  x  is a scalar, this is easy to interpret. However, when  x  is a matrix, the 
comparison is true only if it is true for every element in the matrix. So, if   

x = 0:0.5:2;

 then the elements in the matrix are not all greater than 0. Therefore, MATLAB ®  
skips to the   else   portion of the statement and displays the error message. The   if/
else   statement is probably best confi ned to use with scalars, although you may fi nd 
it to be of limited use with vectors. 

  HINT    
 MATLAB ®  includes a function called   beep   that causes the computer to “beep” 
at the user. You can use this function to alert the user to an error. For example, 
in the   if/else   clause, you could add a beep to the portion of the code that 
includes an error statement:   

x = input('Enter a value of x greater than 0: ');
if x >0

y = log(x)
else

beep
disp('The input to the log function must be positive')

end

  8.4.3   The Elseif Structure 

 When we nest several levels of   if/else   statements, it may be diffi cult to determine 
which logical expressions must be true (or false) in order to execute each set of 
statements. The   elseif   function allows you to check multiple criteria while keep-
ing the code easy to read. Consider the following lines of code that evaluate whether 
to issue a driver’s license, based on the applicant’s age:   

if age<16
disp('Sorry – You'll have to wait')

elseif age<18
disp('You may have a youth license')
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elseif age<70
disp('You may have a standard license')

else
disp('Drivers over 70 require a special license')

end

 In this example, MATLAB ®  fi rst checks to see if    age 6 16.    If the comparison is 
true, the program executes the next line or set of lines, displays the message   Sorry—
You'll have to wait  , and then exits the   if   structure. If the comparison is 
false, MATLAB ®  moves on to the next   elseif   comparison, checking to see if 
    age 6 18     this time. The program continues through the   if   structure until it 
fi nally fi nds a true comparison or until it encounters the   else  . Notice that the 
  else   line does not include a comparison, since it executes if the   elseif   immedi-
ately before it is false. 

 The fl owchart for this sequence of commands ( Figure   8.9   ) uses the diamond 
shape to indicate a selection structure.  

 This structure is easy to interpret if   age   is a scalar. If it is a matrix, the compari-
son must be true for every element in the matrix. Consider this age matrix   

age = [15,17,25,55,75]

 The fi rst comparison,   if age<16  , is false, because it is not true for every ele-
ment in the array. The second comparison,   elseif age<18  , is also false. The 
third comparison,   elseif age<70  , is false as well, since not all of the ages are 
below 70. The result is   Drivers over 70 require a special license  —a 
result that won’t please the other drivers. 

Start

if age<16
True

Sorry – You’ll
have to wait

age<18
You may have a
youth license

age<70

True

You may have a
standard license

True

Drivers over 70 require
a special license

End

elseif

elseif

else

 Figure 8.9 
 Flowchart using multiple 
  if   statements.       
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 In general,   elseif   structures work well for scalars, but   find   is probably a bet-
ter choice for matrices. Here’s an example that uses   find   with an array of ages and 
generates a table of results in each category:   

age = [15,17,25,55,75];
set1 = find(age<16);
set2 = find(age>=16 & age<18);
set3 = find(age>=18 & age<70);
set4 = find(age>=70);

fprintf('Sorry – You''ll have to wait - you"re only %3.0f 
 \n',age(set1))
fprintf('You may have a youth license because you"re %3.0f 
 \n',age(set2))
fprintf('You may have a standard license because you"re 
 %3.0f \n',age(set3))
fprintf('Drivers over 70 require a special license. You"re 
 %3.0f \n',age(set4))

 These commands return   

Sorry – You'll have to wait - you're only 15
You may have a youth license because you're 17
You may have a standard license because you're 25
You may have a standard license because you're 55
Drivers over 70 require a special license. You're 75

 Since every   find   in this sequence is evaluated, it is necessary to specify the 
range completely (for example,   age>=16 & age<18  ).  

  HINT    
 One common mistake new programmers make when using   if   statements 
is to overspecify the criteria. In the preceding example, it is enough to state 
that     age 6 18     in the second   if   clause, because age cannot be less than 
16 and still reach this statement. You don’t need to specify     age 6 18     and 
    age > � 16.     If you overspecify the criteria, you risk defi ning a calculational 
path for which there is no correct answer. For example, in the code   

if age<16
disp('Sorry – You''ll have to wait')

elseif age<18 & age>16
disp('You may have a youth license')

elseif age<70 & age>18
disp('You may have a standard license')

elseif age>70
disp('Drivers over 70 require a special license')

end

 there is no correct choice for age = 16, 18, or 70. 
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  ASSIGNING GRADES 
 The   if   family of statements is used most effectively when the input is a scalar. 
Create a function to determine test grades based on the score and assuming a single 
input into the function. The grades should be based on the following criteria:   

  Grade    Score  

 A  90 to 100 

 B  80 to 90 

 C  70 to 80 

 D  60 to 70 

 E  60 

   1.   State the Problem 
  Determine the grade earned on a test.  
  2.   Describe the Input and Output   

  Input   Single score, not an array 

  Output   Letter grade 

  3.   Develop a Hand Example 
  85 should be a B 
  But should 90 be an A or a B? We need to create more exact criteria.   

  Grade    Score  

 A     �90    to 100 

 B     �80    and    90    

 C     �70    and    80    

 D     �60    and    70    

 E     60    

  4.   Develop a MATLAB ®  Solution 
  Outline the function, using the fl owchart shown in  Figure   8.10   .  
  5.   Test the Solution 
  Now test the function in the command window:   

grade(25)
ans =
E
grade(80)
ans =
B
grade(-52)
ans =
E
grade(108)
ans =
A

  EXAMPLE 8.2
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  Notice that although the function seems to work properly, it returns grades for 
values over 100 and values less than 0. If you’d like, you can now go back and 
add the logic to exclude those values:   

function results = grade(x)
%This function requires a scalar input

if(x>=0 & x<=100)
if(x>=90)

results = 'A';
elseif(x>=80)

results = 'B';
elseif(x>=70)

results = 'C';
elseif(x>=60)

results = 'D';
else

results = 'E';
end

else
results = 'Illegal Input';

end

Start
grade(x)

if  x > 90
True

results 'A'

results 'B'

results 'C'

results 'D'

x > 70

x > 80
True

True

results 'E'

End

x > 60

elseif

elseif

elseif

else

 Figure 8.10 
 Flowchart for a grading 
scheme.       

function results = grade(x)
%This function requires a 
%scalar input
if(x>=90)

results = 'A';
elseif(x>=80)

results = 'B';
elseif(x>=70)

results = 'C';
elseif(x>=60)

results = 'D';
else

results = 'E';
end

(continued)
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  We can test the function again in the command window:   

grade(-10)
ans =
Illegal Input
grade(108)
ans =
Illegal Input

 This function will work great for scalars, but if you send a vector to the 
function, you may get some unexpected results, such as   

score = [95,42,83,77];
grade(score)
ans =
E  

  PRACTICE EXERCISES 8.2 

 The   if   family of functions is particularly useful in functions. Write and test 
a function for each of these problems, assuming that the input to the func-
tion is a scalar: 

 1.   Suppose the legal drinking age is 21 in your state. Write and test a 
function to determine whether a person is old enough to drink.  

 2.   Many rides at amusement parks require riders to be a certain minimum 
height. Assume that the minimum height is    48��    for a certain ride. 
Write and test a function to determine whether the rider is tall enough.  

   3.   When a part is manufactured, the dimensions are usually specifi ed 
with a tolerance. Assume that a certain part needs to be 5.4 cm long, 
plus or minus 0.1 cm    15.4 	 0.1 cm2.    Write a function to determine 
whether a part is within these specifi cations.  

 4.   Unfortunately, the United States currently uses both metric and 
English units. Suppose the part in Exercise 3 was inspected by 
measuring the length in inches instead of centimeters. Write and test a 
function that determines whether the part is within specifi cations and 
that accepts input into the function in inches.  

 5.   Many solid-fuel rocket motors consist of three stages. Once the fi rst 
stage burns out, it separates from the missile and the second stage 
lights. Then the second stage burns out and separates, and the third 
stage lights. Finally, once the third stage burns out, it also separates 
from the missile. Assume that the following data approximately 
represent the times during which each stage burns:   

 Stage 1  0–100 seconds 
 Stage 2  100–170 seconds 
 Stage 3  170–260 seconds 

   Write and test a function to determine whether the missile is in Stage 1 
fl ight, Stage 2 fl ight, Stage 3 fl ight, or free fl ight (unpowered).     
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  8.4.4   Switch and Case 

 The   switch/case   structure is often used when a series of programming path options 
exists for a given variable, depending on its value. The   switch/case   is similar to the 
  if/else/elseif  . As a matter of fact, anything you can do with   switch/case   
could be done with   if/else/elseif  . However, the code is a bit easier to read with 
  switch/case  , a structure that allows you to choose between multiple outcomes, 
based on some criterion. This is an important distinction between   switch/case   and 
  elseif  . The criterion can be either a scalar (a number) or a string. In practice, it is 
used more with strings than with numbers. The structure of   switch/case   is   

switch variable
case option1

code to be executed if variable is equal to option 1 
case option2

code to be executed if variable is equal to option 2 

o
case option_n

code to be executed if variable is equal to option n 
otherwise

code to be executed if variable is not equal to any of 
  the options 

end

 Here’s an example: Suppose you want to create a function that tells the user 
what the airfare is to one of three different cities:   

city = input('Enter the name of a city in single quotes: ')
switch city

case 'Boston'
disp('$345')

case 'Denver'
disp('$150')

case 'Honolulu'
disp('Stay home and study')

otherwise
disp('Not on file')

end

 If, when you run this script, you reply   'Boston'   at the prompt, MATLAB ®  
responds   

city =
Boston
$345

 You can tell the   input   command to expect a string by adding “s” in a second 
fi eld. This relieves the user of the awkward requirement of adding single quotes 
around any string input. With the added “s”, the preceding code now reads as follows:   

city = input('Enter the name of a city: ','s')
switch city

case 'Boston'
disp('$345')

case 'Denver'
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disp('$150')
case 'Honolulu'

disp('Stay home and study')
otherwise

disp('Not on file')
end

 The   otherwise   portion of the   switch/case   structure is not required for the 
structure to work. However, you should include it if there is any way that the user 
could input a value not equal to one of the cases. 

   Switch/case   structures are fl owcharted exactly the same as   if/else   structures. 

  HINT    
 If you are a C programmer, you may have used   switch/case   in that lan-
guage. One important difference in MATLAB ®  is that once a “true” case has 
been found, the program does not check the other cases.  

  BUYING GASOLINE 
 Four countries in the world do not offi cially use the metric system: the United 
States, the United Kingdom, Liberia, and Myanmar. Even in the United States, the 
practice is that some industries are almost completely metric and others still use the 
English system of units. For example, any shade-tree mechanic will tell you that 
although older cars have a mixture of components—some metric and others 
English—new cars (any car built after 1989) are almost completely metric. Wine is 
packaged in liters, but milk is packaged in gallons. Americans measure distance in 
miles, but power in watts. Confusion between metric and English units is common. 
American travelers to Canada are regularly confused because gasoline is sold by the 
liter in Canada, but by the gallon in the United States. 

 Imagine that you want to buy gasoline ( Figure   8.11   ). Write a program that:  

   •   Asks the user whether he or she wants to request the gasoline in liters or in gallons.  
  •   Prompts the user to enter how many units he or she wants to buy.  
  •   Calculates the total cost to the user, assuming that gasoline costs $2.89 per gallon.   

 Use a   switch/case   structure. 

1.   State the Problem 
  Calculate the cost of a gasoline purchase.  
2.   Describe the Input and Output   

  Input   Specify gallons or liters 
 Number of gallons or liters 

  Output   Cost in dollars, assuming $2.89 per gallon 

  3.   Develop a Hand Example 
  If the volume is specifi ed in gallons, the cost is 

   volume � $2.89   

  EXAMPLE 8.3

 Figure 8.11 
 Gasoline is sold in both 
liters and gallons.       
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  so, for 10 gallons, 

   cost � 10 gallons � $2.89>gallon � $28.90   

  If the volume is specifi ed in liters, we need to convert liters to gallons and then 
calculate the cost: 

   volume � liters � 0.264 gallon>liter   

cost � volume � $2.89   

  So, for 10 liters, 

   volume � 10 liters � 0.264 gallon>liter � 2.64 gallons   

cost � 2.64 gallons � 2.89 � $7.63    

  4.   Develop a MATLAB ®  Solution 
  First create a fl owchart ( Figure   8.12   ). Then convert the fl owchart into pseu-

docode comments. Finally, add the MATLAB ®  code:    

Define the cost/gal

Input gallons or liters

case 'gallons'

case 'liters'

Start
clear,clc

Switch

factor 1

factor 0.264

T

T
F

Not available

cost volume * factor * rate

Enter the amount of gasoline

send results to the screen

factor 0

if factor ~ 0

End

T

F

 Figure 8.12 
 Flowchart to determine the 
cost of gasoline, using the 
switch/case   structure.       

(continued)
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clear,clc
%Define the cost per gallon
rate = 2.89;
%Ask the user to input gallons or liters
unit = input('Enter gallons or liters\n ','s');
%Use a switch/case to determine the conversion factor
switch unit
case 'gallons'

factor = 1;
case 'liters'

factor = 0.264;
otherwise

disp('Not available')
factor = 0;

end

%Ask the user how much gas he/she would like to buy
volume = input( ['Enter the volume you would like to buy 
in ',unit,': \n'] );
%Calculate the cost of the gas
if factor ~ = 0

cost = volume * factor*rate;
%Send the results to the screen
fprintf('That will be $ %5.2f for %5.1f %s

\n',cost,volume,unit)
end

  There are several things to notice about this solution. First, the variable   unit   
contains an array of character information. If you check the workspace window 
after you run this program, you’ll notice that   unit   is either a    1 � 6    character 
array (if you entered liters) or a    1 � 7    character array (if you entered gallons). 

  On the line   

unit = input('Enter gallons or liters ','s');

  the second fi eld,  's' , tells MATLAB ®  to expect a string as input. This allows the 
user to enter gallons or liters without the surrounding single quotes. 

  On the line   

volume = input( ['Enter the volume you would like to buy in 
',unit,': '] );

  we created a character array out of three components: 

   •   The string   'Enter the volume you would like to buy in'    
  •   The character variable   unit    
  •   The string   ':'

  By combining these three components, we were able to make the program 
prompt the user with either   

Enter the volume you would like to buy in liters:

  or   

Enter the volume you would like to buy in gallons:
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  In the   fprintf   statement, we included a fi eld for string input by using the 
placeholder   %s  :   

fprintf('That will be $ %5.2f for %5.1f %s 
     \n',cost,volume,unit)

  This allowed the program to tell the users that the gasoline was measured either 
in gallons or in liters. 

 Finally, we used an  if  statement so that if the user entered something 
besides gallons or liters, no calculations were performed.  

  5.   Test the Solution 
  We can test the solution by running the program three separate times, once for 

gallons, once for liters, and once for some unit not supported. The interaction 
in the command window for gallons is   

Enter gallons or liters
gallons
Enter the volume you would like to buy in gallons:
10
That will be $ 28.90 for 10.0 gallons

  For liters, the interaction is   

Enter gallons or liters
liters
Enter the volume you would like to buy in liters:
10
That will be $ 7.63 for 10.0 liters

  Finally, if you enter anything besides gallons or liters, the program sends an 
error message to the command window:   

Enter gallons or liters
quarts
Not available

  Since the program results are the same as the hand calculation, it appears that 
the program works as planned.     

  8.4.5   Menu 

 The   menu   function is often used in conjunction with a   switch/case   structure. 
This function causes a menu box to appear on the screen, with a series of buttons 
defi ned by the programmer.      

input = menu(' Message to the user ',' text for button 
   1 ',' text for button 2 ', etc.)

 We can use the   menu   option in our previous airfare example to ensure that the 
user chooses only cities about which we have information. This also means that we 
don’t need the   otherwise   syntax, since it is not possible to choose a city “not on fi le.”   

city = menu('Select a city from the menu: 
 ','Boston','Denver','Honolulu')

 KEY IDEA 
 Graphical user interfaces 
like the menu box reduce 
the opportunity for user 
errors, such as spelling 
mistakes 
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switch city
case 1

disp('$345')
case 2

disp('$150')
case 3

disp('Stay home and study')
end

 Notice that a case number has replaced the string in each   case   line. When the 
script is executed, the menu box shown in  Figure   8.13    appears and waits for the 
user to select one of the buttons. If you choose Honolulu, MATLAB ®  will respond    

city =
3

Stay home and study

 Of course, you could suppress the output from the   disp   command, which was 
included here for clarity. 

 Figure 8.13 
 The pop-up menu window.       

  BUYING GASOLINE: A MENU APPROACH 
 In  Example   8.3   , we used a   switch/case   approach to determine whether the cus-
tomer wanted to buy gasoline measured in gallons or liters. One problem with our 
program is that if the user can’t spell, the program won’t work. For example, if, 
when prompted for gallons or liters, the user enters   

litters

 The program will respond   

Not Available

 We can get around this problem by using a menu; then the user need only press a 
button to make a choice. We’ll still use the   switch/case   structure, but will com-
bine it with the menu. 

   1.   State the Problem 
  Calculate the cost of a gasoline purchase.  

  EXAMPLE 8.4
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2.   Describe the Input and Output   

  Input   Specify gallons or liters, using a menu 
 Number of gallons or liters 

  Output   Cost in dollars, assuming $2.89 per gallon 

3.   Develop a Hand Example 
  If the volume is specifi ed in gallons, the cost is 

   volume � $2.89   

  So, for 10 gallons, 

   cost � 10 gallons � $2.89>gallon � $28.90   

  If the volume is specifi ed in liters, we need to convert liters to gallons and then 
calculate the cost: 

    volume � liters � 0.264 gallon>liter   

    cost � volume � $2.89    

  So, for 10 liters, 

    volume � 10 liters � 0.264 gallon>liter � 2.64 gallons   

    cost � 2.64 gallons � 2.89 � $7.63     

4.   Develop a MATLAB ®  Solution 
  First create a fl owchart ( Figure   8.14   ). Then convert the fl owchart into pseu-

docode comments. Finally, add the MATLAB ®  code:    
%Example 8.4
clear,clc
%Define the cost per gallon
rate = 2.89;
%Ask the user to input gallons or liters, using a menu
disp('Use the menu box to make your selection ')
choice = menu('Measure the gasoline in liters or 
gallons?','gallons','liters');
%Use a switch/case to determine the conversion factor
switch choice

case 1
factor = 1;
unit = 'gallons'

case 2
factor = 0.264;
unit = 'liters'

end

%Ask the user how much gas he/she would like to buy
volume = input(['Enter the volume you would like to 
 buy in ',unit,': \n'] );
%Calculate the cost of the gas
cost = volume * factor*rate;
%Send the results to the screen
fprintf('That will be $ %5.2f for %5.1f %s
 \n',cost,volume,unit)

(continued)
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 This solution is simpler than the one in  Example   8.3    because there is no 
chance for bad input. There are a few things to notice, however. 

 When we defi ne the choice by using the menu function, the result is a 
number, not a character array:   

choice = menu('Measure the gasoline in liters or 
 gallons?','gallons','liters');

  You can check this by consulting the workspace window, in which the choice is 
listed as a    1 � 1    double-precision number. 

 Because we did not use the   input   command to defi ne the variable   unit  , 
which is a string (a character array), we needed to specify the value of   unit   as 
part of the case calculations:   

case 1
factor = 1;
unit = 'gallons'

case 2
factor = 0.264;
unit = 'liters'

  Doing this allows us to use the value of   unit   in the output to the command 
window, both in the   disp   command and in   fprintf  .  

Define the cost/gal

Input gallons or liters

case 1

case 2

Start
clear,clc

Switch

factor = 1

factor = 0.264

T

T
F

cost = volume * factor * rate

Enter the amount of gasoline

Send results to the screen

End

 Figure 8.14 
 Flowchart to determine the 
cost of gasoline, using a 
menu.       
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5.   Test the Solution 
  As in  Example   8.3   , we can test the solution by running the program, but this 

time we need to try it only twice—once for gallons and once for liters. The 
interaction in the command window for gallons is   

Use the menu box to make your selection 

          
Enter the volume you would like to buy in gallons:
10
That will be $ 28.90 for 10.0 gallons

          
  For liters, the interaction is   

Use the menu box to make your selection

Enter the volume you would like to buy in liters:
10
That will be $ 7.63 for 10.0 liters

  These values match those in the hand solution and have the added advantage 
that you can’t misspell any of the input.    

  PRACTICE EXERCISES 8.3 

 Use the   switch/case   structure to solve these problems: 

 1.   Create a program that prompts the user to enter his or her year in 
school—freshman, sophomore, junior, or senior. The input will be a 
string. Use the   switch/case   structure to determine which day fi nals 
will be given for each group—Monday for freshmen, Tuesday for 
sophomores, Wednesday for juniors, and Thursday for seniors.  
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   2.   Repeat Exercise 1, but this time with a menu.  
   3.   Create a program to prompt the user to enter the number of candy 

bars he or she would like to buy. The input will be a number. Use the 
  switch/case   structure to determine the bill, where 

       1 bar � $0.75     
      2 bars � $1.25     
      3 bars � $1.65      

   more than    3 bars � $1.65 � $0.30 1number ordered � 32         

Command prompt

Variables
are listed
as they are
created

Folding
has been
activated

Current location as we
step through the code

Break-
point

 Figure 8.15 
 Using debugging tools is 
an effective way to 
evaluate how MATLAB ®  
moves through the code as 
it executes.       

  8.5   DEBUGGING 

 As the code we are writing becomes more complicated, the debugging tools available in 
MATLAB ®  become more valuable. Consider the simple program shown in  Figure   8.15    
that demonstrates the use of the if/else structure. A breakpoint has been added on line 
two. When the code is executed by selecting the save and run icon, it will fi rst pause on 
line 1 waiting for the user to enter a number. Once the number has been entered, the 
program moves to line two and stops because the breakpoint has been encountered. 
Selecting the step icon will progress the execution through the code one line at a time, 
allowing the programmer to observe the effect of each line of code.  

 Also notice that the folding capability available in MATLAB ®  has been activated 
for   if/else   structures. This was accomplish by selecting 

File -> Preferences -> Editor/Debugger -> Code Folding

 from the menu bar. By activating code folding for  if/else  blocks a visual cue is cre-
ated, making it easier to keep track of which lines of code are included in the structure.   
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     SUMMARY 

 Sections of computer code can be categorized as sequences, selection structures, 
and repetition structures. Sequences are lists of instructions that are executed in 
order. Selection structures allow the programmer to defi ne criteria (conditional 
statements) that the program uses to choose execution paths. Repetition structures 
defi ne loops in which a sequence of instructions is repeated until some criterion is 
met (also defi ned by conditional statements). 

 MATLAB ®  uses the standard mathematical relational operators, such as greater 
than    172    and less than    162.    The not-equal-to    1� � 2    operator’s form is not usually 
seen in mathematics texts. MATLAB ®  also includes logical operators such as  and  
(&) and  or     1 � 2.    These operators are used in conditional statements, allowing 
MATLAB ®  to make decisions regarding which portions of the code to execute. 

 The   find   command is unique to MATLAB ®  and should be the primary condi-
tional function used in your programming. This command allows the user to spe-
cify a condition by using both logical and relational operators. The command is 
then used to identify elements of a matrix that meet the condition. 

 Although the   if  ,   else  , and   elseif   commands can be used for both scalars 
and matrix variables, they are useful primarily for scalars. These commands allow 
the programmer to identify alternative computing paths on the basis of the results 
of conditional statements. 

 The following MATLAB ®  summary lists and briefl y describes all the special 
characters, commands, and functions that were defi ned in this chapter: 

  MATLAB ®  SUMMARY     

  Special Characters  

  <   less than 
  <=   less than or equal to 
  >   greater than 
  >=   greater than or equal to 
  ==   equal to 
  ~=   not equal to 
  &   and 
  |   or 
  ~   not 

  Commands and Functions  

  all   checks to see if a criterion is met by all the elements in an array 
  any   checks to see if a criterion is met by any of the elements in an array 
  case   selection structure 
  else   defi nes the path if the result of an  if  statement is false 
  elseif   defi nes the path if the result of an  if  statement is false, and specifi es a new logical test 
  end   identifi es the end of a control structure 
  fi nd   determines which elements in a matrix meet the input criterion 
  if   checks a condition, resulting in either true or false 
  menu   creates a menu to use as an input vehicle 
  otherwise   part of the case selection structure 
  switch   part of the case selection structure 
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 control structure 
 index 
 local variable 
 logical condition 

 logical operator 
 loop 
 relational operator 
 repetition 

 selection 
 sequence 
 subscript  

  KEY TERMS 

  LOGICAL OPERATORS: FIND  

   8.1    A sensor that monitors the temperature of a backyard hot tub records the 
data shown in  Table   8.5   . 

   Table 8.5   Hot-Tub Temperature Data 

  Time of Day    Temperature, °F  

 00:00  100 

 01:00  101 

 02:00  102 

 03:00  103 

 04:00  103 

 05:00  104 

 06:00  104 

 07:00  105 

 08:00  106 

 09:00  106 

 10:00  106 

 11:00  105 

 12:00  104 

 13:00  103 

 14:00  101 

 15:00  100 

 16:00   99 

 17:00  100 

 18:00  102 

 19:00  104 

 20:00  106 

 21:00  107 

 22:00  105 

 23:00  104 

 24:00  104 

   (a)    The temperature should never exceed 105°F. Use the   find   function to 
fi nd the index numbers of the temperatures that exceed the maximum 
allowable temperature.  

  PROBLEMS 
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  (b)    Use the   length   function with the results from part (a) to determine 
how many times the maximum allowable temperature was exceeded.  

  (c)    Determine at what times the temperature exceeded the maximum 
allowable temperature, using the index numbers found in part (a).  

  (d)    The temperature should never be lower than 102°F. Use the   find   func-
tion together with the   length   function to determine how many times 
the temperature was less than the minimum allowable temperature.  

 ( e)    Determine at what times the temperature was less than the minimum 
allowable temperature.  

(  f)    Determine at what times the temperature was within the allowable limits 
(i.e., between 102°F and 105°F, inclusive).  

  (g)    Use the   max   function to determine the maximum temperature reached 
and the time at which it occurred.     

   8.2    The height of a rocket (in meters) can be represented by the following 
equation: 

   height � 2.13t2 � 0.0013t4 � 0.000034t4.751   

 Create a vector of time ( t ) values from 0 to 100 at 2-second intervals. 

   (a)    Use the   find   function to determine when the rocket hits the ground to 
within 2 seconds. ( Hint : The value of   height   will be positive for all val-
ues until the rocket hits the ground.)  

  (b)    Use the   max   function to determine the maximum height of the rocket 
and the corresponding time.  

  (c)    Create a plot with  t  on the horizontal axis and height on the vertical axis for 
times until the rocket hits the ground. Be sure to add a title and axis labels.*     

   8.3    Solid-fuel rocket motors are used as boosters for the space shuttle, in satel-
lite launch vehicles, and in weapons systems (see  Figure   P8.3   ). The propel-
lant is a solid combination of fuel and oxidizer, about the consistency of an 
eraser. For the space shuttle, the fuel component is aluminum and the oxi-
dizer is ammonium perchlorate, held together with an epoxy resin “glue.” 
The propellant mixture is poured into a motor case, and the resin is allowed 
to cure under controlled conditions. Because the motors are extremely 
large, they are cast in segments, each requiring several “batches” of propel-
lant to fi ll. (Each motor contains over 1.1 million pounds of propellant!) 
This casting–curing process is sensitive to temperature, humidity, and pres-
sure. If the conditions aren’t just right, the fuel could ignite or the proper-
ties of the propellant grain (which means its shape; the term  grain  is 
borrowed from artillery) might be degraded. Solid-fuel rocket motors are 
extremely expensive as well as dangerous and clearly must work right every 
time, or the results will be disastrous. Failures can cause loss of human life 
and irreplaceable scientifi c data and equipment. Highly public failures can 
destroy a company. Actual processes are tightly monitored and controlled. 
However, for our purposes, consider these general criteria:  

   The temperature should remain between 115°F and 125°F.  
  The humidity should remain between 40% and 60%.  
  The pressure should remain between 100 and 200 torr.   

 Figure P8.3 

 Solid-fuel rocket booster to 
a titan missile. (Courtesy of 
NASA.)       

* From Etter, Kancicky, and Moore, Introduction to Matlab 7 (Upper Saddle River, NJ: Pearson/Prentice 
Hall, 2005).
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 Imagine that the data in  Table   8.6    were collected during a casting–curing 
process.  

   (a)    Use the   find   command to determine which batches did and did not 
meet the criterion for temperature.  

  (b)    Use the   find   command to determine which batches did and did not 
meet the criterion for humidity.  

  (c)    Use the   find   command to determine which batches did and did not 
meet the criterion for pressure.  

  (d)    Use the   find   command to determine which batches failed for any rea-
son and which passed.  

  (e)    Use your results from the previous questions, along with the   length   
command, to determine what percentage of motors passed or failed on 
the basis of each criterion and to determine the total passing rate.     

   8.4    Two gymnasts are competing with each other. Their scores are shown in 
 Table   8.7   .  

 Table 8.7   Gymnastics Scores 

  Event    Gymnast 1    Gymnast 2  

 Pommel horse  9.821  9.700 

 Vault  9.923  9.925 

 Floor  9.624  9.83 

 Rings  9.432  9.987 

 High bar  9.534  9.354 

 Parallel bars  9.203  9.879 

   (a)    Write a program that uses   find   to determine how many events each 
gymnast won.  

  (b)    Use the   mean   function to determine each gymnast’s average score.     

   8.5    Create a function called  f  that satisfi es the following criteria: 

      For values of x 7 2, f1x2 � x2     
     For values of x … 2, f1x2 � 2x      

 Plot your results for values of  x  from    -3    to 5. Choose your spacing to create 
a smooth curve. You should notice a break in the curve at    x � 2.      

 Table 8.6   Casting–Curing Data 

  Batch Number    Temperature, °F    Humidity, %    Pressure, torr  

 1  116  45  110 

 2  114  42  115 

 3  118  41  120 

 4  124  38   95 

 5  126  61  118 
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   8.6    Create a function called  g  that satisfi es the following criteria: 

       For x 6 -p,  g1x2 � -1      
      For x Ú -p and x … p,  g1x2 � cos1x2     
      For x 7 p,  g1x2 � -1       

 Plot your results for values of  x  from    -2p    to    +2p.    Choose your spacing to 
create a smooth curve.   

   8.7    A fi le named  temp.dat  contains information collected from a set of thermo-
couples. The data in the fi le are shown in  Table   8.8   . The fi rst column consists 
of time measurements (one for each hour of the day), and the remaining 
columns correspond to temperature measurements at different points in a 
process.  
   (a)    Write a program that prints the index numbers (rows and columns) of 

temperature data values greater than 85.0. ( Hint : You’ll need to use the 
fi nd command.)  

  (b)    Find the index numbers (rows and columns) of temperature data values 
less than 65.0.  

  (c)    Find the maximum temperature in the fi le and the corresponding hour 
value and thermocouple number.     

 Table 8.8   Temperature Data 

  Hour    Temp1    Temp2    Temp3  

  1  68.70  58.11  87.81 

  2  65.00  58.52  85.69 

  3  70.38  52.62  71.78 

  4  70.86  58.83  77.34 

  5  66.56  60.59  68.12 

  6  73.57  61.57  57.98 

  7  73.57  67.22  89.86 

  8  69.89  58.25  74.81 

  9  70.98  63.12  83.27 

 10  70.52  64.00  82.34 

 11  69.44  64.70  80.21 

 12  72.18  55.04  69.96 

 13  68.24  61.06  70.53 

 14  76.55  61.19  76.26 

 15  69.59  54.96  68.14 

 16  70.34  56.29  69.44 

 17  73.20  65.41  94.72 

 18  70.18  59.34  80.56 

 19  69.71  61.95  67.83 

 20  67.50  60.44  79.59 

 21  70.88  56.82  68.72 

 22  65.99  57.20  66.51 

 23  72.14  62.22  77.39 

 24  74.87  55.25  89.53 
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   8.8    The Colorado River Drainage Basin covers parts of seven western states. A 
series of dams has been constructed on the Colorado River and its tributar-
ies to store runoff water and to generate low-cost hydroelectric power (see 
 Figure   P8.8   ). The ability to regulate the fl ow of water has made the growth 
of agriculture and population in these arid desert states possible. Even during 
periods of extended drought, a steady, reliable source of water and electricity 

 Figure P8.8 
 Glen Canyon dam at Lake 
Powell. (Courtesy of Getty 
images, Inc.)       

has been available to the basin states. Lake Powell is one of these reservoirs. 
The fi le  lake_powell.dat  contains data on the water level in the reservoir for 
the 8 years from 2000 to 2007. These data are shown in  Table   8.9   . Use the 
data in the fi le to answer the following questions:   
   (a)    Determine the average elevation of the water level for each year and for 

the 8-year period over which the data were collected.  
  (b)    Determine how many months each year exceed the overall average for 

the 8-year period.  
  (c)     Create a report that lists the month (number) and the year for each of the 

months that exceed the overall average. For example, June is month 6.  
  (d)    Determine the average elevation of the water for each month for the 

8-year period.   

 Table 8.9   Water-Level Data for Lake Powell, Measured in Feet above Sea Level 

     2000     2001     2002     2003     2004     2005     2006     2007  

 January  3680.12  3668.05  3654.25  3617.61  3594.38  3563.41  3596.26  3601.41 

 February  3678.48  3665.02  3651.01  3613  3589.11  3560.35  3591.94  3598.63 

 March  3677.23  3663.35  3648.63  3608.95  3584.49  3557.42  3589.22  3597.85 

 April  3676.44  3662.56  3646.79  3605.92  3583.02  3557.52  3589.94  3599.75 

 May  3676.76  3665.27  3644.88  3606.11  3584.7  3571.60  3598.27  3604.68 

 June  3682.19  3672.19  3642.98  3615.39  3587.01  3598.06  3609.36  3610.94 

 July  3682.86  3671.37  3637.53  3613.64  3583.07  3607.73  3608.79  3609.47 

 August  3681.12  3667.81  3630.83  3607.32  3575.85  3604.96  3604.93  3605.56 

 September  3678.7  3665.45  3627.1  3604.11  3571.07  3602.20  3602.08  3602.27 

 October  3676.96  3663.47  3625.59  3602.92  3570.7  3602.31  3606.12  3601.27 

 November  3674.93  3661.25  3623.98  3601.24  3569.69  3602.65  3607.46  3599.71 

 December  3671.59  3658.07  3621.65  3598.82  3565.73  3600.14  3604.96  3596.79 
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  Note :  This problem should be solved using the   find   function, the   mean   function, 
and the   length   function. Programmers with previous experience may be tempted 
to use a loop structure, which is not required.    

  IF STRUCTURES  

   8.9    Create a program that prompts the user to enter a scalar value of tempera-
ture. If the temperature is greater than 98.6°F, send a message to the com-
mand window telling the user that he or she has a fever.   

   8.10    Create a program that fi rst prompts the user to enter a value for  x  and then 
prompts the user to enter a value for   y  . If the value of  x  is greater than the 
value of   y  , send a message to the command window telling the user that 
   x 7 y.    If  x  is less than or equal to   y  , send a message to the command win-
dow telling the user that    y 7� x.       

   8.11    The inverse sine (  asin  ) and inverse cosine (  acos  ) functions are valid only 
for inputs between    -1    and    +1,    because both the sine and the cosine have 
values only between    -1    and    +1    ( Figure   P8.11   ). MATLAB ®  interprets the 
result of   asin   or   acos   for a value outside the range as a complex number. 
For example, we might have   

acos(-2)
ans =
3.1416 - 1.3170i

 which is a questionable mathematical result. Create a function called   my_
asin   that accepts a single value of  x  and checks to see if it is between    -1    
and    +1 1-1 6  � x 6  � 12.    If   x   is outside the range, send an error 
message to the screen. If it is inside the allowable range, return the value of 
  asin  .    
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 Figure P8.11 
 The sine function varies 
between    -1    and    +1   . Thus, 
the inverse sine  (asin)  
is not defi ned for values 
greater than 1 and values 
less than    -1.          

   8.12    Create a program that prompts the user to enter a scalar value for the out-
side air temperature. If the temperature is equal to or above 80°F, send a 
message to the command window telling the user to wear shorts. If the tem-
perature is between 60°F and 80°F send a message to the command window 
telling the user that it is a beautiful day. If the temperature is equal to or 
below 60°F, send a message to the command window telling the user to 
wear a jacket or coat.   
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   8.13    Suppose the following matrix represents the number of saws ordered from 
your company each month over the last year.   

saws = [1,4,5,3,7,5,3,10,12,8, 7, 4]

 All the numbers should be zero or positive. 

   (a)    Use an   if   statement to check whether any of the values in the matrix 
are invalid. (Evaluate the whole matrix at once in a single   if   state-
ment.) Send the message “All valid” or else “Invalid number found” to 
the screen, depending on the results of your analysis.  

  (b)    Change the   saws   matrix to include at least one negative number, and 
check your program to make sure that it works for both cases.     

   8.14    Most large companies encourage employees to save by matching their con-
tributions to a 401(k) plan. The government limits how much you can save 
in these plans, because they shelter income from taxes until the money is 
withdrawn during your retirement. The amount you can save is tied to your 
income, as is the amount your employer can contribute. The government 
will allow you to save additional amounts without the tax benefi t. These 
plans change from year to year, so this example is just a made-up “what if.” 

 Suppose the Quality Widget Company has the savings plan described in 
 Table   8.10   . Create a function that fi nds the total yearly contribution to your 
savings plan, based on your salary and the percentage you contribute. 
Remember, the total contribution consists of the employee contribution 
and the company contribution. 

 Table 8.10   Quality Widget Company Savings Plan 

  Income  
   Maximum You Can 
 Save Tax Free  

   Maximum the Company 
 Will Match  

 Up to $30,000  10%  10% 

 Between $30,000 and 
$60,000 

 10%  10% of the fi rst $30,000 and 5% 
of the amount above $30,000 

 Between $60,000 and 
$100,000 

 10% of the fi rst $60,000 and 8% 
of the amount above $60,000 

 10% of the fi rst $30,000 and 5% 
of the amount between $30,000 
and $60,000; nothing for the 
remainder above $60,000 

 Above $100,000  10% of the fi rst $60,000 and 8% 
of the amount between $60,000 
and $100,000; nothing on the 
amount above $100,000 

 Nothing—highly compensated 
employees are exempt from this 
plan and participate in stock 
options instead 

     SWITCH/CASE  

   8.15    In order to have a closed geometric fi gure composed of straight lines 
( Figure   P8.15   ), the angles in the fi gure must add to  

   1n � 22 1180 degrees2   
 where  n  is the number of sides. 

   (a)    Prove this statement to yourself by creating a vector called  n  from 3 to 6 
and calculating the angle sum from the formula. Compare what you 
know about geometry with your answer.  

 Figure P8.15 
 Regular Polygons.       
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  (b)    Write a program that prompts the user to enter one of the following: 

    triangle  
   square  
   pentagon  
   hexagon   

 Use the input to defi ne the value of  n  via a   switch/case   structure; 
then use  n  to calculate the sum of the interior angles in the fi gure.  

 ( c)   Reformulate your program from part (b) so that it uses a menu.     

   8.16    At a local university, each engineering major requires a different number 
of credits for graduation. For example, recently the requirements were as 
follows:      

 Civil Engineering  130 

 Chemical Engineering  130 

 Computer Engineering  122 

 Electrical Engineering  126.5 

 Mechanical Engineering  129 

 Prompt the user to select an engineering program from a menu. Use a 
  switch/case   structure to send the minimum number of credits required 
for graduation back to the command window.   

   8.17    The easiest way to draw a star in MATLAB ®  is to use polar coordinates. You 
simply need to identify points on the circumference of a circle and draw lines 
between those points. For example, to draw a fi ve-pointed star, start at the top 
of the circle    1u � p>2, r � 12    and work counterclockwise ( Figure   P8.17   ). 

 Prompt the user to specify either a fi ve-pointed or a six-pointed star, 
using a menu. Then create the star in a MATLAB ®  fi gure window. Note that 
a six-pointed star is made of three triangles and requires a strategy different 
from that used to create a fi ve-pointed star.    

  CHALLENGE PROBLEMS  

   8.18    Most major airports have separate lots for long-term and short-term parking. 
The cost to park depends on the lot you select, and how long you stay. 
Consider this rate structure from the Salt Lake International Airport during 
the summer of 2008. 
   •   Long-Term (Economy) Parking  

  •   The fi rst hour is $1.00, and each additional hour or fraction thereof is 
$1.00  

  •   Daily maximum $6.00  
  •   Weekly maximum $42.00  

  •   Short-Term Parking  
  •   The fi rst 30 minutes are free and each additional 20 minutes or fraction 

thereof is $1.00  
  •   Daily maximum $25.00 

 Write a program that asks the user the following:  

  •   Which lot are you using?  
  •   How many weeks, hours, days, and minutes did you park? Your program 

should then calculate the parking bill.        
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 Figure P8.17 
 Steps required to draw a fi ve-pointed star in polar coordinates.       



9   

  INTRODUCTION 

 As discussed in the previous chapter, one way to think of a computer program (not 
just MATLAB ® ) is to consider how the statements that compose it are organized. 
Usually, sections of computer code can be categorized as  sequences ,  selection   structures , 
and  repetition structures.  The previous chapter described selection structures; in this 
chapter we will focus on repetition structures. As a rule of thumb, if a section of code 
is repeated more than three times, it is a good candidate for a repetition structure. 

 Repetition structures are often called loops. All loops consist of fi ve basic parts.    

   •   A parameter to be used in determining whether or not to end the loop.  
  •   Initialization of this parameter.  
  •   A way to change the parameter each time through the loop. (If you don’t change 

it, the loop will never stop executing.)  
  •   A comparison, using the parameter, to a criterion used to decide when to end the 

loop.  
  •   Calculations to do inside the loop.   

 After reading this chapter, you 
should be able to: 
  •   Write and use   for   loops  
  •   Write and use   while   loops  
  •   Create midpoint break 

structures  

  •   Measure the time required 
to execute program 
 components  

  •   Understand how to 
improve program 
execution times   

     Objectives 

 Repetition 
Structures 

  C H A P T E R
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 MATLAB ®  supports two different types of loops: the   for   loop and the   while   
loop. Two additional commands,   break   and   continue  , can be used to create a 
third type of loop, called a midpoint break loop. The   for   loop is the easiest 
choice when you know how many times you need to repeat the loop.   While   loops 
are the easiest choice when you need to keep repeating the instructions until a 
criterion is met. Midpoint break loops are useful for situations where the com-
mands in the loop must be executed at least once, but where the decision to exit 
the loop is based on some criterion. If you have previous programming experi-
ence, you may be tempted to use loops extensively. However, in many cases you 
can compose MATLAB ®  programs that avoid loops, either by using the   find   
command or by vectorizing the code. (In vectorization, we operate on entire vec-
tors at a time instead of one element at a time.) It’s a good idea to avoid loops 
whenever possible, because vectorized programs run faster and often require 
fewer programming steps.         

     9.1   FOR LOOPS 

 The structure of the   for   loop is simple. The fi rst line identifi es the loop and 
defi nes an index, which is a number that changes on each pass through the loop 
and is used to determine when to end the repetitions. After the identifi cation line 
comes the group of commands we want to execute. Finally, the end of the loop is 
identifi ed by the command   end  . Thus, the structure of a for loop can be summa-
rized as   

for index = [matrix]
commands to be executed 

end

 The loop is executed once for each element of the index matrix identifi ed in 
the fi rst line. Here’s a really simple example:   

for k = [1,3,7]
k

End

 During the fi rst pass through the loop k is assigned a value of 1, the fi rst value 
in the k matrix. During the next pass the value of k is modifi ed to 3, the second 
value in the k matrix. Each time through the loop k is modifi ed and assigned to 
subsequent values from the index matrix. This example code returns   

k =
1

k =
3

k =
7

 The index in this case is   k  . Programmers often use   k   as an index variable as a 
matter of style. The index matrix can also be defi ned with the colon operator or, 
indeed, in a number of other ways as well. Here’s an example of code that fi nds the 
value of 5 raised to powers between 1 and 3:   

 KEY IDEA: 
 Loops allow you to repeat 
sequences of commands 
until some criterion is met 

 KEY IDEA: 
 Use   for   loops when you 
know how many times you 
need to repeat a sequence 
of commands 

 KEY IDEA: 
 Use   while   loops when 
you don’t know how 
many times a sequence 
of commands will need 
to be repeated 
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for 
k = 1:3

a = 5^k
end

 On the fi rst line, the index,   k  , is defi ned as the matrix [1, 2, 3]. The fi rst time 
through the loop,   k   is assigned a value of 1, and    51    is calculated. Then the loop 
repeats, but now   k   is equal to 2 and    52    is calculated. The last time through the 
loop, k   is equal to 3 and    53    is calculated. Because the statements in the loop are 
repeated three times, the value of   a   is displayed three times in the command 
window:   

a =
5

a =
25

a =
125

 Although we defi ned   k   as a matrix in the fi rst line of the   for   loop, because   k   is 
an index number when it is used in the loop, it can equal only one value at a time. 
After we fi nish executing the loop, if we call for   k  , it has only one value: the value of 
the index the fi nal time through the loop. For the preceding example,   

k

 returns   

k =
3

 Notice that   k   is listed as a    1 � 1    matrix in the workspace window. 
 A common way to use a   for   loop is in defi ning a new matrix. Consider, for 

example, the code   

for 
k = 1:5

a(k) = k^2
end

 This loop defi nes a new matrix,   a  , one element at a time. Since the program 
repeats its set of instructions fi ve times, a new element is added to the   a   matrix each 
time through the loop, with the following output in the command window:   

a =
1

a =
1  4

a =
1  4  9

a =
1  4  9  16

a =
1  4  9  16  25 
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 Another common use for a   for   loop is to combine it with an   if   statement and 
determine how many times something is true. For example, in the list of test scores 
shown in the fi rst line, how many are above 90?   

scores = [76,45,98,97];
count = 0;
for k=1:length(scores)

if scores(k)>90
count = count + 1;

end
end
disp(count)

 The variable   count   is initialized as zero, then each time through the loop, if the 
score is greater than 90, the count is incremented by 1. Notice that the   length   com-
mand was used to determine how many times the   for   loop should repeat. In this case   

length(scores)

 is equal to four, the number of values in the   scores   array. 
 Most of the time,   for   loops are created which use an index matrix that is a sin-

gle row. However, if a two-dimensional matrix is defi ned in the index specifi cation, 
MATLAB ®  uses an entire column as the index each time through the loop. For 
example, suppose we defi ne the index matrix as 

   k � £1 2 3
1 4 9
1 8 27

§    
 Then   

for k = [1,2,3; 1,4,9; 1,8,27]
a = k'

   end   

 HINT   
 Most computer programs do not have MATLAB ® ’s ability to handle matrices so 
easily; therefore, they rely on loops similar to the one just presented to defi ne 
arrays. It would be easier to create the vector  a  in MATLAB ®  with the code   

k = 1:5
a = k.^2

 which returns   

k =
1  2  3   4   5

a =
1  4  9  16  25

 This is an example of  vectorizing  the code. 
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 returns   

a =
1  1  1

a =
2  4  8

a =
3  9  27

 Notice that   k   was transposed when it was set equal to   a  , so our results are rows 
instead of columns. We did this to make the output easier to read. 

 We can summarize the use of   for   loops with the following rules: 

   •   The loop starts with a   for   statement and ends with the word   end  .  
  •   The fi rst line in the loop defi nes the number of times the loop will repeat, 

using an index matrix.  
  •   The index of a   for   loop must be a variable. (The index is the number that 

changes each and every time through the loop.) Although   k   is often used as the 
symbol for the index, any variable name may be employed. The use of   k   is a 
matter of style.  

  •   Any of the techniques learned to defi ne a matrix can be used to defi ne the 
index matrix. One common approach is to use the colon operator, as in   

for index = start:inc:final

  •   If the expression is a row vector, the elements are used one at a time—once for 
each time through the loop.  

  •   If the expression is a two-dimensional matrix (this alternative is not common), 
each time through the loop the index will contain the next  column  in the matrix. 
This means that the index will be a column vector!  

  •   Once you’ve completed a   for   loop, the index variable retains the last value used.  
  •     For   loops can often be avoided by vectorizing the code.   

 The basic fl owchart for a   for   loop includes a diamond, which refl ects the fact 
that a   for   loop starts each pass with a check to see if there is a new value in the 
index matrix ( Figure   9.1   ). If there isn’t, the loop is terminated and the program 
continues with the statements after the loop.    

Check to see if the
index has been

exceeded

Calculations

True; you’ve run
out of

values in
the index

matrix

 Figure 9.1 
 Flowchart for a   for   loop.       
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 EXAMPLE 9.1
  CREATING A DEGREES-TO-RADIANS TABLE 
 Although it would be much easier to use MATLAB ® ’s vector capability to create a 
degrees-to-radians table, we can demonstrate the use of   for   loops with this example. 

   1.   State the Problem 
  Create a table that converts angle values from degrees to radians, from 0 to 360 

degrees, in increments of 10 degrees.  
  2.   Describe the Input and Output        

     Input        An array of angle values in degrees  

    Output      A table of angle values in both degrees and radians   

  3.   Develop a Hand Example 
 For 10 degrees, 

   Radians � 1102 p
180

� 0.1745    

  4.   Develop a MATLAB ®  Solution 
 First develop a fl owchart ( Figure   9.2   ) to help you plan your code.  

for k 1:36

deg(k) k*10
rad(k) deg(k)*pi/180

Start

You’ve run
out of
values in
the index
matrix

Define a table of degrees and
radians

Output table

End

 Figure 9.2 
 Flowchart for changing degrees to radians.           

  % Example   9.5    
   %Create a table of degrees to 
   %radians 
   clear, clc 
   %Use a for loop for 
%the calculations 

   for k=1:36 
   deg(k) = k*10; 
   rad(k)=deg(k)*pi/180; 

   end 

   %Create a table 

   t = [deg;rad] 

   %Send the table to the 
   %command window 

   disp('Degrees to Radians') 
   disp('Degrees Radians') 
   fprintf('%8.0f %8.2f \n',t)   
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 The command window displays the following results:   

Degrees to Radians

Degrees Radians

10 0.17

20 0.35

30 0.52 etc.

5.   Test the Solution 
 The value for 10 degrees calculated by MATLAB ®  is the same as the hand 
 calculation. 

 Clearly, it is much easier to use MATLAB ® ’s vector capabilities for this calcu-
lation. You get exactly the same answer, and it takes signifi cantly less computing 
time. This approach is called vectorization of your code and is one of the 
strengths of MATLAB ® . The vectorized code is   

deg = 0:10:360;

rad = deg * pi/180;

t = [deg;rad]

disp('Degrees to Radians')

disp('Degrees Radians')

fprintf('%8.0f %8.2f \n',t)

 EXAMPLE 9.2
  CALCULATING FACTORIALS WITH A FOR LOOP 
 A factorial is the product of all the integers from 1 to  N . For example, 5 factorial is 

     1 # 2 # 3 # 4 # 5     

 In mathematics texts, factorial is usually indicated with an exclamation point: 

  5! is fi ve factorial.  

 MATLAB ®  contains a built-in function for calculating factorials, called   facto-
rial  . However, suppose you would like to program your own factorial function 
called   fact  . 

   1.   State the Problem 
  Create a function called   fact   to calculate the factorial of any number. Assume 

scalar input.  
  2.   Describe the Input and Output   

        Input        A scalar value  N   

    Output      The value of  N !     

  3.   Develop a Hand Example 

     5! � 1 # 2 # 3 # 4 # 5 � 120      
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4.   Develop a MATLAB ®  Solution 
 First develop a fl owchart ( Figure   9.3   ) to help you plan your code.   

5.   Test the Solution 
 Test the function in the command window:   

fact(5)

ans =

120

 This function works only if the input is a scalar. If an array is entered, the   for
loop does not execute, and the function returns a value of 1:   

x=1:10;

fact(x)

ans =

1

 You can add an   if   statement to confi rm that the input is a positive integer and 
not an array, as shown in the fl owchart in  Figure   9.4    and the accompanying 
code.  

  Check the new function in the command window:   

fact(-4)

ans =

Input must be a positive integer

for k 1:x

a a*k

You’ve run
out of
values in
the index
matrix

Output to the main
program a

Initialize a to 1

function output fact(x)

End

 Figure 9.3 
 Flowchart for fi nding a factorial, using a   for   loop.           

  function output = fact(x) 
   %This function accepts a 
   %scalar input and 
   %calculates its factorial 

   % initialize a 

   a = 1; 

   %Use a loop to calculate the 
%factorial 

   for k = 1:x 
   a = a*k; 

   end 

   output = a;   
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fact(x)

ans =

Input must be a positive integer

  PRACTICE EXERCISES 9.1 

 Use a   for   loop to solve the following problems: 

1.   Create a table that converts inches to feet.  
2.   Consider the following matrix of values: 

   x � 345, 23, 17, 34, 85, 334    
  How many values are greater than 30? (Use a counter.)  
  3.   Repeat Exercise 2, this time using the   find   command.  

Check to see if x is a
scalar

Output “Input must be a
positive integer  

for k 1:x

a a*k

You’ve run
out of
values in
the index
matrix

Output to the main
program  a

Initialize a to 1

Not a scalar

function output fact(x)

End

“

 Figure 9.4 
 Flowchart for fi nding a factorial, including error checking.           

  function output = fact(x) 
   %This function accepts a scalar 
   %input and calculates its factorial 

   %Check to confirm that x is a single- 
   %value array 
   if(length(x)>1 | x<0) 

   output = 'Input must be a positive
 integer'; 

   else 
   % initialize a 
   a = 1; 
   %Use a loop to calculate the 
%factorial 
   for k = 1:x 

   a = a*k; 
   end 
   output = a; 

   end   
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  9.2   WHILE LOOPS 

   While   loops are similar to   for   loops. The big difference is the way MATLAB ®  
decides how many times to repeat the loop.   While   loops continue until some crite-
rion is met. The format for a   while   loop is   

   while   criterion     
commands to be executed 

end

 Here’s an example:   

k = 0;
while k<3

k = k+1
end

 In this case, we initialized a counter,   k  , before the loop. Then the loop repeated 
as long as   k   was less than 3. We incremented   k   by 1 every time through the loop, so 
that the loop repeated three times, giving   

k =
1

k =
2

k =
3

 Notice that when   k=3   the criterion in the   while   statement   

k<3

 is false. Thus, when MATLAB ®  checks to see if it should make another pass through 
the loop the program makes the decision (based on the criterion) to skip to the end 
of the structure. 

 We could use   k   as an index number to defi ne a matrix or just as a counter. Most 
  for   loops can also be coded as   while   loops. Recall the   for   loop in the previous 
section used to calculate the fi rst three powers of 5. The following   while   loop 
accomplishes the same task:      

k = 0;
while k<3

k = k+1;
a(k) = 5^k

end

  4.   Use a   for   loop to sum the elements of the matrix in Problem 2. Check 
your results with the   sum   function. (Use the   help   feature if you don’t 
know or remember how to use   sum  .)  

  5.   Use a   for   loop to create a vector containing the fi rst 10 elements in 
the harmonic series, i.e., 

   1>1 1>2 1>3 1>4 1>5... 1>10    

  6.   Use a   for   loop to create a vector containing the fi rst 10 elements in the 
alternating harmonic series, i.e., 

     1>1 -1>2 1>3 -1>4 1>5... -1>10         

 KEY IDEA: 
 Any problem that can be 
solved using a   while   loop 
could also be solved using 
a   for   loop 
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 The code returns   

a =
5

a =
5  25

a =
5  25  125

 Each time through the loop, another element is added to the matrix   a  . 
 As another example, fi rst initialize   a  :   

a = 0;

 Then fi nd the fi rst multiple of 3 that is greater than 10:   

While(a<10)
a = a + 3

end;

 The fi rst time through the loop,   a   is equal to 0, so the comparison is true. The 
next statement (  a = a + 3  ) is executed, and the loop is repeated. This time   a   is 
equal to 3 and the condition is still true, so execution continues. In succession, we have   

a =
3

a =
6

a =
9

a =
12

 The last time through the loop,   a   starts out as 9 and then becomes 12 when 3 is 
added to 9. The comparison is made one fi nal time, but since   a   is now equal to 
12—which is greater than 10—the program skips to the end of the   while   loop and 
no longer repeats. 

   While   loops can also be used to count how many times a condition is true by 
incorporating an   if   statement. Recall the test scores we counted in a   for   loop ear-
lier. We can also count them with a   while   loop:   

scores = [76,45,98,97];
count = 0;
k = 0;
while k<length(scores)

k = k+1;
if scores(k)>90

count = count + 1;
end

end
disp(count)

 The variable   count   is used to count how many values are greater than 90. The 
variable   k   is used to count how many times the loop is executed. 

 The basic fl ow chart for a   while   loop ( Figure   9.5   ) is the same as that for a   for   
loop ( Figure   9.4   ).  
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 One common use for a   while   loop is error checking of user input. Consider a 
program where we prompt the user to input a positive number, and then we calcu-
late the log base 10 of that value. We can use a   while   loop to confi rm that the 
number is positive, and if it is not, to prompt the user to enter an allowed value. 
The program keeps on prompting for a positive value until the user fi nally enters a 
valid number.   

x = input('Enter a positive value of x')
while (x<=0)

disp('log(x) is not defined for negative numbers')
x = input('Enter a positive value of x')

end
y = log10(x);

fprintf('The log base 10 of %4.2f is %5.2f \n',x,y)

 If, when the code is executed, a positive value of  x  is entered, the   while   loop 
does not execute (since  x  is not less than 0). If, instead, a zero or negative value is 
entered, the   while   loop is executed, an error message is sent to the command 
window, and the user is prompted to reenter the value of  x . The   while   loop con-
tinues to execute until a positive value of  x  is fi nally entered.    

Check to see if the
criterion is still true

Calculations

False—the criterion 
               is no longer
               true and the
               program
               exits the loop 

 Figure 9.5 
 Flowchart for a   while   
loop.       

 KEY IDEA: 
 It is easy to create an 
 infinite loop  with 
a  while  structure 

 HINT    
 The variable used to control the   while   loop must be updated every time 
through the loop. If not, you’ll generate an endless loop. When a calculation 
is taking a long time to complete, you can confi rm that the computer is really 
working on it by checking the lower left-hand corner for the “busy” indicator. 
If you want to exit the calculation manually, type   Ctrl c  . (Depress the   Ctrl   
and  c  key at the same time.) Make sure that the command window is the 
active window when you execute this command.    

 HINT    
 Many computer texts and manuals indicate the control key with the ^ symbol. 
This is confusing at best. The command     ̂ C     usually means to strike the   Ctrl   
key and the  c  key at the same time. 
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 EXAMPLE 9.3
  CREATING A TABLE FOR CONVERTING DEGREES TO RADIANS 
WITH A WHILE LOOP 
 Just as we used a   for   loop to create a table for converting degrees to radians in 
 Example   9.2   , we can use a   while   loop for the same purpose. 

   1.   State the Problem 
  Create a table that converts degrees to radians, from 0 to 360 degrees, in incre-

ments of 10 degrees.  
  2.   Describe the Input and Output   

     Input        An array of angle values in degrees  

    Output      A table of angle values in both degrees and radians   

       3.   Develop a Hand Example 
  For 10 degrees, 

   radians � 1102 p
180

� 0.1745    

  4.   Develop a MATLAB ®  Solution 
  First develop a fl owchart ( Figure   9.6   ) to help you plan your code. 

while k< 36

degree(k) k*10
radians(k) degree(k)*pi/180
k k 1;

Start

Define a table of degrees and
radians

Output table

End

k 1

You’ve run
out of
values in
the index
matrix

 Figure 9.6 
 Flowchart for converting  degrees to radians with a   while   loop.       

     %Example 9.7 
   %Create a table of degrees to 
   %radians 
   clear,clc 
   %Use a while loop for the 
   %calculations 

   k = 1; 
   while k≤36 
    degree(k) = k*10; 
    radians(k) = 
 degree(k)*pi/180; 
    k = k+1; 
   end 

   %Create a table 

   table = [degree;radians] 

   %Send the table to the command 
   %window 

   disp('Degrees to Radians') 
   disp('Degrees Radians') 
   fprintf('%8.0f %8.2f \n',table)   
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   The command window displays the following results:   

   Degrees   to Radians     

Degrees Radians    

    10 0.17     

    20 0.35     

    30 0.52 etc.    

5.   Test the Solution 
  The value for 10 degrees calculated by MATLAB ®  is the same as the hand 

 calculation.   

  EXAMPLE 9.4
  CALCULATING FACTORIALS WITH A WHILE LOOP 
 Create a new function called   fact2   that uses a   while   loop to fi nd  N !. Include an 
  if   statement to check for negative numbers and to confi rm that the input is a scalar. 

while k<x

k k 1
a a*k

Not a scalarCheck to see if x is a
scalar

Output “Input must be a
positive integer

Output to the main
program a

Initialize a to 1
and k to 1 

function output fact2(x)

End

“

You’ve run
out of
values in
the index
matrix

 Figure 9.7 
 Flowchart for fi nding a factorial with a   while   loop.       

    function output = fact2(x) 
   %This function uses a while loop to
%find x! 
   %The input must be a positive integer 
   if(length(x)>1 | x<0) 

    disp('The input must be a 
positive integer') 

   else 
   %Initialize the  running product 
   a = 1; 
   %Initialize the counter 
   k = 1; 
   while k<x 

    %Increment the counter 
   k = k + 1; 
    %Calculate the  running product 
   a = a*k; 

   end 
   output = a; 
   end    
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1.   State the Problem 
  Create a function called   fact2   to calculate the factorial of any number.  
2.   Describe the Input and Output   

Input        A scalar value  N   

    Output      The value of  N !   

       3.   Develop a Hand Example 

   5! � 1 # 2 # 3 # 4 # 5 � 120    

  4.   Develop a MATLAB ®  Solution 
  First develop a fl owchart ( Figure   9.7   ) to help you plan your code. 
    5.   Test the Solution 
  Test the function in the command window:   

fact2(5)     
   ans =     

   120     
   fact2(-10)     
   ans =     

   The input must be a positive integer     
   fact2([1:10])     
   ans =     

   The input must be a positive integer      

    EXAMPLE 9.5 
 THE ALTERNATING HARMONIC SERIES 
 The  alternating harmonic series  converges to the natural log of 2: 

   a
�

k�1

(-1)k�1

k � 1 �
1
2

�
1
3

�
1
4

�
1
5

� g � ln122 � 0.6931471806   

 Because of this, we can use the alternating harmonic series to approximate the 
ln(2). But how far out do you have to take the series to get a good approximation of 
the fi nal answer? We can use a   while   loop to solve this problem. 

   1.   State the Problem 
  Use a   while   loop to calculate the members of the alternating harmonic 

sequence and the value of the series until it converges to values that vary by less 
than .001. Compare the result to the natural log of 2.  

  2.   Describe the Input and Output   

  Input   The description of the alternating harmonic series 

  Output    The value of the truncated series, once the convergence criterion 
is met. 

    Plot the cumulative sum of the series elements, up to the point 
where the convergence criterion is met. 

       a
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(continued)
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Start

Define first two members of the sequence
y(1)  1 and y(2) 1 2

Set the starting index number equal to 3
k  3

while the absolute value of
adjacent cumulative sums is
greater than 0.001 continue

False

Calculate the first two cumulative totals
total(1) y(1)
total(2)  total(1) y(2)

Calculate the next member of the sequence

y(k)
k

( 1)k 1

Calculate the next cumulative sum
total(k)  total(k  1) y(k)

Increment the counter
k  k  1

Print the value of
the final element in the sequence
the cumulative sum
the natural log of 2

Plot the results

End

 Figure 9.8 
 Flowchart to evaluate the alternating harmonic series until it converges.       

      %% Calculating the Alternating Harmonic
  %Series 
   clear,clc 
   % Define the first two elements in the 
%series 
   y(1)=1; 
   y(2)=-1/2; 
   %Calculate the first two cumulative 
 sums 
   total(1)=y(1);  
   total(2)=total(1) + y(2); 
   k=3; 
    while (abs(total(k-1)-total(k-2))>.001) 

   y(k)=(-1)^(k+1)/k; 
    total(k) = total(k-1) + y(k); 
   k = k+1; 

   end 
   fprintf('The sequence converges when 
 the final element is equal to %8.3f 
 \n',y(k-1)) 
   fprintf('At which point the value of 
 the series is %5.4f \n',total(k-1)) 
   fprintf('This compares to the value 
 of the ln(2), %5.4f \n',log(2)) 
   fprintf('The sequence took %3.0f
 terms to converge \n',k) 
   %% Plot the results 
   semilogx(total) 
   title('Value of the Alternating 
 Harmonic Series') 
   xlabel('Number of terms') 
   ylabel('Sum of the terms')      
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3.   Develop a Hand Example 
  Let’s calculate the value of the alternating harmonic series for 1 to 5 terms. First 

fi nd the value for each of the fi rst fi ve terms in the sequence 

1.0000  -0.5000  0.3333  -0.2500  0.2000

  Now calculate the sum of the series assuming 1 to 5 terms 

  1.0000  0.5000  0.8333  0.5833  0.7833  

  The calculated sums are getting closer together, as we can see if we fi nd the 
 difference between adjacent pairs     

-0.5000  0.3333  -0.2500  0.2000     

  4.   Develop a MATLAB ®  Solution 
  First develop a fl owchart ( Figure   9.8   ) to help you plan your code, then convert 

it to a MATLAB ®  program. When we run the program, the following results are 
displayed in the command window. 

      The sequence converges when the final element is equal to 0.001     

   At which point the value of the series is 0.6936     

   This compares to the value of the ln(2), 0.6931     

   The sequence took 1002 terms to converge   

  The series is pretty close to the ln(2), but perhaps we could get closer with 
more terms. If we change the convergence criterion to 0.0001 and run the pro-
gram, we get the following results   

   The sequence converges when the final element is equal to
 -0.000     

   At which point the value of the series is 0.6931     

   This compares to the value of the ln(2), 0.6931     

   The sequence took 10001 terms to converge    

  5.   Test the Solution 
  Compare the result of the hand solution to the MATLAB ®  solution, by examin-

ing the graph ( Figure   9.9   ). The fi rst fi ve values for the series match those dis-
played in the graph. We can also see that the series seems to be converging to 
approximately 0.69, which is approximately the natural log of 2. 
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 Figure 9.9 
 The alternating harmonic 
series converges to the 
ln(2).       
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  9.3   BREAK AND CONTINUE 

 The   break   command can be used to terminate a loop prematurely (while the com-
parison in the fi rst line is still true). A   break   statement will cause termination of 
the smallest enclosing   while   or   for   loop. Here’s an example:   

   n = 0;     
   while(n<10)     
     n = n+1;     
     a = input('Enter a value greater than 0:');     
     if(a<=0)     
       disp('You must enter a positive number')     
       disp('This program will terminate')     
       break     
     end     
     disp('The natural log of that number is')     
     disp(log(a))     
   end   

 In this program, the value of   n   is initialized outside the loop. Each time through, 
the input command is used to ask for a positive number. The number is checked, 
and if it is zero or negative, an error message is sent to the command window and 
the program jumps out of the loop. If the value of   a   is positive, the program contin-
ues and another pass through the loop occurs, until   n   is fi nally greater than 10.   

  The   continue   command is similar to   break  ; however, instead of terminating 
the loop, the program just skips to the next pass:   

   n=0;     
   while(n<10)     

      PRACTICE EXERCISES 9.2 

 Use a   while   loop to solve the following problems: 
    1.   Create a conversion table of inches to feet.  
   2.   Consider the following matrix of values: 

   x � 345, 23, 17, 34, 85, 334    
   How many values are greater than 30? (Use a counter.)  
   3.   Repeat Exercise 2, this time using the   find   command.  
   4.   Use a   while   loop to sum the elements of the matrix in Exercise 2. 

Check your results with the   sum   function. (Use the   help   feature if you 
don’t know or remember how to use   sum  .)  

   5.   Use a   while   loop to create a vector containing the fi rst 10 elements in 
the harmonic series, i.e., 

     1>1 1>2 1>3  1>4 1>5... 1>10      
   6.   Use a   while   loop to create a vector containing the fi rst 10 elements in 

the alternating harmonic series, i.e., 

     1>1 -1>2 1>3 -1>4 1>5 ...-1>10         

 INITIALIZE 
 Defi ne a starting value for 
a variable that will be 
changed later 
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     n=n+1;     
     a=input('Enter a value greater than 0:');     
     if(a<=0)     
       disp('You must enter a positive number')     
       disp('Try again')     
       continue     
     end     
     disp('The natural log of that number is')     
     disp(log(a))     
   end   

 In this example, if you enter a negative number, the program lets you try 
again—until the value of   n   is fi nally greater than 10.  

  9.4   MIDPOINT BREAK LOOPS 

 The loops described in the previous sections are examples of  midpoint break loops . 
In these constructs the loop is entered, calculations are processed, and a decision is 
made at some arbitrary point in the loop whether or not to exit. Then additional 
calculations are processed and the loop repeats. This strategy can be used either 
with a   for   loop or a   while   loop. 

 In a   while   structure the loop continues to repeat until the criterion specifi ed 
in the fi rst line of the loop is false. For example   

   while (x>.001)     
  . . . do some calculations that result in updating x
   end   

 When the comparison between  x  and 0.001 is evaluated, either a 1 (for true) or 
a zero (for false) is returned. If the result is 0 the loop is terminated. One potential 
problem with this structure is that if the original value of  x  is very small, for exam-
ple, in this case 0.0005, the loop will never execute. A way around this is to force the 
result to true, and add an   if   statement and corresponding   break   structure   

   while(1)     
  . . .  do some calculations
     if (x<=.001)     
       break     
     end     

. . . do any additional calculations or information
  processing

   end   

 The   while(1)   implementation allows the loop to continue executing for an 
infi nite number of iterations. The decision to exit the loop is then controlled by the 
if/break structure. When would this be useful? One example is error checking, 
similar to the example in the previous problem. Consider another MATLAB ®  pro-
gram that prompts the user to enter the number of candy bars purchased, and then 
fi nds the cost to the user. If the user enters a negative number the program should 
prompt the user to try again. If a positive number is entered the program completes 
the calculations and exits the loop.   

while(1)
num_candy_bars = input('Enter the number of candy bars ');
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if num_candy_bars<0
disp('Must be a positive number')

else
total = num_candy_bars *.75;
fprintf('The total cost is %5.2f dollars \n',total)
break

end
end

 Here’s the command window interaction when the program is executed.   

Enter the number of candy bars -3
Must be a positive number
Enter the number of candy bars 5
The total cost is 3.75 dollars

 One issue with this strategy is that the loop need never end. In this program, if 
the user keeps replying with a negative number, the program will continue to 
prompt for a positive value. One way to get around this is to use a   for   loop, which 
has a preset number of iterations. In this example it is three.   

for k=1:3
num_candy_bars = input('Enter the number of candy bars');
if num_candy_bars<0
disp('Must be a positive number')   

else
total = num_candy_bars *.75;
fprintf('The total cost is %5.2f dollars \n',total)
break
end

end

 Here’s the command window interaction.   

Enter the number of candy bars -3
Must be a positive number
Enter the number of candy bars -2
Must be a positive number
Enter the number of candy bars -5
Must be a positive number

 After three iterations the loop ends. 
 These may seem like trivial examples. A more complicated case is described in 

 Example   9.6   . 

    EXAMPLE 9.6 
 Calculating the value of the alternating harmonic series in order to approximate 
the value of ln(2) (as illustrated in  Example   9.5   ) is an example of a numerical 
method. Many functions that you use routinely, such as sine and cosine, are 
approximated using similar series, called Taylor series or Maclaurin series. The 
alternating harmonic series is an example of a series that converges, but not every 
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series does. For example, simply changing the alternating negative signs in the 
alternating  harmonic series to positive numbers (the harmonic series versus the 
alternating harmonic series) results in a series that diverges—it just keeps getting 
bigger and bigger with every new term. In cases such as these, we would want to 
specify a maximum number of iterations in our problem before giving up and 
exiting the loop. 

 A less obvious example of a series that diverges is 

   1-2+3-4+5-6 ...+(n-1)-n   

 which can be expressed mathematically as 

   a n
k�1(-1)^(k � 1)*k   

 Write a program that calculates the value of the summation. Assume that we 
don’t know that it diverges, and specify an exit from the loop if two adjacent values 
of the cumulative sum are less than 0.001. Also specify a maximum of 50 iterations. 

1.   State the Problem 
  Calculate the sum of the alternating series, assuming it converges, to within 0.001.  
2.   Describe the Input and Output   

 Input     a n
1(-1)^(k+1)*k    

 Output   Find the cumulative sum of the series for each iteration 

     Create a plot of the cumulative sums versus the number of terms  
3.   Develop a Hand Example 
  The fi rst six terms in the series are 

   1 � 2 � 3 � 4 � 5 � 6   
  Thus, the fi rst six cumulative sums are   

  n  � 1  total � 1 

 n   � 2  total � 1 � 2 � �1 

  n  � 3  total � 1 � 2 � 3 � 2 

  n  � 4  total � 1 � 2 � 3 � 4 � �2 

  n  � 5  total � 1 � 2 � 3 � 4 � 5 � 3 

  n  � 6  total � 1 � 2 � 3 � 4 � 5 � 6 � �3 

4.   Develop a MATLAB ®  Solution 
  Outline your M-fi le program in a fl owchart, as shown in  Figure   9.10   . Next, con-

vert the flowchart to pseudocode comments, and insert the appropriate 
MATLAB ®  code. 
  When this program is executed the result in the command window is:   

The sequence did not converge in 50 iterations 

At which point the value of the series is -25.000 

 The resulting plot is shown in  Figure   9.11    
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Start

End

break

Output results including a plot

if (abs(total(k)�total(k�1))criterion)

y(k) � (�1)^(k�1)*k
total(k) � total(k�1) � y(k)

for k�2:criterion

Initialize the parameters
first term in the series   y(1)� 1
cumulative total            total(1)� 1
convergence                   criterion � .01

 Figure 9.10 
 Flowchart for calculating the cumulative sums of the alternating numeric series.       

    %%  Example   9.6   
  % Calculating the  Alternating Numeric  Series
  clear,clc
  %% Define the starting parameters
  y(1)=1;
  total(1)=y(1);
  criterion = .01;
  max_iterations = 50;
  %%  Execute the loop
  for k=2:max_iterations
  y(k)=(-1)^(k+1)*k;
  total(k) = total(k-1) + y(k);
  if(abs(total(k)-total(k-1))<criterion)
  break
  end
  end
  %% Specify the output
  if k==max_iterations
  fprintf('The sequence did not converge in
 %5.0f iterations \n',max_iterations)

  fprintf('At which point the value of the
 series is %8.3f \n', total(k))

  else
  fprintf('The sequence converged in %5.0f
  iterations \n',k)

  fprintf('The final  element is equal to 
 %8.3f \n',y(k))

  fprintf('At which point the value of the 
 series is %8.3f \n', total(k))

  end
  plot(total)
  xlabel('Number of  Iterations')
  ylabel('Cumulative Sum')
  title('Summation of the Alternating Numeric
  Series')

    5.   Test the Solution 
  The MATLAB ®  solution matches the hand calculations for the fi rst six terms 

of the series. If we had not programmed in a maximum number of iterations, in 
the form of a   for   loop structure, the program would have entered an infi nite 
loop.     
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  9.5   NESTED LOOPS 

 It is often useful to nest loops inside other loops. This is actually how many of the 
MATLAB ®  built-in functions operate. For example, consider the   max   function. This 
function looks for the maximum value for each column in a matrix. We can develop 
a program to fi nd the maximum, using a simple 4 × 4 array,   x  .   

x = [1   2   6  3;
4   8   2  1;
12  18  3  5;
6   4   2  13]

 If we use the   max   function   

max(x)

 MATLAB ®  returns the maximum value in each column   

ans =
12 18  6 13

 We can achieve the same result with nested   for   loops. First, we’ll need to deter-
mine the dimensions of the x array, using the   size   function.   

[rows,cols]=size(x);

 Now, we can use that information to create the external   for   loop, which we 
program to execute once for each column in the array. Then, we defi ne a  provisional 
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 Figure 9.11 
 The cumulative sum of the 
alternating numeric series 
does not converge, but 
rather oscillates around 
zero.       

 KEY IDEA 
 Nested loops are used to 
evaluate multidimensional 
data 
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value for the maximum, based on the fi rst value in each column. Finally, we can 
use an internal   for   loop, which will execute once for each row in the array.   

for k=1:cols
maximum(k)=x(1,k)
for j=1:rows
if x(j,k)>maximum(k)
maximum(k)=x(j,k);

end
end

end
maximum % Sends the results to the screen

  9.6   IMPROVING THE EFFICIENCY OF LOOPS 

 In general, using a   for   loop (or a   while   loop) is less effi cient in MATLAB ®  than 
using array operations. We can test this assertion by timing the multiplication of the 
elements in a long array. First, we create a matrix  A containing 40,000 ones. The 
  ones   command creates an    n � n    matrix of ones:   

ones(200);

 The result is a    200 � 200    matrix of ones (40,000 total values). Now, we can 
compare the results of multiplying each element by    p,    using array multiplication 
fi rst and then a   for   loop. You can time the results by using the   clock   function and 
the function   etime  , which measures elapsed time. If you have a fast computer, you 
may need to use a larger array. The structure of the clocking code is   

t0 = clock;
. . . code to be timed
etime (clock, t0)

 The clock function polls the computer clock for the current time. The   etime   
function compares the current time with the initial time and subtracts the two val-
ues to give the elapsed time. 

 For our problem,   

clear, clc
A = ones(200); %Creates a 200 x 200 matrix of ones
t0 = clock;

B = A*pi;
time = etime(clock, t0)

 gives a result of   

time =
0

 The array calculation took 0 seconds, simply meaning that it happened very 
quickly. Every time you run these lines of code, you should get a different answer. 
The   clock   and   etime   functions used here measure how long the CPU worked 
between receiving the original and fi nal timing requests. However, the CPU is doing 
other things besides our problem: At a minimum, it is performing system tasks, and 
it may be running other programs in the background. 

 KEY IDEA 
 Loops are generally less 
effi cient than vectorized 
calculations 

If structure

Internal loop
External for loop



9.6 Improving the Effi ciency of Loops 335

 To measure the time required to perform the same calculation with a loop, we 
need to clear the memory and re-create the array of ones:   

clear
A = ones(200);

 This ensures that we are comparing calculations from the same starting point. 
Now, we code   

t0 = clock;
for k = 1:length(A(:))

B(k) = A(k)*pi;
end

time = etime(clock, t0)

 which gives the result   

time =
69.6200

 It took almost 70 seconds to perform the same calculation! (This was on an 
older computer—your result will depend on the machine you use.) The number of 
iterations through the   for   loop was determined by fi nding how many elements are 
in   A  . This was accomplished with the   length   command. Recall that   length   
returns the largest array dimension, which is 200 for our array and isn’t what we 
want. To fi nd the total number of elements, we used the colon operator (:) to rep-
resent   A as a single list, 40,000 elements long, and then used   length  , which 
returned 40,000. Each time through the   for   loop, a new element was added to the 
  B   matrix. This is the step that took all the time, since the computer must allocate 
additional memory 40,000 times. We can reduce the time required for this calcula-
tion by creating the   B   matrix fi rst (so that the memory allocation process takes 
place only once) and then replacing the values one at a time. The code is   

clear
A = ones(200);
t0 = clock;
%Create a B matrix of ones
B = A;
for k = 1:length(A(:))
B(k) = A(k)*pi;
end

time = etime(clock, t0)

 which gives the result   

time =
0.0200

 This is obviously a huge improvement. You could see an even bigger difference 
between the fi rst example, a simple multiplication of the elements of an array, and 
the last example if you created a bigger matrix. By contrast, the intermediate exam-
ple, in which we did not initialize   B  , would take a prohibitive amount of time to 
execute. 

 MATLAB ®  also includes a set of commands called   tic   and   toc   that can be 
used in a manner similar to the   clock   and   etime   functions to time a piece of 
code. Thus, the code   
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   clear     
   A = ones(200);     
   tic     
    B = A;     
    for k = 1:length(A(:))     
   B(k) = A(k)*pi;     
    end     
   toc   

 returns   

   Elapsed time is 0.140000 seconds.   

 The difference in execution time is expected, since the computer is busy doing 
different background tasks each time the program is executed. As with   clock/
etime  , the   tic/toc   commands measure elapsed time, not the time devoted to 
just this program’s execution. 

  HINT    
 Be sure to suppress intermediate calculations when you use a loop. Printing 
those values to the screen will greatly increase the amount of execution time. 
If you are brave, repeat the preceding example, but delete the semicolons 
inside the loop just to check out this claim. Don’t forget that you can stop the 
execution of the program with   Ctrl c  . Be sure the command window is the 
active window when you execute   Ctrl c  .    

     SUMMARY 

 Repetition structures (loops) are used when a section of code needs to be repeated 
several times. As a rule of thumb, if you fi nd yourself repeating a section of code 
more than three times, it probably should be in a repetition structure. MATLAB ®  
supports two types of repetition structures: the   for   loop and the   while   loop. In 
addition, the   break   and   continue   commands can be used to modify either type 
of loop to create a midpoint break loop. 

   For   loops are used mainly when the programmer knows how many times a 
sequence of commands should be executed.   While   loops are used when the com-
mands should be executed until a condition is met. Most problems can be struc-
tured so that either   for   or   while   loops are appropriate. 

 The   break   and   continue   statements are used to exit a loop prematurely. 
They are usually used in conjunction with   if   statements. The   break   command 
causes a jump out of a loop and execution of the remainder of the program. The 
  continue   command skips execution of the current pass through a loop, but allows 
the loop to continue until the completion criterion is met. This type of structure is 
called  a midpoint break loop , and is commonly used in many applications, especially 
in numerical analysis. 

 Vectorization of MATLAB ®  code allows it to execute much more effi ciently and 
therefore more quickly. Loops, in particular, should be avoided in MATLAB ®  if the 
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code can be formulated into a vectorized format. When loops are unavoidable, they 
can be improved by defi ning “dummy” variables with placeholder values, such as 
ones or zeros. These placeholders can then be replaced in the loop. Doing this will 
result in signifi cant improvements in execution time, a fact that can be confi rmed 
with timing experiments. 

 The   clock   and   etime   functions are used to poll the computer clock and then 
determine the time required to execute pieces of code. The time calculated is the 
“elapsed” time. During this time, the computer not only has been running MATLAB ®  
code, but also has been executing background jobs and housekeeping functions. 
The   tic   and   toc   functions perform a similar task. Either   tic/toc or   clock/etime   
functions can be used to compare execution time for different code options.   

  Commands and Functions  

  break   causes the execution of a loop to be terminated 

  case   sorts responses 

  clock   determines the current time on the CPU clock 

  continue   terminates the current pass through a loop, but proceeds to the next pass 

  end   identifi es the end of a control structure 

  etime   fi nds elapsed time 

  for   generates a loop structure 

  ones   creates a matrix of ones 

  tic   starts a timing sequence 

  toc   stops a timing sequence 

  while   generates a loop structure 

 converge 
 diverge 
 for loop 
 infi nite loop 

 loop 
 repetition 
 midpoint break loop 
 nested loops 

 while loop 
 series 
 vectorization
  

      KEY TERMS 

   9.1    Use a   for   loop to sum the elements in the following vector: 

   x � [1, 23, 43, 72, 87, 56, 98, 33]   

 Check your answer with the   sum   function.   
   9.2    Repeat the previous problem, this time using a   while   loop.   
   9.3    Use a   for   loop to create a vector of the squares of the numbers 1 through 5.   
   9.4    Use a while loop to create a vector of the squares of the numbers 1 through 5.   
   9.5    Use the   primes   function to create a list of all the primes below 100. Now 

use a   for   loop to multiply adjacent values together. For example, the fi rst 
four prime numbers are 

  2 3 5 7  

  PROBLEMS 
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 Your calculation would be 

       2*3 3*5 5*7  

      which gives 

  6 15 35    

   9.6    A Fibonacci sequence is composed of elements created by adding the two 
previous elements. The simplest Fibonacci sequence starts with 1, 1 and 
proceeds as follows: 

  1, 1, 2, 3, 5, 8, 13, …  

 However, a Fibonacci sequence can be created with any two starting 
numbers. Fibonacci sequences appear regularly in nature. For example, the 
shell of the chambered nautilus ( Figure   P9.6   ) grows in accordance with a 
Fibonacci sequence. 
  Prompt the user to enter the fi rst two numbers in a Fibonacci sequence and 
the total number of elements requested for the sequence. Find the sequence 
and store it in an array by using a   for   loop. Now plot your results on a 
  polar   graph. Use the element number for the angle and the value of the 
element in the sequence for the radius.   

   9.7    Repeat the preceding problem, this time using a   while   loop.   
   9.8    One interesting property of a Fibonacci sequence is that the ratio of the 

values of adjacent members of the sequence approaches a number called 
“the golden ratio” or    �    (phi). Create a program that accepts the fi rst two 
numbers of a Fibonacci sequence as user input and then calculates addi-
tional values in the sequence until the ratio of adjacent values converges 
to within 0.001. You can do this in a   while   loop by comparing the ratio 
of element   k   to element k – 1   and the ratio of element   k – 1   to element 
  k – 2  . If you call your sequence  x , then the code for the   while   statement is   

while abs(x(k)/x(k-1) - x(k-1)/x(k-2))>0.001    

   9.9    Recall from trigonometry that the tangent of both    p>2    and    � p>2    is infi nity. 
This may be seen from the fact that 

   tan1u2 � sin1u2 >cos1u2   
 and since 

   sin1p>22 � 1   

 and 

   cos1p>22 � 0   

 it follows that 

   tan1p>22 � infinity   

 Because MATLAB ®  uses a fl oating-point approximation of    p,    it calculates 
the tangent of    p>2    as a very large number, but not infi nity. 

 Prompt the user to enter an angle    u    between    p>2    and    -p>2,    inclusive. 
If it is between    p>2    and    -p>2,    but not equal to either of those values, 
calculate    tan1u2    and display the result in the command window. If it is 
equal to    p>2    or    -p>2,    set the result equal to   Inf   and display the result in 
the command window. If it is outside the specifi ed range, send the user an 

 Figure P9.6 
 Chambered nautilus. 
(Colin Keates © Dorling 
Kindersley, Courtesy of 
the Natural History 
Museum, London.)       
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error message in the command window and prompt the user to enter 
another value. Continue prompting the user for a new value of theta until 
he or she enters a valid number.   

   9.10    Imagine that you are a proud new parent. You decide to start a college sav-
ings plan now for your child, hoping to have enough in 18 years to pay the 
sharply rising cost of education. Suppose that your folks give you $1000 to 
get started and that each month you can contribute $100. Suppose also that 
the interest rate is 6% per year compounded monthly, which is equivalent 
to 0.5% each month. 

 Because of interest payments and your contribution, each month your 
balance will increase in accordance with the formula 

   New balance � old balance �  interest �  your contribution   

 Use a   for   loop to fi nd the amount in the savings account each month for 
the next 18 years. (Create a vector of values.) Plot the amount in the account 
as a function of time. (Plot time on the horizontal axis and dollars on the 
vertical axis.)   

   9.11    Imagine that you have a crystal ball and can predict the percentage increases 
in tuition for the next 22 years. The following vector   increase   shows your 
predictions, in percent, for each year:   

increase = [10, 8, 10, 16, 15, 4, 6, 7, 8, 10, 8, 12,
  14, 15, 8, 7, 6, 5, 7, 8, 9, 8]

 Use a   for   loop to determine the cost of a 4-year education, assuming that 
the current cost for 1 year at a state school is $5000.   

   9.12    Use an   if   statement to compare your results from the previous two prob-
lems. Are you saving enough? Send an appropriate message to the com-
mand window.   

   9.13    Edmond Halley (the astronomer famous for discovering Halley’s comet) 
invented a fast algorithm for computing the square root of a number,  A . 
Halley’s algorithm approximates    2A    as follows: 

 Start with an initial guess    x1   . The new approximation is then given by 

    Yn �
1
A

x2
n

 xn+1 �
xn

8
(15-yn(10-3yn))   

 These two calculations are repeated until some convergence criterion,  e , is met. 

   � xn�1 � xn � … e   

 Write a MATLAB ®  function called   my_sqrt   that approximates the square 
root of a number. It should have two inputs, the initial guess and the 
convergence criterion. 

 Test your function by approximating the square root of 5 and comparing 
it to the value calculated with the built-in MATLAB ®  function,   sqrt  .   

   9.14    The value of cos( x ) can be approximated using a Maclaurin series 

   cos(x) � 1 �
x2

2!
�

x4

4!
�

x6

6!
� %    
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 which can be expressed more compactly as 

   a �

k�1(-1)k�1 x(k-1)*2

((k-1)*2)!
   

 (recall that the symbol ! stands for factorial). 
 Use a midpoint break loop to determine how many terms must be 

included in the summation, in order to fi nd the correct value of cos(2) 
within an error of .001. Limit the number of iterations to a maximum of 10.   

   9.15    The value of sin( x ) can be approximated as 

   sin(x) � x �
x3

3!
�

x5

5!
�

x7

7!
� ...   

 Create a function called my_sin, using a midpoint break loop to approximate 
the value of sin( x ). Determine convergence by comparing successive values 
of the summation as you add additional terms. These successive sums 
should be within an absolute value of 0.001 of each other. Test your function 
by evaluating the my_sin(2) and comparing it to the built-in MATLAB ®  sine 
function.   

   9.16    A store owner asks you to write a program for use in the checkout process. 
The program should: 
   •   Prompt the user to enter the cost of the fi rst item.  
  •   Continue to prompt for additional items, until the user enters 0.  
  •   Display the total.  
  •   Prompt for the dollar amount the customer submits as payment.  
  •   Display the change due.     

  Nested Loops  

   9.17    In the previous chapter, the water elevation data for Lake Powell were evalu-
ated using the   find   function. Repeat the calculations, using a nested loop 
structure.   

(a) Determine the average elevation of the water level for each year and for 
the eight-year period over which the data were collected.

(b) Determine how many months each year exceed the overall average for 
the eight-year period.

(c) Create a report that lists the month (number) and the year for each 
of the months that exceed the overall average. For example, June is 
month 6.

(d) Determine the average elevation of the water for each month for the 
eight-year period.

  Faster Loops  

   9.18    Whenever possible, it is better to avoid using   for   loops, because they are 
slow to execute. 

   (a)   Generate a 100,000-item vector of random digits called  x ; square each 
element in this vector and name the result   y  ; use the commands   tic   
and   toc   to time the operation.  

  (b)   Next, perform the same operation element by element in a   for   loop. 
Before you start, clear the values in your variables with   

 clear x y  

  Use   tic   and   toc   to time the operation. 
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 Depending on how fast your computer runs, you may need to stop the 
calculations by issuing the   Ctrl c   command in the command window.  

  (c)   Now convince yourself that suppressing the printing of intermediate 
answers will speed up execution of the code by allowing these same 
operations to run and print the answers as they are calculated. You will 
almost undoubtedly need to cancel the execution of this loop because 
of the large amount of time it  takes.  Recall that Ctrl c terminates the 
 program .  

  (d)   If you are going to use a constant value several times in a   for   loop, cal-
culate it once and store it, rather than calculating it each time through 
the loop. Demonstrate the increase in speed of this process by adding 
  (sin(0.3) + cos(pi/3))*5!   to every value in the long vector in a 
  for   loop. (Recall that ! means factorial, which can be calculated with 
the MATLAB ®  function   factorial  .)  

  (e)   As discussed in this chapter, if MATLAB ®  must increase the size of a vec-
tor every time through a loop, the process will take more time than if the 
vector were already the appropriate size. Demonstrate this fact by repeat-
ing part (b) of this problem. Create the following vector of  y -values, in 
which every element is equal to zero before you enter the   for   loop:   

y = zeros(1,100000);

  You will be replacing the zeros one at a time as you repeat the calcula-
tions in the loop.     

  Challenge Problems  

   9.19     (   a)    Create a function called   polygon   that draws a polygon in a polar plot. 
Your function should have a single input parameter—the number of 
sides.  

  (b)    Use a   for   loop to create a fi gure with four subplots, showing a triangle 
in the fi rst subplot, a square in the second subplot, a pentagon in the 
third subplot, and a hexagon in the fourth subplot. You should use the 
function you created in part (a) to draw each polygon. Use the index 
parameter from the   for   loop to specify the subplot in which each poly-
gon is drawn, and in an expression to determine the number of sides 
used as input to the   polygon   function.     

   9.20    Consider the following method to approximate the mathematical constant, 
 e . Start by generating  K  uniform random integers between 1 and  K . Compute 
 J , the number of integers between 1 and  K , which were never generated. We 
then approximate  e  by the ratio 

   
K
J

   

 Consider the following example for   K  = 5. Assume that the following fi ve 
integers are randomly generated between 1 and 5. 

  1 1 2 3 2  

 The number of times the integers are generated is given  by   

 Integers  1  2  3  4  5 
 Number of instances  2  2  1  0  0 
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   9.21    Vectorize (replace loops with a single statement) the calculations in the 
function created in the previous problem, by using the built-in MATLAB ®  
functions   hist   and   sum  .      

  HINT 
 Use a rounding function to transform the array of random numbers to ran-
dom integers.    

 In this example, there are two integers, namely 4 and 5, which were never 
generated. This means that   J  = 2. Consequently,  e  is approximated by 

   
5
2

� 2.5   

   Write a function called   eapprox   that takes the value of  K  as input, and 
which then approximates  e  using the method described above. Test your 
function several times with different values of  K , and compare the result to 
the value of  e  calculated using the built-in MATLAB ®  function. 

  exp(1)  



10  

INTRODUCTION 

 The terms  array  and  matrix  are often used interchangeably in engineering. However, 
technically, an array is an orderly grouping of information, whereas a matrix is a two-
dimensional numeric array used in linear algebra. Arrays can contain numeric infor-
mation, but they can also contain character data, symbolic data, and so on. Thus, not 
all arrays are matrices. Only those upon which you intend to perform linear transfor-
mations meet the strict defi nition of a matrix. 

 Matrix algebra is used extensively in engineering applications. The mathematics 
of matrix algebra is fi rst introduced in college algebra courses and is extended in lin-
ear algebra courses and courses in differential equations. Students start using matrix 
algebra regularly in statics and dynamics classes.   

     10.1   MATRIX OPERATIONS AND FUNCTIONS 

 In this chapter, we introduce MATLAB® functions and operators that are intended 
specifi cally for use in matrix algebra. These functions and operators are contrasted 
with MATLAB®’s array functions and operators, from which they differ signifi cantly. 
Much of this material may be a review, but is included for completeness. 

 After reading this chapter, you 
should be able to: 
  •   Perform the basic 

 operations of matrix 
 algebra  

  •   Solve simultaneous 
 equations by using 

MATLAB® matrix 
 operations  

•     Use some of MATLAB®’s 
special matrices

     

     Objectives 

 Matrix Algebra 

  C H A P T E R
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  10.1.1   Transpose 

 The   transpose   operator changes the rows of a matrix into columns and the col-
umns into rows. In mathematics texts, you will often see the transpose indicated 
with superscript  T  (as in    AT    ). Don’t confuse this notation with MATLAB® syntax, 
however: In MATLAB®, the transpose operator is a single quote ( ' ), so that the trans-
pose of matrix   A   is   A'. 

 Consider the following matrix and its transpose  : 

    A � ≥ 1 2 3
4 5 6
7 8 9
10 11 12

¥  AT � ≥1 4 7 10
2 3 8 11
3 6 9 12

¥    

 The rows and columns have been switched. Notice that the value in position (3, 1) 
of  A  has now moved to position (1, 3) of    AT,    and the value in position (4, 2) of  A  has 
now moved to position (2, 4) of    AT.    In general, the row and column subscripts (also 
called index numbers) are interchanged to form the transpose. 

 In MATLAB®, one of the most common uses of the transpose operation is to 
change row vectors into column vectors. For example:   

A = [1 2 3];
A'

 returns   

A = 1
2
3

  When used with complex numbers, the transpose operation returns the complex 
conjugate. For example, we may defi ne a vector of negative numbers, take the 
square root, and then transpose the resulting matrix of complex numbers. Thus, 
the code   

x = [-1:-1:-3]

 returns   

x =
-1    -2    -3

 Then, taking the square root with the code   

y = sqrt(x)
y =

0 + 1.0000i   0 + 1.4142i   0 + 1.7321i

 and fi nally transposing   y     

y'

 gives   

ans =
0 - 1.0000i
0 - 1.4142i
0 - 1.7321i

 Notice that the results (  y'  ) are the complex conjugates of the elements in   y  .  

 ARRAY 
 An orderly grouping of 
information 

 MATRIX 
 A two-dimensional numeric 
array used in linear 
algebra 

 KEY IDEA 
 The terms array and matrix 
are often used 
interchangeably 

 TRANSPOSE 
 Switch the positions of the 
rows and columns 
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  10.1.2   Dot Product   

  The dot product (sometimes called the scalar product) is the sum of the results you 
obtain when you multiply two vectors together, element by element. Consider the 
following two vectors:   

A = [ 1 2 3];
B = [ 4 5 6];

 The result of the array multiplication of these two vectors is   

y = A.*B
y =

4    10    18

 If you add the elements up, you get the dot product:   

sum(y)
ans = 

32

 A mathematics text would represent the dot product as 

a
n

i�1
Ai
# Bi      

 which we could write in MATLAB® as   

sum(A.*B)

 MATLAB® includes a function called   dot   to compute the dot product:   

dot(A,B)
ans =

32

 It doesn’t matter whether   A   and   B   are row or column vectors, just as long as 
they have the same number of elements. 

 The dot product fi nds wide use in engineering applications, such as in calcu-
lating the center of gravity ( Example   10.1   ) and in carrying out vector algebra 
( Example   10.2   ). 

 DOT PRODUCT 
 The sum of the results of the 
array multiplications of two 
vectors 

  HINT    
 With dot products, it doesn’t matter if both the vectors are rows, both are 
columns, or one is a row and the other a column. It also doesn’t matter what 
order you use to perform the process: The result of   dot(A,B)   is the same as 
that of dot(B,A)  . This isn’t true for most matrix operations.  

  EXAMPLE 10.1
  CALCULATING THE CENTER OF GRAVITY 
 The mass of a space vehicle is an extremely important quantity. Whole groups of 
people in the design process keep track of the location and mass of every nut and 
bolt. Not only is the total mass of the vehicle important, but information about mass 
is also used to determine the center of gravity of the vehicle. One reason the center 

(continued)
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Center of
Pressure

Center of Gravity

 Figure 10.1 
 The center of pressure 
needs to be behind the 
center of gravity for 
stable fl ight.       

 Table 10.1   Vehicle Component Locations and Mass 

 Item   x , m   y , m   z , m  Mass 

 Bolt  0.1  2.0  3.0  3.50 g 

 Screw  1.0  1.0  1.0  1.50 g 

 Nut  1.5  0.2  0.5  0.79 g 

 Bracket  2.0  2.0  4.0  1.75 g 

Center of
Pressure

Center of Gravity

Figure 10.1 
The center of pressure
needs to be behind the 
center of gravity for
stable fl ight.       

Table 10.1   Vehicle Component Locations and Mass 

Item x , mx y, myy z, m  Mass

Bolt 0.1  2.0  3.0 3.50 g 
Screw 1.0  1.0  1.0 1.50 g 

Nut 1.5  0.2  0.5 0.79 g 

Bracket 2.0  2.0  4.0 1.75 g 

of gravity is important is that rockets tumble if the center of pressure is forward of 
the center of gravity ( Figure   10.1   ). You can demonstrate the importance of the 
center of gravity to fl ight characteristics with a paper airplane. Put a paper clip on 
the nose of the paper airplane and observe how the fl ight pattern changes. 

  Although fi nding the center of gravity is a fairly straightforward calculation, it 
becomes more complicated when you realize that both the mass of the vehicle and 
the distribution of mass change as the fuel is burned. 

 The location of the center of gravity can be calculated by dividing the vehicle 
into small components. In a rectangular coordinate system, 

   xW � x1W1 � x2W2 � x3W3 � L   

   yW � y1W1 � y2W2 � y3W3 � L   

   zW � z1W1 � z2W2 � z3W3 � L   

 where 
x, y,    and    z     are the coordinates of the center of gravity,  
W  is the total mass of the system,  
x1, x2, x3,c    are the  x -coordinates of system components    1, 2, 3, . . . ,    respectively,  
y1, y2, y3,c    are the  y -coordinates of system components    1, 2, 3, . . . ,    respectively,  
     z1, z2, z3,c    are the  z -coordinates of system components    1, 2, 3, . . . ,    respectively, and  
     W1, W2, W3, c   are the weights of system components    1, 2, 3, . . . ,    respectively.   

 In this example, we will fi nd the center of gravity of a small collection of the 
components used in a complicated space vehicle (see  Table   10.1   ). We can formu-
late this problem in terms of the dot product. 
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1.   State the Problem 
  Find the center of gravity of the space vehicle.  
2.   Describe the Input and Output 

Input        Location of each component in an  x – y – z  coordinate system 
Mass of each component  

Output     Location of the center of gravity of the vehicle    

3.   Develop a Hand Example 
  The  x -coordinate of the center of gravity is equal to 

x �
a
3

i�1
ximi

m Total
�
a
3

i�1
ximi

a
3

i�1
mi

      

  so, from  Table   10.2   ,  

   x �
6.535
7.54

� 0.8667 m   

  Notice that the summation of the products of the  x -coordinates and the corre-
sponding masses could be expressed as a dot product.  

  4.   Develop a MATLAB® Solution 
  The MATLAB® code   

% Example 10.1

mass = [3.5, 1.5, 0.79, 1.75];

x = [0.1, 1, 1.5, 2];

x_bar = dot(x,mass)/sum(mass)

y = [2, 1, 0.2, 2];

y_bar = dot(y,mass)/sum(mass)

z = [3, 1, 0.5, 4];

z_bar = dot(z,mass)/sum(mass)

 returns the following result:   

x_bar =

0.8667

y_bar =

1.6125

z_bar =

2.5723

 Table 10.2   Finding the  x -Coordinate of the Center of Gravity 

 Item   x , m     Mass, g     x � m,    gm 

 Bolt   0.1     �        3.50   � 0.35  

 Screw   1.0     �        1.50    � 1.50 

 Nut   1.5     �        0.79    � 1.1850 

 Bracket   2.0     �        1.75   � 3.50  

 Sum          7.54       6.535  
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5.   Test the Solution 
  Compare the MATLAB® solution with the hand solution. The  x -coordinate 

appears to be correct, so the  y-  and  z- coordinates are probably correct, too. 
Plotting the results would also help us evaluate them:   

plot3(x,y,z,'o',x_bar,y_bar,z_bar,'s')

grid on

xlabel('x-axis')

ylabel('y-axis')

zlabel('z-axis')

title('Center of Gravity')

axis([0,2,0,2,0,4])

 The resulting plot is shown in  Figure   10.2   . 
  Now that we know the program works, we can use it for any number of items.

The program will be the same for three components as for 3000.    

0

1

2

0

1

2
0

1

2

3

4

x-axis

Center of Gravity

y-axis

z-
ax

is

Center of Gravity

 Figure 10.2 
 Center of gravity of 
some sample data. This 
plot was enhanced with 
the use of MATLAB®’s 
interactive plotting 
tools.       

  EXAMPLE 10.2
  FORCE VECTORS 
 Statics is the study of forces in systems that don’t move (and hence are  static ). 
These forces are usually described as vectors. If you add the vectors up, you can 
determine the total force on an object. Consider the two force vectors  A  and  B  
shown in  Figure   10.3   . 

  Each has a magnitude and a direction. One typical notation would show these 
vectors as    A

:
    and    B

:
,     but would represent the magnitude of each (their physical 



u

A

B

 Figure 10.3 
 Force vectors are used in the 
study of both statics and 
dynamics.       

(continued)

length) as  A  and  B . The vectors could also be represented in terms of their magni-
tudes along the  x -,  y -, and  z -axes, multiplied by a unit vector    1 i:,  j:,  k:2.    Then 

   A: � Ax j:� Ay j: � Az k:   

 and 

   B: � Bx i: � By j: � Bz k:   

 The dot product of    A:    and    B:    is equal to the magnitude of    A:    times the  magnitude 
of    B:,     times the cosine of the angle between them: 

   A: # B: � AB cos1u2   
 Finding the magnitude of a vector involves using the Pythagorean theorem. In the 
case of three dimensions, 

   A � 2A2
x � A2

y � A2
z    

 We can use MATLAB® to solve problems like this if we defi ne the vector    A:    as   

A = [Ax Ay Az]

 where   Ax  ,     Ay  ,   and     Az   are the component magnitudes in the  x -,  y -, and  z -directions, 
respectively. As our MATLAB® problem, use the dot product to fi nd the angle 
between the following two force vectors: 

   A: � 5i: � 6 j: � 3k:    

   B: � 1i: � 3 j: � 2k:    

1.   State the Problem 
 Find the angle between two force vectors.  

2.   Describe the Input and Output 

Input            A: � 5i
:

� 6j
:

� 3k:     
B: � 1 i: � 3 j: � 2k:     

Output       �,    the angle between the two vectors    

3.   Develop a Hand Example 

    A: # B: � 5 # 1 � 6 # 3 � 3 # 2 � 29   

    A � 252 � 62 � 32 � 8.37    

    B � 212 � 32 � 22 � 3.74    

    cos1u2 �  A: # B: >AB � 0.9264    

    cos�11u2 � 0.386    

 Thus, the angle between the two vectors is 0.386 radians or 22.12 degrees.  
4.   Develop a MATLAB® Solution 
  The MATLAB® code   

%Example 10.2

%Find the angle between two force vectors

%Define the vectors

10.1 Matrix Operations and Functions 349



350 Chapter 10 Matrix Algebra 

A = [5 6 3];

B = [1 3 2];

%Calculate the magnitude of each vector

mag_A = sqrt(sum(A.^2));

mag_B = sqrt(sum(B.^2));

%Calculate the cosine of theta

cos_theta = dot(A,B)/(mag_A*mag_B);

%Find theta

theta = acos(cos_theta);

%Send the results to the command window

fprintf('The angle between the vectors is %4.3f radians 

\n',theta)

fprintf('or %6.2f degrees \n',theta*180/pi)

  generates the following interaction in the command window:   

The angle between the vectors is 0.386 radians 
or 22.12 degrees

  5.   Test the Solution 
  In this case, we just reproduced the hand solution in MATLAB®. However, doing 

so gives us confi dence in our solution process. We could expand our problem 
to allow the user to enter any pair of vectors. Consider this example:   

%Example 10.2—expanded

%Finding the angle between two force vectors

%Define the vectors

disp('Component magnitudes should be entered')

disp('Using matrix notation, i.e.')

disp('[ A B C]')

A = input('Enter the x y z component magnitudes of vector A: ')

B = input('Enter the x y z component magnitudes of vector B: ')

%Calculate the magnitude of each vector

mag_A = sqrt(sum(A.^2));

mag_B = sqrt(sum(B.^2));

%Calculate the cosine of theta

cos_theta = dot(A,B)/(mag_A*mag_B);

%Find theta

theta = acos(cos_theta);

%Send the results to the command window

fprintf('The angle between the vectors is %4.3f radians 

\n',theta)

fprintf('or %6.2f degrees \n',theta*180/pi)

 gives the following interaction in the command window:   

Component magnitudes should be entered

Using matrix notation, i.e.

 [ A B C]



Enter the x y z component magnitudes of vector A: [1 2 3]

A =

1  2  3

Enter the x y z component magnitudes of vector B: [4 5 6]

B =

4  5  6

The angle between the vectors is 0.226 radians or 12.93 degrees

  PRACTICE EXERCISES 10.1 

 1.    Use the   dot   function to fi nd the dot product of the following vectors: 

   A: � 31 2 3 44    

   B: � 312 20 15 74      
2.    Find the dot product of    A:    and    B:    by summing the array products of 

   A:    and    B:    (  sum(A.*B)  ).   
   3.    A group of friends went to a local fast-food establishment. They 

ordered four hamburgers at $0.99 each, three soft drinks at $1.49 
each, one milk shake at $2.50, two orders of fries at $0.99 each, and 
two orders of onion rings at $1.29. Use the dot product to determine 
the bill.     

  10.1.3   Matrix Multiplication 

 Matrix multiplication is similar to the dot product. If you defi ne   

A = [1 2 3]
B = [ 3;

4;
5]

 then   

A*B
ans =
26

 gives the same result as   

dot(A,B)
ans =
26

  Matrix multiplication results in an array in which each element is a dot product. 
The preceding example is just the simplest case. In general, the results are found 

 KEY IDEA 
 Matrix multiplication results 
in an array in which each 
element is a dot product 
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by taking the dot product of each row in matrix   A   with each column in matrix   B  . 
For example, if   

A = [ 1 2 3;
4 5 6 ]

 and   

B = [ 10 20 30;
40 50 60;
70 80 90 ]

 then the fi rst element of the resulting matrix is the dot product of row 1 in matrix 
  A   and column 1 in matrix   B  , the second element is the dot product of row 1 in 
matrix   A   and column 2 in matrix   B  , and so on. Once the dot product is found for 
the fi rst row in matrix   A   with all the columns in matrix   B  , we start over again with 
row 2 in matrix   A  . Thus,   

C = A*B

 returns   

C =
300 360 420
660 810 960

 Consider the result in row 2, column 2, of the matrix   C  . We can call this result 
  C(2,2)  . It is the dot product of row 2 of matrix   A   and column 2 of matrix   B  :   

dot(A(2,:), B(:,2))
ans =

810

 We could express this relationship in mathematical notation (instead of MATLAB® 
syntax) as    

   Ci, j � a
N

k�1
Ai,kBk, j   

 Because matrix multiplication is a series of dot products, the number of col-
umns in matrix  A  must equal the number of rows in matrix  B . If matrix  A  is an 
   m � n    matrix, matrix  B  must be    n � p,    and the results will be an    m � p    matrix. 
In this example,  A  is a    2 � 3    matrix and  B  is a    3 � 3    matrix. The result is a 
   2 � 3    matrix  . 

  One way to visualize this set of rules is to write the sizes of the two matrices next 
to each other, in the order of their operation. In this example, we have 

   2 � 3  3 � 3   

 The two inner numbers must match, and the two outer numbers determine the size 
of the resulting matrix. 

 Matrix multiplication is not in general commutative, which means that, in 
MATLAB®,   

A * B � B * A

 We can see this in our example: When we reverse the order of the matrices, we 
have 

   3 � 3  2 � 3   

 KEY IDEA 
 Matrix multiplication is not 
commutative 

 COMMUTATIVE 
 The order of operation 
does not matter 



 and it is no longer possible to take the dot product of the columns in the fi rst mat-
rix and the rows in the second matrix. If both matrices are square, we can indeed 
calculate an answer for      A * B      and an answer for      B * A,      but the answers are not the 
same. Consider this example:   

A = [1 2 3
4 5 6
7 8 9];
B = [2 3 4
5 6 7
8 9 10];
A*B
ans =

36    42    48
81    96    111
126    150    174
B*A
ans =

42    51    60
78    96    114
114    141    168

  EXAMPLE 10.3
  USING MATRIX MULTIPLICATION TO FIND THE CENTER OF GRAVITY 
 In  Example   10.1   , we used the dot product to fi nd the center of gravity of a space 
vehicle. We could also use matrix multiplication to do the calculation in one step, 
instead of calculating each coordinate separately.  Table   10.1    is repeated in this 
example for clarity. 

    1.   State the Problem 
  Find the center of gravity of the space vehicle.  
  2.   Describe the Input and Output 

      Input       Location of each component in an  x–y–z  coordinate system 
Mass of each component  

     Output    Location of the center of gravity of the vehicle    

  3.   Develop a Hand Example 
  We can create a two-dimensional matrix containing all the information about 

the coordinates and a corresponding one-dimensional matrix containing 

   Table 10.1 Vehicle Component Locations and Mass 

 Item   x , m   y , m   z , m   Mass 

 Bolt  0.1  2.0  3.0  3.50 g  
 Screw  1.0  1.0  1.0  1.50 g  

 Nut  1.5  0.2  0.5  0.79 g  

 Bracket  2.0  2.0  4.0  1.75 g  

(continued)
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  10.1.4   Matrix Powers   

  Raising a matrix to a power is equivalent to multiplying the matrix by itself the 
requisite number of times. For example,    A2    is the same as    A #  A, A3    is the same 
as    A #  A #  A.    Recalling that the number of columns in the fi rst matrix of a 

 KEY IDEA 
 A matrix must be square to 
be raised to a power 

  PRACTICE EXERCISES 10.2 

 Which of the following sets of matrices can be multiplied together? 

 1. A � £2 5
2 9
6 5

§  B � £2 5
2 9
6 5

§       
 2. A � £2 5

2 9
6 5

§  B � c1 3 12
5 2 9

d       
   3.       A � c5 1 9

7 2 2
d  B � £8 5

4 2
8 9

§       
   4.       A � £1 9 8

8 4 7
2 5 3

§  B � £71
5
§       

 Show that, for each case,    A # B � B # A.      

information about the mass. If there are  n  components, the coordinate infor-
mation should be in a    3 � n    matrix and the masses should be in an    n � 1
matrix. The result would then be a    3 � 1    matrix representing the  x–y–z  coordi-
nates of the center of gravity times the total mass.  

  4.   Develop a MATLAB® Solution 
  The MATLAB® code   

% Example 10.3

coord =    [0.1      2      3

1        1      1

1.5      0.2    0.5

2        2      4 ]';

mass = [3.5, 1.5, 0.79, 1.75]';

location=coord*mass/sum(mass)

  sends the following results to the screen:   

location =

0.8667

1.6125

2.5723

  5.   Test the Solution 
  The results are the same as those in  Example   10.1   .    



multiplication must be equal to the number of rows in the second matrix, we see 
that in order to raise a matrix to a power, the matrix must be square (have the 
same number of rows and columns). Consider the matrix 

   A � c1 2 3
4 5 6

d    
 If we tried to square this matrix, we would get an error statement because of the 
rows and columns mismatch: 

   2 � 3  2 � 3   

                     However, consider another example. The code   

A = randn(3)

 creates a    3 � 3    matrix of random numbers, such as   

A =
-1.3362  -0.6918  -1.5937
0.7143   0.8580  -1.4410
1.6236   1.2540   0.5711

rows and columns 
must match

 KEY IDEA 
 Array multiplication and 
matrix multiplication are 
different operations and 
yield different results 

  HINT    
 Remember that   randn   produces random numbers, so your computer may 
produce numbers different from those listed. 

 If we square this matrix, the result is also a    3 � 3    matrix:   

A^2
ans =

-1.2963    -1.6677     2.2161
-2.6811    -1.5650    -3.1978
-0.3463     0.6690    -4.0683

 Raising a matrix to a noninteger power gives a complex result:   

A^1.5
ans =

-1.8446 - 0.0247i  -1.5333 + 0.0153i  -0.3150 - 0.0255i
-0.7552 + 0.0283i   0.0668 - 0.0176i  -3.0472 + 0.0292i
1.3359 + 0.0067i   1.5292 - 0.0042i  -1.5313 + 0.0069i

 Note that raising   A to the   matrix power  of two is different from raising   A   to 
the  array power  of two:   

C = A.^2;

 Raising   A   to the array power of two produces the following results:   

C =
1.7854  0.4786  2.5399
0.5102  0.7362  2.0765
2.6361  1.5725  0.3262

 and is equivalent to squaring each term.  
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  10.1.5   Matrix Inverse 

 In mathematics, what do we mean when we say “Take the inverse”? For a function, 
the inverse “undoes” the function, or gets us back where we started. For example, 
   sin�1

 1x2    is the inverse function of sin( x ). We can demonstrate the relationship in 
MATLAB®:   

asin(sin(1.5))   (Recall that the MATLAB® syntax for the inverse sine is 
asin.)     

ans =
1.5

  HINT    
 Remember that    sin�1

 1x2    does not mean the same thing as 1/sin( x ). Most 
current mathematics texts use the    sin�1

 1x2    notation, but on your calculator 
and in computer programs    sin�1

 1x2    is represented as asin( x ).  

 Another example of functions that are inverses is ln( x ) and    ex
 :      

log(exp(3)) (Recall that the MATLAB® syntax for the natural logarithm 
is log, not ln.)    

ans = 
    3 

 But what does taking the inverse of a number mean? One way to think about it 
is that if you operated on the number 1 by multiplying it by a number, what could 
you do to undo this operation and get the number 1 back? Clearly, you’d need to 
divide by your number, or multiply by 1 over the number. This leads us to the con-
clusion that 1/ x  and  x  are inverses, since    

   
1
x

x � 1   

 These are, of course,  multiplicative  inverses, as opposed to the function inverse we 
fi rst discussed. (There are also additive inverses, such as    �a    and  a .) Finally, what is 
the inverse of a matrix? It’s the matrix you need to multiply by using matrix algebra 
to get the identity matrix. The identity matrix consists of ones down the main diag-
onal and zeros in all the other locations: 

   ≥1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

¥    

 The inverse operation is one of the few matrix multiplications that is commutative; 
that is, 

   A�1A � AA�1 � 1   

 In order for the preceding statement to be true, matrix  A  must be square, which 
leads us to the conclusion that, in order for a matrix to have an inverse, it must be 
square. 

 We can demonstrate these concepts in MATLAB® by fi rst defi ning a matrix and 
then experimenting with its behavior. The “magic matrix,” in which the sum of the 

 KEY IDEA 
 A function times its inverse 
is equal to one 



rows equals the sum of the columns, as well as the sum of each diagonal, is easy to 
create, so we’ll choose it for our experiment:   

A = magic(3)
A =

8  1  6
3  5  7
4  9  2

 MATLAB® offers two approaches for fi nding the inverse of a matrix. We could raise 
 A  to the   �1    power with the code   

A^-1
ans =

0.1472   -0.1444    0.0639
-0.0611    0.0222    0.1056
-0.0194    0.1889   -0.1028

 or we could use the built-in function   inv  :   

inv(A)
ans =

0.1472   -0.1444    0.0639
-0.0611    0.0222    0.1056
-0.0194    0.1889   -0.1028

 Using either approach, we can show that multiplying the inverse of  A  by  A  gives 
the identity matrix:   

inv(A)*A
ans =

1.0000    0        -0.0000
0         1.0000    0
0         0.0000    1.0000

 and   

A*inv(A)
ans =

1.0000    0        -0.0000
-0.0000    1.0000    0
0.0000    0         1.0000

 Determining the inverse of a matrix by hand can be diffi cult, so we’ll leave that 
exercise to a course in matrix mathematics. There are matrices for which an inverse 
does not exist; these are called  singular   matrices  or  ill-conditioned matrices . When 
you attempt to compute the inverse of an ill-conditioned matrix in MATLAB®, an 
error message is sent to the command window.   

  The matrix inverse is widely used in matrix algebra, although from a computa-
tional point of view it is rarely the most effi cient way to solve a problem. This subject 
is discussed at length in linear algebra courses.  

  10.1.6   Determinants   

  Determinants are used in linear algebra and are related to the matrix inverse. If the 
determinant of a matrix is 0, the matrix does not have an inverse, and we say that it 
is singular. Determinants are calculated by multiplying together the elements along 

 SINGULAR MATRIX 
 A matrix that does not have 
an inverse 

 KEY IDEA 
 If the determinant is zero, 
the matrix does not have 
an inverse 
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the matrix’s left-to-right diagonals and subtracting the product of the right-to-left 
diagonals. For example, for a    2 � 2    matrix 

   A � cA11 A12

A21 A22
d    

 the determinant is 

   � A � � A11A22 � A12A21   

 Thus, for 

   A � c1 2
3 4

d    
   � A � � 112 142 � 122 132 � -2   

 MATLAB® has a built-in determinant function,   det  , that will fi nd the determinant 
for you:   

A = [1 2;3 4];
det(A)
ans =

-2

 Figuring out the diagonals for a    3 � 3    matrix 

   A � £A11 A12 A13

A21 A22 A23

A31 A32 A33

§    
 is a bit harder. If you copy the fi rst two columns of the matrix into columns 4 and 5, 
it becomes easier to see. Multiply each left-to-right diagonal and add them up:    

A11 A12 A13 A11 A12

A21 A22 A23 A21 A22

A31 A32 A33 A31 A32

      

   1A11A22A332 � 1A12A23A312 � 1A13A21A322   
 Then multiply each right-to-left diagonal and add them up:    

A11 A12 A13 A11 A12

A21 A22 A23 A21 A22

A31 A32 A35 A31 A32

      

   1A13A22A312 � 1A11A23A322 � 1A12A21A332   
 Finally, subtract the second calculation from the fi rst. For example, we might 
have 

   |A| � £1 2 3
4 5 6
7 8 9

§ � (1 � 5 � 9) � (2 � 6 � 7) � (3 � 4 � 8)   

   - 13 � 5 � 72 � 11 � 6 � 82 � 12 � 4 � 92 � 225 � 225 � 0   



 Using MATLAB® for the same calculation yields   

A = [1 2 3;4 5 6;7 8 9];
det(A)
ans =

0

 Since we know that matrices with a determinant of zero do not have inverses, let’s 
see what happens when we ask MATLAB® to fi nd the inverse of  A :   

inv(A)
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.541976e-018.
ans =

1.0e+016 *
-0.4504    0.9007    -0.4504
0.9007   -1.8014     0.9007
-0.4504    0.9007    -0.4504

  PRACTICE EXERCISES 10.3 

   1.    Find the inverse of the following magic matrices, both by using the 
  inv   function and by raising the matrix to the   �1    power: 
   (a)   magic(3)  
  (b)   magic(4)  
  (c)   magic(5)     

   2.    Find the determinant of each of the matrices in Exercise 1.   
   3.    Consider the following matrix: 

   A � £1 2 3
2 4 6
3 6 9

§    
 Would you expect it to be singular or not? (Recall that singular matrices 
have a determinant of 0 and do not have an inverse.)     

  10.1.7   Cross Products   

  Cross products are sometimes called vector products, because, unlike dot products, 
which return a scalar, the result of a cross product is a vector. The resulting vector is 
always at right angles (normal) to the plane defi ned by the two input vectors—a 
property that is called  orthogonality   . 

  Consider two vectors in three-space that represent both a direction and a mag-
nitude. (Force is often represented this way.) Mathematically, 

   A: � Axi: � Ay j: � Azk
:    

   B: � Bxi: � By j: � Bz k:    

 The values    Ax, Ay, Az    and    Bx, By, Bz    represent the magnitude of the vector in the  x , 
 y , and  z  directions, respectively. The    i:, j:,  k:    symbols represent unit vectors in the 
 x ,  y , and  z  directions. The  cross product  of    A:    and    B:, A: � B:,     is defi ned as 

 KEY IDEA 
 The result of a cross 
product is a vector 

 ORTHOGONAL 
 At right angles 
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   A: � B: � 1AyBz � AzBy2 i: � 1AzBx � AxBz2j: � 1AxBy � AyBx2k:    

 You can visualize this operation by creating a table 

   
i j k

Ax Ay Az

Bx By Bz

   

 and then repeating the fi rst two columns at the end of the table: 

   
i j k i j

Ax Ay Az Ax Ay

Bx By Bz Bx By

   

 The component of the cross product in the  i  direction is found by obtaining 
the product    AyBz    and subtracting the product    AzBy    from it:   

 

i j k i j

Ax Ay Az Ax Ay
Bx By Bz Bx By       

 Moving across the diagram, the component of the cross product in the  j  direc-
tion is found by obtaining the product    AzBx    and subtracting the product    AxBz    from it:   

 

i j k i j

Ax Ay Az Ax Ay
Bx By Bz Bx By       

 Finally, the component of the cross product in the  k  direction is found by 
obtaining the product    AxBy    and subtracting the product    AyBx    from it:   

 

i j k i j

Ax Ay Az Ax Ay
Bx By Bz Bx By       

  HINT    
 You may have noticed that the cross product is just a special case of a determi-
nant whose fi rst row is composed of unit vectors.  

 In MATLAB®, the cross product is found using the function   cross  , which 
requires two inputs: the vectors   A   and   B  . Each of these MATLAB® vectors must have 
three elements, since they represent the vector components in three-space. For exam-
ple, we might have   

A = [1 2 3]; (which represents    A:� 1i:� 2 j:� 3k:    )    

B = [4 5 6]; (which represents    B: � 4 i:� 5 j:� 6k:    )    
cross(A,B)
ans =

-3 6 -3 (which represents    C: � � 3 i: � 6 j:� 3k:    )  

 Consider two vectors in the  x – y  plane (with no  z  component):   

A = [1 2 0]
B = [3 4 0]



 The magnitude of these vectors in the  z  direction needs to be specifi ed as zero in 
MATLAB®. 

 The result of the cross product must be at right angles to the plane that con-
tains the vectors   A   and   B  , which tells us that in this case it must be straight out of the 
x – y  plane, with only a  z  component.   

cross(A,B)
ans =

0    0    -2

 Cross products fi nd wide use in statics, dynamics, fl uid mechanics, and electrical 
engineering problems. 

  EXAMPLE 10.4
  MOMENT OF A FORCE ABOUT A POINT 
 The moment of a force about a point is found by computing the cross product of a 
vector that defi nes the  position  of the force with respect to a point, with the force 
vector: 

   M0 � r �  F    

 Consider the force applied at the end of a lever, as shown in  Figure   10.4   . If you 
apply a force to the lever close to the pivot point, the effect is different than if you 
apply a force further out on the lever. That effect is called the  moment . 

  Calculate the moment about the pivot point on a lever for a force described as 
the vector 

   F: � -100i: � 20j:� 0k:    

 Assume that the lever is 12 inches long, at an angle of 45º from the horizontal. This 
means that the position vector can be represented as 

   r: �
1222

i:�
1222

j: � 0k:    

   1.   State the Problem 
  Find the moment of a force vector about the pivot point of a lever.  

Applied Force

F

Pivot Point

Distance

u

Force vector components

Fy

Fx

Position vector components

ry

rx

 Figure 10.4 
 The force applied to a lever creates a moment about the pivot point.       
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2.   Describe the Input and Output 

      Input              position vector  r: �
1222

 i: �
1222

 j
:

� 0k
:

   

            force vector F
:

� �100 i
:

� 20 j:� 0k
:

    

     Output    Moment about the pivot point of the lever    

  3.   Develop a Hand Example 
  Visualize the problem as the determinant of a    3 � 3    array: 

   M0 � ≥ i
:

j
:

k
:

1222

1222
0

� 100 20 0

¥    

  Clearly, there can be no    i:    or    j
:

    component in the answer. The moment must be 

   M0 � a 1212
� 20 �

1212
� (-100) � kb: � 1018.23k

:
    

4.   Develop a MATLAB® Solution 
  The MATLAB® code   

%Example 10.4

%Moment about a pivot point

%Define the position vector

r = [12/sqrt(2), 12/sqrt(2), 0];

%Define the force vector

F = [-100, 20, 0];

%Calculate the moment

moment=cross(r,F)

  returns the following result:   

moment =

0    0    1018.23

  This corresponds to a moment vector 

   M0 � 0i: � 0 j
:

� 1018.23 k
:

   

  Notice that the moment is at right angles to the plane defi ned by the position 
and force vectors.  

5.   Test the Solution 
  Clearly, the hand and MATLAB® solutions match, which means that we can now 

expand our program to a more general solution. For example, the following 
program prompts the user for the  x ,  y , and  z  components of the position and 
force vectors and then calculates the moment:   

%Example 10.4

%Moment about a pivot point
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%Define the position vector

clear,clc

rx = input('Enter the x component of the position vector: ');

ry = input('Enter the y component of the position vector: ');

rz = input('Enter the z component of the position vector: ');

r  = [rx, ry, rz];

disp('The position vector is')

fprintf('%8.2f i + %8.2f j + %8.2f k ft\n',r)

%Define the force vector

Fx = input('Enter the x component of the force vector: ');

Fy = input('Enter the y component of the force vector: ');

Fz = input('Enter the z component of the force vector: ');

F  = [Fx, Fy, Fz];

disp('The force vector is')

fprintf('%8.2f i + %8.2f j + %8.2f k lbf\n',F)

%Calculate the moment

moment = cross(r,F);

fprintf('The moment vector about the pivot point is \n')

fprintf('%8.2f i + %8.2f j + %8.2f k ft-lbf\n',moment)

 A sample interaction in the command window is   

Enter the x component of the position vector: 2

Enter the y component of the position vector: 3

Enter the z component of the position vector: 4

The position vector is

2.00 i +   3.00 j +   4.00 k ft

Enter the x component of the force vector: 20

Enter the y component of the force vector: 10

Enter the z component of the force vector: 30

The force vector is

20.00 i +   10.00 j +   30.00 k lbf

The moment vector about the pivot point is

50.00 i +   20.00 j +   -40.00 k ft-lbf

  10.2   SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS 

 Consider the following system of three equations with three unknowns: 

   
3x +2y -z � 10
-x +3y +2z �    5
  x -y -z � -1

   

 We can rewrite this system of equations by using the following matrices: 

   A � £    3    2    1
-1    3    2
   1 -1 -1

§  X � £ xy
z
§  B � £ 10

   5
-1
§    
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 Using matrix multiplication, we can then write the  system of equations  

   AX � B.   

  10.2.1   Solution Using the Matrix Inverse 

 Probably the most straightforward way of solving this system of equations is to use 
the matrix inverse. Since we know that 

   A-1A � 1   

 we can multiply both sides of the matrix equation    AX � B    by    A-1    to get 

   A-1AX � A-1B   

 giving 

   X � A-1B   

 As in all matrix mathematics, the order of multiplication is important. Since A is a 
   3 � 3    matrix, its inverse    A-1    is also a    3 � 3    matrix. The multiplication    A-1B    

   3 � 3 3 � 1   

 works because the dimensions match up. The result is the    3 � 1    matrix  X . If we 
change the order to    BA-1    the dimensions would no longer match, and the operation 
would be impossible. 

 Since, in MATLAB®, the matrix inverse is computed with the  inv  function, we 
can use the following set of commands to solve this problem:   

A = [3 2 -1; -1 3 2; 1 -1 -1];
B = [10; 5; -1];
X = inv(A)*B

 This code returns   

X =
-2.0000
5.0000
-6.0000

 Alternatively, you could represent the matrix inverse as   A^-1  , so that   

X = A^-1*B

 which gives the same result.   

X =
-2.0000
5.0000
-6.0000

 Although this technique corresponds well with the approach taught in college alge-
bra classes when matrices are introduced, it is not very effi cient and can result in 
excessive round-off errors. In general, using the matrix inverse to solve linear sys-
tems of equations should be avoided.  

  10.2.2   Solution Using Matrix Left Division 

 A better way of solving a system of linear equations is to use a technique called 
 Gaussian elimination . This is actually the way you probably learned to solve systems of 

 KEY IDEA 
 Gaussian elimination is 
more effi cient and less 
susceptible to round-off 
error than the matrix 
inverse method 



 EXAMPLE 10.5
  SOLVING SIMULTANEOUS EQUATIONS: AN ELECTRICAL CIRCUIT  *    
 In solving an electrical circuit problem, one quickly fi nds oneself mired in a large 
number of simultaneous equations. For example, consider the electrical circuit 
shown in  Figure   10.5   .  

*  From  Introduction to MATLAB® 7 , by Etter, Kuncicky, and Moore (Upper Saddle River, NJ: Pearson 
Prentice Hall, 2005).   

 It contains a single voltage source and fi ve resistors. You can analyze this circuit by 
dividing it up into smaller pieces and using two basic facts about electricity: 

    a voltage    around a circuit must be zero (Kirchhoff’s second law—see  Figure   10.6   )  

   voltage � current � resistance 1V � iR2   
 Following the lower left-hand loop results in our fi rst equation: 

   -V1 � R21i1 � i22 � R41i1 � i32 � 0   

i2

i3i1
V1

R5R4

R2 R3

R1 Figure 10.5 
 An electrical circuit.       

 Figure 10.6 
 Gustav Kirchhoff was 
a German physicist, 
who formulated many 
of the basic laws of 
circuit theory.       
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 Following the upper loop results in our second equation: 

   R1i2 � R31i2 � i32 � R21i2 � i12 � 0   

 Finally, following the lower right-hand loop results in the last equation: 

   R31i3 � i22 � R5i3 � R41i3 � i12 � 0   

 Since we know all the resistances (the  R  values) and the voltage, we have three 
equations and three unknowns. Now we need to rearrange the equations so that 
they are in a form to which we can apply a matrix solution. In other words, we need 
to isolate the  i ’s as follows: 

    1R2 � R42i1 � 1-R22i2 � 1-R42i3 � V1    

    1-R22i1 � 1R1 � R2 � R32i2 � 1-R32i3 � 0   

    1-R42i1 � 1-R32i2 � 1R3 � R4 � R52i3 � 0   

 Create a MATLAB® program to solve these equations, using the matrix inverse 
method. Allow the user to enter the fi ve values of  R  and the voltage from the 
 keyboard. 

1.   State the Problem 
  Find the three currents for the circuit shown.  
2.   Describe the Input and Output 

Input       Five resistances    R1, R2, R3, R4, R5,    and the voltage  V , provided from 
the keyboard  

Output     Three current values    i1, i2, i3       

  3.   Develop a Hand Example 
  If there is no applied voltage in a circuit, there can be no current, so if we enter 

any value for the resistances and enter zero for the voltage, the answer should 
be zero.  

  4.   Develop a MATLAB® Solution 
  The MATLAB® code   

%Example 10.5

%Finding Currents

clear,clc

R1 = input('Input the value of R1: ');

R2 = input('Input the value of R2: ');

R3 = input('Input the value of R3: ');

R4 = input('Input the value of R4: ');

R5 = input('Input the value of R5: ');

V = input('Input the value of voltage, V: ');

coef = [(R2+R4), -R2, -R4;

-R2, (R1 + R2 + R3), (-R3);

-R4, - R3,(R3 + R4 + R5)];

result = [V; 0; 0];

I = inv(coef)*result



  generates the following interaction in the command window:   

Input the value of R1: 5

Input the value of R2: 5

Input the value of R3: 5

Input the value of R4: 5

Input the value of R5: 5

Input the value of voltage, V: 0

I =

0

0

0

5.   Test the Solution 
  We purposely chose to enter a voltage of zero in order to check our solution. 

Circuits without a driving force (voltage) cannot have a current fl owing through 
them. Now try the program with other values:   

Input the value of R1: 2

Input the value of R2: 4

Input the value of R3: 6

Input the value of R4: 8

Input the value of R5: 10

Input the value of voltage, V: 10

  Together, these values give   

I =

1.69

0.97

0.81

equations in college algebra. Gaussian elimination was developed by Carl Friedrich 
Gauss, a German mathematician and scientist (see  Figure   10.7   ).     

 Consider our problem of three equations in  x ,  y,  and  z : 

    
3x +2y -z � 10
-x +3y +2z �    5
  x -y -z � -1

   

 To solve this problem by hand, we would fi rst consider the fi rst two equations in the 
set and eliminate one of the variables—for example,  x . To do this, we’ll need to 
multiply the second equation by 3 and then add the resulting equation to the fi rst 
one: 

   
   3x +2y -z � 10
-3x +9y +6z � 15
 0 +11y -5z � 25
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 Now, we need to repeat the process for the second and third equations: 

   
-x +3y -2z �   5
  x -y -z � -1
  0 +2y +z �    4

   

 At this point, we’ve eliminated one variable and reduced our problem to two equa-
tions and two unknowns: 

   
11y  +5z � 25
 2y +z � 4

   

 Now, we can repeat the elimination process by multiplying row 3 by    -11>2:    

   

11y +5z � 25

-
11
2

 * 2y -
11
2

z � -
11
2

* 4

0 -
1
2

z � 3

   

 Finally, we can solve for  z : 

   z � -6   

 Once we know the value of  z , we can substitute back into either of the two equations 
in just  z  and  y —namely, 

    
11y  +5z � 25
 2y +z � 4

   

 to fi nd that 

   y � 5   

 The last step is to substitute back into one of our original equations, 

   
3x +2y -z � 10
-x +3y +2z �    5
  x -y -z � -1

   

 Figure 10.7 
 Carl Friedrich Gauss 
was a remarkable 
mathematician and 
contributed to many 
other fi elds as well, 
including physics, 
astronomy, and electricity.       



 to fi nd that 

   x � -2   

 The technique of Gaussian elimination is an organized approach to eliminating 
variables until only one unknown exists and then substituting back until all the 
unknowns are determined. In MATLAB®, we can use left division to solve the prob-
lem by Gaussian elimination. Thus,      

X = A\B

 returns   

X =
-2.0000
5.0000
-6.0000

 Clearly, this is the same result we obtained with the hand solution and the matrix 
inverse approach. 

 MATLAB® is also capable of solving problems which are either overdefi ned or 
underdefi ned using left division. Consider, for example, the following problem: 

      
3*x +2*y +5*z � 22
4*x +5*y -2*z �    8

x +y +z �    6
            

 This problem is appropriately defi ned with three equations and three unknowns. 
When formulated as   

A = [3  2  5
4  5  -2
1  1  1]

 and   

B = [22; 8; 6]

 the left division operator can be used to solve for  x ,  y , and  z    

X = A\B

 which results in the solution   

X =
1
2
3

 Suppose, however, that we knew four equations relating  x ,  y , and  z , such as   

3*x +2* y +5* z =  22
4*x +5* y –2* z =   8

x   + y   + z =   6
2*x –4* y -7* z = -27

 Now, we have four equations and three unknowns and the problem is overdefi ned. 
We can still solve it using the left division operator. The coeffi cient matrix is 
defi ned as   

 GAUSSIAN 
ELIMINATION 
 An organized approach to 
eliminating variables and 
solving a set of 
simultaneous equations 
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A = [3  2  5
4  5 -2
1  1  1
2 -4 -7] 

 and the result matrix as   

B = [22; 8; 6; -27]

 When we execute the statement   

X = A\B

 we get the same result, because the equations were consistent.   

X =
1
2
3

 However, it is possible when gathering data that there might be small errors that 
result in different numbers in the result matrix. Assume that instead the fourth 
equation tells us that the result is �28, instead of �27. This means that we’ll need 
to adjust the  B  vector   

B = [22; 8; 6; -28]

 Now, when we execute   

X = A\B

 the result is   

X =
0.8618
2.1234
3.0328

 MATLAB® uses a least squared approach to fi nd the set of  X  values (which corre-
spond to  x ,  y ,  z  in our equations), which is the best match to the equations. If we use 
these values to fi nd B   

A*X

 The result is   

ans =
21.9962
7.9982
6.0180

-27.9997

 The least squared approach minimizes the absolute value of the difference between 
the calculated B values and the actual B values. This approach is described in a later 
chapter on numerical methods. 

 What if your system of equations is underdefi ned? For example, what if we only 
had two equations for three unknowns?   

3*x +2* y +5* z = 22
4*x +5* y –2* z =  8



 In this case we’d defi ne the coeffi cient matrix as   

A = [3 2  5
4 5 -2]

 and the result matrix as   

B = [22; 8]

 MATLAB® solves the problem by setting the fi rst variable equal to 0, which effectively 
reduces the problem to two equations and two unknowns.   

X = A\B

 which results in   

X =
0
2.8966
3.2414

 This is only one of an infi nite number of possible solutions, but it does give the cor-
rect answer if we substitute back into our equation   

A*X
ans =

22.0000
8.0000

  10.2.3   Solution Using the Reverse Row Echelon Function 

 In a manner similar to left division we could solve the system of linear equations 

   
3x +2y -z � 10
-x +3y +2z �    5
   x -y -z � -1

   

 using the reduced row echelon function,   rref  . Recall that we can rewrite this sys-
tem of equations by using the following matrices: 

   A � £    3    2    1
-1    3    2
   1 -1 -1

§    X � £ xy
z
§    B � £ 10

   5
-1
§    

 The   rref   function requires an expanded matrix as input, representing the coeffi -
cients and results. For our example system of equations the input would be   

C = [A,B]
C =

3   2  -1   10
-1   3   2    5
1  -1  -1   -1

rref(C)
ans =

1  0  0  -2
0  1  0   5
0  0  1  -6
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 The solution to our problem is represented by the last column in the output 
array, and corresponds to the results achieved with the other methods. 

 In a simple problem like this, no matter which technique we use, round-off error 
and execution time are not big factors. However, some numerical techniques require 
the solution of matrices with thousands or even millions of elements. Execution 
times are measured in hours or days for these problems, and round-off error and 
execution time become critical considerations. For such problems the matrix inverse 
technique is not appropriate. 

 Not all systems of linear equations have a unique solution. If there are fewer 
equations than variables, the problem is underspecifi ed. If there are more equa-
tions than variables, the problem is overspecifi ed. MATLAB® includes functions 
that will allow you to solve each of these systems of equations, by using numerical 
best-fi t approaches or adding constraints. Consult the MATLAB®   help   function for 
more information on these techniques. 

 EXAMPLE 10.6
  MATERIAL BALANCES ON A DESALINATION UNIT: 
SOLVING SIMULTANEOUS EQUATIONS 
 Freshwater is a scarce resource in many parts of the world. For example, Israel sup-
ports a modern industrial society in the middle of a desert. To supplement local 
water sources, Israel depends on water desalination plants along the Mediterranean 
coast. Current estimates predict that the demand for freshwater in Israel will increase 
to 60% by the year 2020, and most of that new water will have to come from desalina-
tion. Modern desalination plants use reverse osmosis, the process used in kidney 
dialysis! Chemical engineers make wide use of material-balance calculations to 
design and analyze plants such as the water desalination plants in Israel. 

 Consider the hypothetical desalination unit shown in  Figure   10.8   . The salty 
water fl owing into the unit contains 4 wt% salt and 96 wt% water. Inside the unit, the 
water is separated into two streams by a series of reverse-osmosis operations. The 
stream fl owing out the top is almost pure water. The remaining concentrated solu-
tion of salty water is 10 wt% salt and 90 wt% water. Calculate the mass fl ow rates com-
ing out of the top and bottom of the desalination unit.  

xH2O  0.96 
xNaCl  0.04 

xH2O  1.00 
xNaCl  0.00 

xH2O  0.90 
xNaCl  0.10 

Desalination
Unit

min  100 lbm

mtops  ? lbm 

mbottoms  ? lbm

 Figure 10.8 
 Water desalination is 
an important source of 
freshwater for desert 
nations such as Israel.       



 This problem requires us to perform a material balance on the reactor for both 
the salt and the water. The amount of any component fl owing into the reactor must 
be the same as the amount of that component fl owing out in the two exit streams. 
That is, 

   minA � mtopsA � mbottomsA   

 which could be rewritten as 

   xAmin total � xAtopsmtops � xAbottomsmbottoms   

 Thus, we can formulate this problem as a system of two equations in two 
unknowns: 

    0.96 � 100 � 1.00mtops � 0.90mbottoms 1for water2   
    0.04 � 100 � 0.00mtops � 0.10mbottoms 1for salt2   

1.   State the Problem 
  Find the mass of freshwater produced and the mass of brine rejected from the 

desalination unit.  
2.   Describe the Input and Output 

Input      Mass of 100 lb into the system 
     Concentrations (mass fractions) of the input stream: 

   xH2O � 0.96   
   xNaCl � 0.04   

     Concentrations (mass fractions) in the output streams: 
     water-rich stream (tops) 

   xH2O � 1.00   

     brine (bottoms) 

   xH2O � 0.90   
   xNaCl � 0.10    

Output   Mass out of the water-rich stream (tops) 
     Mass out of the brine (bottoms)    

3.   Develop a Hand Example 
  Since salt (NaCl) is present only in one of the outlet streams, it is easy to solve 

the following system of equations: 

    10.962 11002 � 1.00mtops � 0.90mbottoms 1for water2   
    10.042 11002 � 0.00mtops � 0.10mbottoms 1for salt2    

  Starting with the salt material balance, we fi nd that 

    4 � 0.1mbottoms    
    mbottoms � 40 lbm   

  Once we know the value of    mbottoms    we can substitute back into the water balance: 

    96 � 1mtops � 10.902 1402   
    mtops � 60 lb     
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  4.   Develop a MATLAB® Solution 
  We can use matrix mathematics to solve this problem, once we realize it is of 

the form 

   AX � B   

  where  A  is the coeffi cient matrix and thus the mass fractions of the water and 
salt. The result matrix,  B , consists of the mass fl ow rate into the system of water 
and salt: 

   A � c1 0.9
0 0.1

d    B � c96
4
d    

  The matrix of unknowns,  X , consists of the total mass fl ow rates out of the top 
and bottom of the desalination unit. Using MATLAB® to solve this system of 
equations requires only three lines of code:   

A = [1, 0.9; 0, 0.1];

B = [96; 4];

X = A\B

  This code returns   

X =

60

40

  5.   Test the Solution 
  Notice that in this example we chose to use matrix left division. Using the 

matrix inverse approach gives the same result:   

X = inv(A)*B

X =

60

40

  The results from both approaches match that from the hand example, but one 
additional check can be made to verify the results. We performed material bal-
ances based on water and on salt, but an additional balance can be performed 
on the  total  mass in and out of the system: 

   min � mtops � mbottoms   

   min � 40 � 60 � 100   

  Verifying that 100 lbm actually exits the system serves as one more confi rmation 
that we performed the calculations correctly. 

   Although it was easy to solve the system of equations in this problem by 
hand, most real material-balance calculations include more process streams 
and more components. Matrix solutions such as the one we created are an 
important tool for chemical-process engineers.   



 EXAMPLE 10.7
  A FORCE BALANCE ON A STATICALLY DETERMINATE TRUSS 
 A statically determinate truss is one of the early problems addressed in sophomore 
Statics classes. A typical problem is shown in  Figure   10.9   .  

32

1

F2

F3

Roller

Fapplied

y

x

Hinge

F1

u1 u2

 Figure 10.9 
 A simple statically 
determinate truss.       

 At the hinge (point 2) the truss cannot move in either the  x  or the  y  direction. At the 
roller (point 3) movement is allowed in the  x  direction, but not in the  y  direction. 
This results   in reactive forces at point 2 in both the  x  and the  y  directions, and at 
point 3 in just the  y  direction. If we also separate the applied force (at point 1) into  x  
and  y  components, the freebody diagram can be draw as shown in  Figure   10.10   .  

32

1

F2

F3

Roller

F1 applied, y

F1 applied, x

F2 reactive, y

y

x

Hinge

F1

u1 u2

F3 reactive, y

F2 reactive, x

 Figure 10.10 
 Freebody diagram for 
a statically determinate 
truss.       

 Because we assume that the truss is not moving, the sum of the forces at each of the 
nodes (1, 2, and 3) must be zero in both the  x  and the  y  directions. This gives us a 
total of six equations. 

    a Fat node 1, x direction � 0 � � F1 cos (u1) � F2 cos (u2) � F1 applied, x   

    a Fat node 1, y direction � 0 � � F1 sin (u1) � F2 sin (u2) � F1 applied, y    

    a Fat node 2, x direction � 0 � � F2reactive, x � F1 cos (u1) � F3    

    a Fat node 2, y direction � 0 � � F2reactive, y � F1 sin (u)    

    a Fat node 3, x direction � 0 � � F2 cos (u2) � F3    

 a Fat node 3, y direction � 0 � � F2 sin (u2) � F3 reactive, y       

 If the applied force is known, as well as the angles, this results in six equations and 
six unknowns ( F  1 ,  F  2 ,  F  3 ,  F 2  reactive , x  ,  F 2  reactive , y  , and  F 3  reactive , y  ). It turns out that with 
a little rearranging, we can see that this is a linear system of equations. 
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      -cos(u1)*F1        +cos(u2)*F2        +0*F3        +0*F2 reactive, x        +0*F2 reactive, y        +0*F3 reactive, y    �     -  F1 applied, x   

   -sin(u1)*F1       -sin(u2)*F2       +0*F3        +0*F2 reactive, x       +0*F2 reactive, y       +0*F3 reactive, y    �    -F1 applied, y   

cos(u1)*F1       +0*F2         +1*F3       +1*F2 reactive, x       +0*F2 reactive, y       +0*F3 reactive, y    � 0

sin(u1)*F1       +0*F2       +0*F3       +0*F2 reactive, x       +1*F2 reactive, y       +0*F3 reactive, y    � 0

+0*F1       -cos(u2)*F2       -1*F3       +0*F2 reactive, x       +0*F2 reactive, y       +0*F3 reactive, y    � 0

�0*F1       +sin(u2)*F2       1*F3       +0*F2 reactive, x       +0*F2 reactive, y       +1*F3 reactive, y    � 0

 This system can be expressed, using matrix notation as: 

    

-cos(u1) cos(u2)  0 0 0 0
-sin(u1) -sin(u2)   0 0 0 0
   cos(u1) 0   1 1 0 0
  sin(u1) 0   0 0 1 0

0 -cos(u2) -1 0 0 0
0    sin(u2)    0 0 0 1

  *  

F1

F2

F3

F2 reactive, x

F2 reactive, y

F3 reactive, y

  �  

-F1 applied, x

-F1 applied, y

0
0
0
0

   

 Now that we’ve derived the appropriate equations, solve this system for the case 
where:  

   u1 � 45�,   

   u2 � 45�   

 and the applied load at node 1 is 1000 lbf in the negative vertical direction. 

   1.   State the Problem 
  Find the loads experienced on the truss, shown in  Figure   10.10   .  
  2.   Describe the Input and Output 

     Input         Negative vertical load at node 1 of 1000 lbf 

   u1 � 45�   
   u2 � 45�    

    Output   Force experienced in each beam of the truss,  F  1 ,  F  2 , and  F  3 , 
        the reactive forces at the hinge,  F 2  reactive , x   and  F 2  reactive , y  , and 
                 the reactive force at the roller,  F 3  reactive , y  .    

  3.   Develop a Hand Example 
  Substituting into the matrix previously derived gives 

   

-0.7071 +0.7071 0 0 0 0
-0.7071 -0.7071 0 0 0 0
+0.7071 0 1 1 0 0
+0.7071 0 0 0 1 0

0 -0.7071 -1 0 0 0
0 +0.7071 0 0 0 1

     *  

F1

F2

F3

F2 reactive, x

F2 reactive, y

F3 reactive, y

  �  

0
1000

0
0
0
0



 We could solve this equation using matrix algebra, however, an examination of 
the truss in  Figure   10.11    leads to a more simple solution. Notice that there is no 
horizontal applied force. The    reactive force resulting at node 2 must therefore 
be zero. Because the geometry of the truss is symmetrical that also leads to the 
conclusion that nodes 2 and 3 must also experience the same load—hence, in 
order for the net vertical force to equal zero  F 2  reactive , y   and  F 3  reactive , y  , must 
both be 500 lbf .  We’ve now determined three of the unknowns,  

   F2 reactive, x �  0   

   F2 reactive, y �  0   

   F3 reactive, y �  0   

 Examining the set of equations we notice that the force balance in the vertical 
direction at node 2 can now be solved 

   a Fat node 2, y direction � 0 � +F2 reactive, y � F1 sin (u1)   

   a Fat node 2, y direction � 0 � +500 � F1 sin (45�)   

   F1 �
-500

sin (45�)
� -707.1     lbf  similarly…  

   F2 � -707.1 lbf   
 Finally, we can use the balance at node 3 in the horizontal direction to give: 

   a Fat node 3, x direction � 0 � � F2cos(u2) � F3   

   F3 � � F2cos(u2) � 707.1*cos(45�) � 500    

  4.   Develop a MATLAB® Solution 
  We can develop a general solution to this problem, and use the given data to 

check it.   

theta1=45 % angle in degrees

theta2=45 % angle in degrees

F1x=0 % horizontal load

F1y=-1000 % vertical load

A=[-cosd(theta1),cosd(theta2),0,0,0,0

-sind(theta1),-sind(theta2),0,0,0,0

cosd(theta1),0,1,1,0,0

sind(theta1),0,0,0,1,0

0,-cosd(theta2),-1,0,0,0

0,sind(theta2),0,0,0,1]

B=[F1x,-F1y,0,0,0,0]'

F2

F3

F1

45� 45�

1

1000 lbf

y

x
2F2 react

 Figure 10.11 
 Freebody diagram for 
a balanced truss.       
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x=(A\B )' % use left division

 This code returns the result   

x =

-707.11  -707.11  500.00  0  500.00  500.00

 which corresponds to the hand solution.  
5.   Test the Solution 
  Notice that in this example we chose to use matrix left division. Using the 

matrix inverse approach gives the same result:   

x =( inv(A)*B)'

 returns the following to the command window   

x =

-707.11 -707.11 500.00 0 500.00 500.00

 The results from both approaches match that from the hand example, which 
did not depend on matrix algebra. Now, we can use the same program to ana-
lyze the truss at different conditions. For example, assume the following… 

   u1 �  30�   

   u2 �  60�   

 and an applied load of 1000 lbf in the horizontal direction at node 1. The 
MATLAB® code would be modifi ed to read…   

theta1=30 % angle in degrees

theta2=60 % angle in degrees

F1x=1000 % horizontal load

F1y=0 % vertical load

A=[-cosd(theta1),cosd(theta2),0,0,0,0

-sind(theta1),-sind(theta2),0,0,0,0

cosd(theta1),0,1,1,0,0

sind(theta1),0,0,0,1,0

0,-cosd(theta2),-1,0,0,0

0,sind(theta2),0,0,0,1]

B=[F1x,-F1y,0,0,0,0]'

x=inv(A)*B

x=A\B

 giving a result of   

x =

-866.03 500.00 -250.00 1000.00 433.01 -433.01

 Notice that the fourth value in the array, which corresponds to the reactive 
force in the  x  direction at node 2 is 1000, just what we would expect.   
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      10.3   SPECIAL MATRICES 

 MATLAB® contains a group of functions that generate special matrices, some of 
which we review in this section. 

  10.3.1   Ones and Zeros 

 The   ones   and   zeros   functions create matrices consisting entirely of ones and 
zeros, respectively. When a single input is used, the result is a square matrix. When 
two inputs are used, they specify the number of rows and columns. For example,   

ones(3)

 returns   

ans =
1   1   1
1   1   1
1   1   1

 and   
zeros(2,3)

 returns   

ans =
0   0   0
0   0   0

 If more than two inputs are specifi ed in either function, MATLAB® creates a multi-
dimensional matrix. For instance,   

ones(2,3,2)
ans(:,:,1) =

1.00   1.00   1.00
1.00   1.00   1.00

ans(:,:,2) =
1.00   1.00   1.00
1.00   1.00   1.00

 creates a three-dimensional matrix with two rows, three columns, and two pages.  

  10.3.2   Identity Matrix 

 An identity matrix is a matrix with ones on the main diagonal and zeros everywhere 
else. For example, here is an identity matrix with four rows and four columns: 

   ≥1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

¥    

 Note that the main diagonal contains elements in which the row number is the 
same as the column number. The subscripts for elements on the main diagonal are 
(1, 1), (2, 2), (3, 3), and so on. 

 In MATLAB®, identity matrices can be generated with the   eye   function. The 
arguments of the   eye   function are similar to those of the   zeros   and the   ones   
functions. If the argument of the function is a scalar, as in   eye (6)  , the function 
will generate a square matrix, using the argument as both the number of rows and 
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the number of columns. If the function has two scalar arguments, as in   eye(m,n)  , 
the function will generate a matrix with  m  rows and  n  columns. To generate an 
identity matrix that is the same size as another matrix, use the   size   function to 
determine the correct number of rows and columns. Although most applications 
use a square identity matrix, the defi nition can be extended to nonsquare matrices. 
The following statements illustrate these various cases:   

A = eye(3)
A =

1   0   0
0   1   0
0   0   1

B = eye(3,2)
B =

1   0
0   1
0   0

C = [1, 2, 3 ; 4, 2, 5]
C =

1   2   3
4   2   5

D = eye(size(C))
D =

1   0   0
0   1   0

  HINT    

 We recommend that you do not name an identity matrix   i  , because   i   will no 

longer represent    2-1    in any statements that follow. 
 Recall that   A * inv(A)   equals the identity matrix. We can illustrate this 

with the following statements:   

A = [1,0,2; -1, 4, -2; 5,2,1]
A = 

1  0   2 
  -1  4  -2 
   5  2   1 
inv(A)
ans = 
   -0.2222  -0.1111   0.2222 
    0.2500   0.2500   0.0000 
    0.6111   0.0556  -0.1111 
A*inv(A)
ans = 
    1.0000   0        0.0000 
   -0.0000   1.0000   0.0000

-0.0000  -0.0000   1.0000

 As we discussed earlier, matrix multiplication is not in general commutative—
that is, 

   AB � B   
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 However, for identity matrices, 
   AI � IA   

 which we can show with the following MATLAB® code:   

I = eye(3)
I = 
    1  0  0 
    0  1  0 
    0  0  1 
A*I
ans = 
    1  0  2 
   -1  4 -2 
    5  2  1
I*A
ans = 
    1  0  2 
   -1  4 -2 
    5  2  1 

  10.3.3   Other Matrices 

 MATLAB® includes a number of matrices that are useful for testing numerical tech-
niques, that serve in computational algorithms, or that are just interesting.    

 Pascal  Creates a Pascal matrix, 
using Pascal’s triangle. 

pascal(4) 
ans =
      1.00   1.00    1.00     1.00
      1.00   2.00    3.00     4.00
      1.00   3.00    6.00   10.00
      1.00   4.00  10.00   20.00

 Magic  Creates a Magic Matrix, in 
which all the rows, all the 
columns, and all the 
diagonals add up to the 
same value. 

Magic(3) 
ans =
      8.00   1.00   6.00
      3.00   5.00   7.00
      4.00   9.00   2.00  

 rosser  The Rosser Matrix is used as 
an eigenvalue test matrix. It 
requires no input. 

rosser 
ans = [8 × 8]  

 Gallery  The gallery contains over 50 
different test matrices. 

 The syntax for the gallery functions is different for each 
function. Use  help  to determine which is right for your 
needs. 

 One of the most common matrix operations is the transpose, which changes rows 
into columns and columns into rows. In mathematics texts, the transpose is indi-
cated with a superscript  T , as in    AT.    In MATLAB®, the single quote is used as the 
transpose operator. Thus,   

A'

 is the transpose of   A  . 

           SUMMARY 
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 Another common matrix operation is the dot product, which is the sum of the 
array multiplications of two equal-size vectors: 

   C � a
N

i�1
Ai * Bi   

 The MATLAB® function for dot products is   

dot(A,B)

 Similar to the dot product is matrix multiplication. Each element in the result of a 
matrix multiplication is a dot product: 

   Ci,j � a
N

k�1
Ai,kBk, j   

 Matrix multiplication uses the asterisk operator in MATLAB®, so that   

C = A*B

 indicates that the matrix  A  is multiplied by the matrix  B  in accordance with the 
rules of matrix algebra. Matrix multiplication is not commutative—that is, 

   AB � BA   
 Raising a matrix to a power is similar to multiple multiplication steps: 

   A3 � AAA   
 Since a matrix must be square in order to be multiplied by itself, only square matri-
ces can be raised to a power. When matrices are raised to noninteger powers, the 
result is a matrix of complex numbers. 

 A matrix times its inverse is the identity matrix: 

   AA�1 � I    
 MATLAB® provides two techniques for determining a matrix inverse: the   inv   
function,   

inv_of_A = inv(A)

 and raising the matrix to the    -1    power, given by   

inv_of_A = A^-1

 If the determinant of a matrix is zero, the matrix is singular and does not have an 
inverse. The MATLAB® function used to fi nd the determinant is   

det(A)

 In addition to computing dot products, MATLAB® contains a function that calcu-
lates the cross product of two vectors in three-space. The cross product is often 
called the vector product because it returns a vector: 

   C � A �  B   
 The cross product produces a vector that is at right angles (normal) to the two 
input vectors, a property called orthogonality. Cross products can be thought of as 
the determinant of a matrix composed of the unit vectors in the  x ,  y , and  z  direc-
tions and the two input vectors: 

   C �

i: j
:

k:

Ax Ay Az

Bx By Bz

   



 The MATLAB® syntax for calculating a cross product uses the  cross  function:   

C = cross(A,B)

 One common use of the matrix inverse is to solve systems of linear equations. For 
example, the system       

   3x    �2y    �z � 10
 �x    �3y   �2z �   5
   x      �y     �z � �1

 can be expressed with matrices as   
AX � B

 To solve this system of equations with MATLAB®, you could multiply   B   by the inverse 
of   A  :   

X = inv(A)*B

 However, this technique is less effi cient than Gaussian elimination, which is 
accomplished in MATLAB® by using left division:   

X = A\B

 The left division technique can also be used to solve both overdefi ned and 
underdefi ned systems of equations. When the system is overdefi ned a least squared 
approach is used to fi nd the best fi t result. When the system is underdefi ned one or 
more of the variables is set equal to 0, and the remaining variables calculated. 

 MATLAB® includes a number of special matrices that can be used to make cal-
culations easier or to test numerical techniques. For example, the   ones   and   zeros   
functions can be used to create matrices of ones and zeros, respectively. The   pas-
cal   and   magic   functions are used to create Pascal matrices and magic matrices, 
respectively, which have no particular computational use but are interesting math-
ematically. The gallery function contains over 50 matrices especially formulated to 
test numerical techniques. 

  MATLAB® SUMMARY 

 The following MATLAB® summary lists and briefl y describes all the special charac-
ters, commands, and functions that are defi ned in this chapter:   

 Special Characters 

    '     indicates a matrix transpose 
    *     matrix multiplication 
    \     matrix left division 
    ̂      matrix exponentiation 

 Commands and Functions 

  cross   computes the cross product 
  det   computes the determinant of a matrix 
  dot   computes the dot product 
  eye   generates an identity matrix 
  gallery   contains sample matrices 
  inv   computes the inverse of a matrix 
  magic   creates a “magic” matrix 
  ones   creates a matrix containing all ones 
  pascal   creates a pascal matrix 
  rref   uses the reduced row echelon format scheme for solving a series of linear equations 
  size   determines the number of rows and columns in a matrix 
  zeros   creates a matrix containing all zeros 

 Summary 383
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 cross product 
 determinant 
 dot product 
 Gaussian elimination 
 identity matrix 

 inverse 
 matrix multiplication 
 normal 
 orthogonal 
 singular 

 system of equations 
 transpose 
 unit vector

  

       KEY TERMS 

  Dot Products  

   10.1    Compute the dot product of the following pairs of vectors, and then show that 

   A # B � B # A   

   (a)      A � 31 3 54 , B � 3 � 3 � 2 44      
  (b)      A � 30 � 1 � 4 � 84 , B � 34 �  2 �  3 244         

   10.2    Compute the total mass of the components shown in  Table   10.3   , using a dot 
product.   

  PROBLEMS 

 Table 10.3   Component Mass Properties 

 Component  Density, g/cm 3   Volume, cm 3  

 Propellant            1.2               700    

 Steel            7.8               200    

 Aluminum            2.7               300    

 Table 10.4   Shopping List 

 Item  Number Needed  Cost 

 Milk  2 gallons  $3.50 per gallon 

 Eggs  1 dozen  $1.25 per dozen 

 Cereal  2 boxes  $4.25 per box 

 Soup  5 cans  $1.55 per can 

 Cookies  1 package  $3.15 per package 

   10.4    Bomb calorimeters are used to determine the energy released during 
chemical reactions. The total heat capacity of a bomb calorimeter is defi ned 
as the sum of the products of the mass of each component and the specifi c 
heat capacity of each component, or 

   CP � a
n

i�1
miCi   

   where 
       mi � mass    of component  i , g  
      Ci � heat    capacity of component,  i , J/g K  
      CP � total heat capacity, J/K      

   10.3    Use a dot product and the shopping list in  Table   10.4    to determine your 
total bill at the grocery store.   
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  Find the total heat capacity of a bomb calorimeter, using the thermal data 
in  Table   10.5   .   

 Table 10.5   Thermal Data 

 Component  Mass, g  Heat Capacity, J/gK 

 Steel     250               0.45 

 Water     100               4.2 

 Aluminum       10               0.90 

   10.5    Organic compounds are composed primarily of carbon, hydrogen, and oxy-
gen and for that reason are often called hydrocarbons. The molecular 
weight (MW) of any compound is the sum of the products of the number of 
atoms of each element ( Z ) and the atomic weight (AW) of each element 
present in the compound. 

   MW � a
n

i�1
AWi

# Zi   

  The atomic weights of carbon, hydrogen, and oxygen are approximately 12, 
1, and 16, respectively. Use a dot product to determine the molecular weight 
of ethanol    1C2H5OH2,       which has two carbon, one oxygen, and six hydrogen 
atoms.   

   10.6    It is often useful to think of air as a single substance with a molecular weight 
(molar mass) determined by a weighted average of the molecular weights of 
the different gases present. With little error, we can estimate the molecular 
weight of air using in our calculation only nitrogen, oxygen, and argon. Use 
a dot product and  Table   10.6    to approximate the molecular weight of air. 

 Table 10.6   Composition of Air 

 Compound  Fraction in Air  Molecular Weight, g/mol 

 Nitrogen,    N2      0.78   28 

 Oxygen,    O2      0.21   32 

 Argon, Ar   0.01   40 

     Matrix Multiplication  

   10.7    Compute the matrix product   A*B   of the following pairs of matrices: 

   (a)      A � c12 4
3 -5

d  B � c2 12
0 0

d      
  (b)      A � c1 3 5

2 4 6
d  B � £ -2 4

3 8
12 -2

§       
 Show that   A*B   is not the same as   B*A  .   

   10.8    You and a friend are both going to a grocery store. Your lists are shown in 
 Table   10.7   . 
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 The items cost as follows:   

 Table 10.7   Ann and Fred’s Shopping List 

 Item  Number Needed by Ann  Number Needed by Fred 

 Milk   2 gallons   3 gallons 

 Eggs   1 dozen   2 dozen 

 Cereal   2 boxes   1 box 

 Soup   5 cans   4 cans 

 Cookies   1 package   3 packages 

 Table 10.8   Thermal Properties of a Bomb Calorimeter 

 Experiment No.  Mass of Water, g  Mass of Steel, g  Mass of Aluminum, g 

 1  110  250  10 

 2  100  250  10 

 3  101  250  10 

 4  98.6  250  10 

 5  99.4  250  10 

 Component  Heat Capacity, J/gK 

 Steel  0.45 
 Water  4.2 

 Aluminum  0.90 

 Item  Cost 

 Milk  $3.50 per gallon 

 Eggs  $1.25 per dozen 

 Cereal  $4.25 per box 

 Soup  $1.55 per can 

 Cookies  $3.15 per package 

    Find the total bill for each shopper.   
   10.9    A series of experiments was performed with a bomb calorimeter. In each 

experiment, a different amount of water was used. Calculate the total heat 
capacity for the calorimeter for each of the experiments, using matrix mul-
tiplication, the data in  Table   10.8   , and the information on heat capacity that 
follows the table.   

          10.10       The molecular weight (MW) of any compound is the sum of the products of 
the number of atoms of each element ( Z ) and the atomic weight (AW) of 
each element present in the compound, or 

   MW � a
n

i�1
AWi

# Zi   

  The compositions of the fi rst fi ve straight-chain alcohols are listed in  Table   10.9   . 
Use the atomic weights of carbon, hydrogen, and oxygen (12, 1, and 16, 
respectively) and matrix multiplication to determine the molecular weight 
(more correctly called the molar mass) of each alcohol.   



  Matrix Exponentiation  

   10.11    Given the array 

   A � c -1 3
4 2

d    
   (a)   Raise  A  to the second power by array exponentiation. (Consult   help   if 

necessary.)  
  (b)   Raise  A  to the second power by matrix exponentiation.  
  (c)   Explain why the answers are different.   

 Table 10.9   Composition of Alcohols 

 Name  Carbon  Hydrogen  Oxygen 

 Methanol       1         4       1 

 Ethanol       2         6       1 

 Propanol       3         8       1 

 Butanol       4       10       1 

 Pentanol       5       12       1 

      10.12    Create a    3 � 3    array called   A   by using the   pascal   function:   

pascal(3)

   (a)   Raise   A   to the third power by array exponentiation.  
  (b)   Raise   A   to the third power by matrix exponentiation.  
  (c)   Explain why the answers are different.     

  Determinants and Inverses  

   10.13    Given the array    A � 3-13; 4   24 ,    compute the determinant of  A  both by 
hand and by using MATLAB®.   

   10.14    Recall that not all matrices have an inverse. A matrix is singular (i.e., it 
doesn’t have an inverse) if its determinant equals 0 (i.e.,    � A � � 0   ). Use the 
determinant function to test whether each of the following matrices has an 
inverse: 

   A � c2 -1
4 5

d , B � c4 2
2 1

d , C � £2 0 0
1 2 2
5 -4 0

§    
 If an inverse exists, compute it.   

  Cross Products  

   10.15    Compute the moment of force around the pivot point for the lever shown 
in  Figure   P10.15   . You’ll need to use trigonometry to determine the  x  and  y  
components of both the position vector and the force vector. Recall that the 
moment of force can be calculated as the cross product 

   M0 � r � F   

  A force of 200 lbf is applied vertically at a position 20 feet along the lever. 
The lever is positioned at an angle of 60° from the horizontal. 

Applied Force F  200 lbf

Pivot Point

20 feet

u  60

 Figure P10.15 
 Moment of force acting on a 
lever about the origin.       
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      10.16    Determine the moment of force about the point where a bracket is attached 
to a wall. The bracket is shown in  Figure   P10.16   . It extends 10 inches out 
from the wall and 5 inches up. A force of 35 lbf is applied to the bracket at 
an angle of 55° from the vertical. Your answer should be in ft-lbf, so you’ll 
need to do some conversions of units. 

Wall

Force
Vector

Position
Vector

10 inches

5 inches 

F = 35 lbf 

u  55

 Figure P10.16 
 A bracket attached to a 
wall.       

     10.17      A rectangular shelf is attached to a wall by two brackets 12 inches apart at 
points  A  and  B , as shown in  Figure   P10.17   . A wire with a 10-lbf weight 
attached to it is hanging from the edge of the shelf at point  C . Determine 
the moment of force about point  A  and about point  B  caused by the weight 
at point  C . 

 You can formulate this problem by solving it twice, once for each 
bracket, or by creating a    2 � 3    matrix for the position vector and another 
   2 � 3    matrix for the force vector. Each row should correspond to a different 
bracket. The  cross  function will return a    2 � 3    result, each row 
corresponding to the moment about a separate bracket. 

10 lbf

A
B

C

12 inches
2 inches

4 inches

 Figure P10.17 
 Calculation of moment of 
force in three dimensions.       

     Solving Linear Systems of Equations  

  10.18       Solve the following systems of equations, using both matrix left division and 
the inverse matrix method: 

   (a)      � 2x � y � 3              x � y � 10     

  (b)        5x � 3y � z � 10        
   3x � 2y � z � 4        
   4x � y � 3z � 12     



  (c)      3x � y � z � w � 24

         x � 3y � 7z � w � 12        

 2x � 2y � 3z � 4w � 17

         x � y � z � w � 0        

  10.19     In general, matrix left division is faster and more accurate than the matrix 
inverse. Using both techniques, solve the following system of equations and 
time the execution with the   tic   and   toc   functions: 

   

3x1 � 4x2 � 2x3 � x4 � x5 � 7x6 � x7 � 42
2x1 � 2x2 � 3x3 � 4x4 � 5x5 � 2x6 � 8x7 � 32
x1 � 2x2 � 3x3 � x4 � 2x5 � 4x6 � 6x7 � 12

5x1 � 10x2 � 4x3 � 3x4 � 9x5 � 2x6 � x7 � -5

   

   
3x1 � 2x2 � 2x3 � 4x4 � 5x5 � 6x6 � 7x7 � 10
-2x1 � 9x2 � x3 � 3x4 � 3x5 � 5x6 � x7 � 18
x1 � 2x2 � 8x3 � 4x4 � 2x5 � 4x6 � 5x7 � 17

   

  If you have a new computer, you may fi nd that this problem executes so 
quickly that you won’t be able to detect a difference between the two 
techniques. If so, see if you can formulate a larger problem to solve.   

  10.20     In  Example   10.5   , we demonstrated that the circuit shown in  Figure   10.5    
could be described by the following set of linear equations: 

   1R2 � R42i1 � 1-R22i2 � 1-R42i3 � V1   

   1-R22i1 � 1R1 � R2 � R32i2 � 1-R32i3 � 0   

   1-R42i1 � 1-R32i2 � 1R3 � R4 � R52i3 � 0   

  We solved this set of equations by the matrix inverse approach. Redo the 
problem, but this time use the left-division approach.   

  10.21     Consider a separation process in which a stream of water, ethanol, and 
methanol enters a process unit. Two streams leave the unit, each with vary-
ing amounts of the three components (see  Figure   P10.21   ). 

 Determine the mass fl ow rates into the system and out of the top and 
  bottom of the separation unit. 

xH2O 0.50
xEthanol x
xMethanol  1 0.5 x

xH2O 0.65
xEthanol  0.25
xMethanol  0.10

xH2O 0.20
xEthanol  0.35
xMethanol  0.45

min  100

mtops  ?

mbottoms  ?

 Figure P10.21 
 Separation process with 
three components.       
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    (a)   First set up material-balance equations for each of the three  components: 
 Water 

   10.52 11002 � 0.2mtops � 0.65mbottoms   

   50 � 0.2mtops � 0.65mbottoms     

 Ethanol 

       100x � 0.35mtops � 0.25mbottoms   

   0 � � 100x � 0.35mtops � 0.25mbottoms     

 Methanol 

       10011 � 0.5 � x2 � 0.45mtops � 0.1mbottoms   

   50 � 100x � 0.45mtops � 0.1mbottoms    
  (b)   Arrange the equations you found in part (a) into a matrix representation:  

   A � £ 0 0.2 0.65
-100 0.35 0.25
100 0.45 0.1

§  B � £50
0
50
§     

  (c)   Use MATLAB® to solve the linear system of three equations.     
  10.22     Consider the statically determinate truss shown in  Figure   P10.22.    

   The applied force has a magnitude of 1000 lbf at an angle of 30° from the 
horizontal, as shown in the fi gure. The inner angles,    u1    and    u2    are 45° and 
65° respectively. Determine the values of the forces in each member of the 
truss, and the reactive forces experienced at the hinge and the roller (nodes 
2 and 3).   

32

1

F2

F3

Roller

Fapplied

y

x

Hinge

F1

u1 u2

30�

 Figure P10.22 
 A statically determinate 
truss.       

  Challenge Problem  

  10.23     Create a MATLAB® function M-fi le called  my_matrix_solver  to solve a sys-
tem of linear equations, using nested   for   loops instead of MATLAB®’s 
built-in operators or functions. Your function should accept a coeffi cient 
matrix and a result matrix, and should return the values of the variables. 
For example, if you wish to solve the following matrix equation for X 

   AX �  B   

   your function should accept  A  and  B  as input, and return  X  as the result. 
Test your function with the system of equations from the previous problem.       
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  INTRODUCTION 

 In MATLAB ® , scalars, vectors, and two-dimensional matrices are used to store data. In 
reality, all these are two dimensional. Thus, even though   

   A = 1;   

 creates a scalar,   

   B = 1:10;   

 creates a vector, and   

   C = [1,2,3;4,5,6];   

 creates a two-dimensional matrix, they are all still two-dimensional arrays. Notice in 
 Figure   11.1    that the size of each of these variables is listed as a  two-dimensional  matrix 
   1 �  1    for A,    1 �  10    for B, and    2 �  3    for C. The class listed for each is also the 
same: Each is a “double,” which is short for double-precision fl oating-point number. 
(To ensure that you see all the columns shown in  Figure   11.1    right click on the title 
bar and select the appropriate parameters. You can also access this menu by selecting 
View from the menu bar.) 

 After reading this chapter, you 
should be able to: 
  •   Understand the different 

kinds of data used in 
MATLAB ®   

  •   Create and use both 
numeric and character 
arrays  

  •   Create multidimensional 
arrays and access data in 
those arrays  

  •   Create and use cell and 
structure arrays   

     Objectives 

 Other Kinds 
of Arrays 

  C H A P T E R
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  MATLAB ®  includes the capability to create multidimensional matrices and to 
store data that are not doubles, such as characters. In this chapter, we’ll introduce 
the data types supported by MATLAB ®  and explore how they can be stored and 
used by a program.   

     11.1   DATA TYPES 

 The primary data type (also called a class) in MATLAB ®  is the  array  or  matrix . Within 
the array, MATLAB ®  supports a number of different secondary data types. Because 
MATLAB ®  was written in C, many of those data types parallel the data types sup-
ported in C. In general, all the data within an array must be the same type. However, 
MATLAB ®  also includes functions to convert between data types, and array types to 
store different kinds of data in the same array (cell and structure arrays). 

 The kinds of data that can be stored in MATLAB ®  are listed in  Figure   11.2   . 
They include numerical data, character data, logical data, and symbolic data types. 
Each can be stored either in arrays specifi cally designed for that data type or in 
arrays that can store a variety of data. Cell arrays and structure arrays fall into the 
latter category ( Figure   11.3   ).   

  11.1.1   Numeric Data Types 

  Double-Precision Floating-Point Numbers 
 The default numeric data type in MATLAB ®  is the double-precision fl oating-point 
number, as defi ned by IEEE Standard 754. (IEEE, the Institute of Electrical and 

 Figure 11.1 
 MATLAB ®  supports a 
variety of array types.       

 IEEE 
 Institute of Electrical and 
Electronics Engineers 
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Electronics Engineers, is the professional organization for electrical engineers.) 
Recall that when we create a variable such as   A  , as in      

A = 1;

 the variable is listed in the workspace window and the class is “double,” as shown in 
 Figure   11.1   . Notice that the array requires 8 bytes of storage space. Each byte is equal 
to 8 bits, so the number 1 requires 64 bits of storage space. Also in  Figure   11.1   , 
notice how much storage space is required for variables   B   and   C  :   

B = 1:10;    C=[1,2,3; 4,5,6];

Kinds of Data Stored in MATLAB® Matrices

NumericCharacter Logical
Symbolic Objects—
Symbolic Toolbox

Integer Floating Point

multiple
signed
integer
types

multiple
unsigned
integer
types

single
precision

double
precision

complex real

 Figure 11.2 
 Many different kinds of 
data can be stored in 
MATLAB ®.        

MATLAB® Data Types (Array Types)

Character
Arrays

Floating Point

single
precision

double
precision

Logical
Arrays

Numeric
Arrays

Symbolic
Arrays

Cell
Arrays

Structure
Arrays

Other types, including user-
defined and JAVA types

Cell and structure arrays can
store different types of data in
the same array

Integer

multiple
signed
integer
types

multiple
unsigned
integer
types

 Figure 11.3 
 MATLAB ®  supports multiple 
data types, all of which are 
arrays.       
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 The variable   B   requires 80 bytes, 8 for each of the 10 values stored, and  C  
requires 48 bytes, again 8 for each of the 6 values stored.    

 You can use the   realmax   and   realmin   functions to determine the maximum 
possible value of a double-precision fl oating-point number:   

realmax
ans =

1.7977e+308

realmin
ans =

2.2251e-308

 If you try to enter a value whose absolute value is greater than   realmax  , or if 
you compute a number that is outside this range, MATLAB ®  will assign a value of 
   	 infinity:      

x = 5e400
x =

Inf

 Similarly, if you try to enter a value whose absolute value is less than   realmin  , 
MATLAB ®  will assign a value of zero:   

x = 1e-400
x =

0

  Single-Precision Floating-Point Numbers 
 Single-precision fl oating-point numbers are new to MATLAB ®  7. They use only half 
the storage space of a double-precision number and thus store only half the infor-
mation. Each value requires only 4 bytes, or    4 �  8 � 32 bits,    of storage space, as 
shown in the workspace window in  Figure   11.1    when we defi ne   D   as a  single-precision 
number:      

D = single(5)
D =

5

 We need to use the   single   function to change the value 5 (which is double 
precision by default) to a single-precision number. Similarly, the   double   function 
will convert a variable to a double, as in   

double(D)

 which changes the variable   D   into a double. 
 Since single-precision numbers are allocated only half as much storage space, 

they cannot cover as large a range of values as double-precision numbers. We can 
use the   realmax   and   realmin   functions to show this:   

realmax('single')
ans =

3.4028e+038

realmin('single')
ans =

1.1755e–038

 KEY IDEA 
 MATLAB ®  supports multiple 
data types 

 KEY IDEA 
 Single-precision numbers 
require half the storage 
room of double-precision 
numbers 



 Engineers will rarely need to convert to single-precision numbers, because 
today’s computers have plenty of storage space for most applications and will exe-
cute most of the problems we pose in extremely short amounts of time. However, in 
some numerical analysis applications, you may be able to improve the run time of a 
long problem by changing from double to single precision. Note, though, that this 
has the disadvantage of making round-off error more of a problem.    

 We can demonstrate the effect of round-off error in single-precision versus dou-
ble-precision problems with an example. Consider the series 

   a a1
1
 �  

1
2
 �  

1
3
 �  

1
4
 �  

1
5
 �  

1
6
 � % �  

1
n
 � % b    

 A series is the sum of a sequence of numbers, and this particular series is called 
the  harmonic series , represented with the following shorthand notation: 

   a
�

n�1

1
n

   

 The harmonic series diverges; that is, it just keeps getting bigger as you add 
more terms together. You can represent the fi rst 10 terms of the harmonic sequence 
with the following commands:   

n = 1:10;
harmonic = 1./n

 You can view the results as fractions if you change the format to rational:   

format rat
harmonic =
1  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10

 Or you can use the short format, which shows decimal representations of the 
numbers:   

format short
harmonic =
1.0000  0.5000  0.3333  0.2500  0.2000  0.1667  0.1429

0.1250  0.1111  0.1000

 No matter how the values are displayed on the screen, they are stored as double-
precision fl oating-point numbers inside the computer. By calculating the partial 
sums (also called cumulative sums), we can see how the value of the sum of these 
numbers changes as we add more terms:   

partial_sum = cumsum(harmonic)
partial_sum =
Columns 1 through 6
1.0000  1.5000  1.8333  2.0833  2.2833  2.4500

Columns 7 through 10
2.5929  2.7179  2.8290  2.9290

 The cumulative sum (  cumsum  ) function calculates the sum of the values in 
the array up to the element number displayed. Thus, in the preceding calcula-
tion, the value in column 3 is the partial sum of the values in columns 1 through 
3 of the input array (in this case, the array named   harmonic  ). No matter how big 
we make the harmonic array, the partial sums continue to increase. 

 KEY IDEA 
 Double-precision numbers 
are appropriate for most 
engineering applications 
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 The only problem with this process is that the values in   harmonic   keep getting 
smaller and smaller. Eventually, when   n   is big enough,   1./n   is so small that the com-
puter can’t distinguish it from zero. This happens much more quickly with single-
precision than with double-precision representations of numbers. We can 
demonstrate this property with a large array of  n -values:   

n = 1:1e7;
harmonic = 1./n;
partial_sum = cumsum(harmonic);

 (This may take your computer a while to calculate, especially if you have an 
older machine.) All these calculations are performed with double-precision num-
bers, because double precision is the default data type in MATLAB ® . Now we’d like 
to plot the results, but there are really too many numbers (10 million, in fact). We 
can select every thousandth value with the following code:   

m = 1000:1000:1e7;
partial_sums_selected = partial_sum(m);
plot(partial_sums_selected)

 Now we can repeat the calculations, but change to single-precision values. You 
may need to clear your computer memory before this step, depending on how 
much memory is available on your system. The code is   

n = single(1:1e7);
harmonic = 1./n;
partial_sum = cumsum(harmonic);
m = 1000:1000:1e7;
partial_sums_selected = partial_sum(m);
hold on
plot(partial_sums_selected,':')

 The results are presented in  Figure   11.4   . The solid line represents the partial 
sums calculated with double precision. The dashed line represents the partial sums 
calculated with single precision. The single-precision calculation levels off, because 
we reach the point where each successive term is so small that the computer sets it 
equal to zero. We haven’t reached that point yet for the double-precision values.      

 KEY IDEA 
 Round-off error is a bigger 
problem in single-precision 
than in double-precision 
calculations 
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 Figure 11.4 
 Round-off error degrades 
the harmonic series 
calculation for single-
precision faster than for 
double-precision numbers .      



  Integers 
 New to MATLAB ®  are several integer-number types. Traditionally, integers are used 
as counting numbers. For example, there can’t be 2.5 people in a room, and you 
can’t specify element number 1.5 in an array. Eight different types of integers are 
supported by MATLAB ® . They differ in how much storage space is allocated for the 
type and in whether the values are signed or unsigned. The more storage space, the 
larger the value of an integer number you can use. The eight types are shown in 
 Table   11.1   . 

 Since 8 bits is 1 byte, when we assign   E   as an   int8   with the code   

E = int8(10)
E =

10

 it requires only 1 byte of storage, as shown in  Figure   11.1   . 
 You can determine the maximum value of any of the integer types by using the 

  intmax   function. For example, the code   

intmax('int8')
ans =

127

 indicates that the maximum value of an 8-bit signed integer is 127.    
 The four signed-integer types allocate storage space to specify whether the 

number is plus or minus. The four unsigned-integer types assume that the number 
is positive and thus do not need to store that information, leaving more room to 
store numerical values. 

 The code    

intmax('uint8')
ans =

255

 reveals that the maximum value of an 8-bit unsigned integer is 255. 
 One place where integer arrays fi nd use is to store image information. These 

arrays are often very large, but a limited number of colors are used to create the 
picture. Storing the information as unsigned-integer arrays reduces the storage 
requirement dramatically.  

  Complex Numbers 
 The default storage type for complex numbers is double; however, twice as much 
storage room is needed, because both the real and imaginary components must be 
stored:   

F = 5+3i;

 KEY IDEA 
 Integer data are often used 
to store image data 

 Table 11.1   MATLAB ®  Integer Types 

 8-bit signed integer   int8   8-bit unsigned integer   uint8  

 16-bit signed integer   int16   16-bit unsigned integer   uint16  

 32-bit signed integer   int32   32-bit unsigned integer   uint32  

 64-bit signed integer   int64   64-bit unsigned integer   uint64  

11.1 Data Types 397
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 Thus, 16 bytes    1=  128 bits2    are required to store a double complex number. 
Complex numbers can also be stored as singles or integers (see  Figure   11.1   ), as the 
following code illustrates:   

G = int8(5+3i);   

 PRACTICE EXERCISES 11.1 

   1.    Enter the following list of numbers into arrays of each of the numeric 
data types [1, 4, 6; 3, 15, 24; 2, 3, 4]: 
   (a)    Double-precision fl oating point—name this array   A    
  (b)   Single-precision fl oating point—name this array   B    
  (c)    Signed integer (pick a type)—name this array   C    
  (d)   Unsigned integer (pick a type)—name this array   D       

   2.    Create a new matrix   E   by adding   A   to   B  :   

      E � A �  B      

   What data type is the result?   
   3.    Defi ne   x   as an integer data type equal to 1 and   y   as an integer data 

type equal to 3. 
   (a)    What is the result of the calculation   x/y  ?  
  (b)   What is the data type of the result?  
  (c)     What happens when you perform the division when  x  is defi ned 

as the integer 2 and  y  as the integer 3?     
   4.    Use   intmax   to determine the largest number you can defi ne for each 

of the numeric data types. (Be sure to include all eight integer data 
types.)   

   5.    Use MATLAB ®  to determine the smallest number you can defi ne for 
each of the numeric data types. (Be sure to include all eight integer 
data types.)   

  11.1.2   Character and String Data 

 In addition to storing numbers, MATLAB ®  can store character information. Single 
quotes are used to identify a string and to differentiate it from a variable name. 
When we type the string      

H ='Holly';

 a    1 �  5    character array is created. Each letter is a separate element of the array, as 
is indicated by the code   

H(5)
ans =

y

 Any string represents a character array in MATLAB ® . Thus,   

K = 'MATLAB is fun'

 becomes a    1 � 13    character array. Notice that the spaces between the words are 
counted as characters. Notice also that the name column in  Figure   11.1    displays a 

 KEY IDEA 
 Each character, including 
spaces, is a separate 
element in a character 
array 



symbol containing the letters “ab,” which indicates that   H   and   K   are character arrays. 
Each character in a character array requires 2 bytes of storage space.    

 All information in computers is stored as a series of zeros and ones. There are two 
major coding schemes to do this: ASCII and EBCDIC. Most small computers use the 
ASCII coding scheme, whereas many mainframes and supercomputers use EBCDIC. 
You can think of the series of zeros and ones as a binary, or base-2, number. In this 
sense, all computer information is stored numerically. Every base-2 number has a 
decimal equivalent. The fi rst several numbers in each base are shown in  Table   11.2   .     

 Every ASCII (or EBCDIC) character stored has both a binary representation 
and a decimal equivalent. When we ask MATLAB ®  to change a character to a dou-
ble, the number we get is the decimal equivalent in the ASCII coding system. Thus, 
we may have      

double('a')
ans =

97

 Conversely, when we use the   char   function on a double, we get the character 
represented by that decimal number in ASCII—for example,   

char (98)
ans =

b

 If we try to create a matrix containing both numeric and character informa-
tion, MATLAB ®  converts all the data to character information:   

['a',98]
ans =

ab

 (The character b is equivalent to the number 98.) Not all numbers have a char-
acter equivalent. If this is the case they are represented as a blank in the resulting 
character array   

['a',3]
ans =

a

 Although this result looks like it has only one character in the array, check the 
workspace window. You’ll fi nd that the size is a    1 �  3    character array. 

 ASCII 
American   Standard Code 
for Information—a 
standard code for 
exchanging information 
between computers 

 EBCDIC 
Extended   Binary Coded 
Decimal Interchange 
Code—a standard code for 
exchanging information 
between computers 

 Table 11.2   Binary-to-Decimal Conversions 

 Base 2 (binary)  Base 10 (decimal) 

 1  1 

 10  2 

 11  3 

 100  4 

 101  5 

 110  6 

 111  7 

 1000  8 

 BINARY 
 A coding scheme using 
only zeros and ones 
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 If we try to perform mathematical calculations with both numeric and charac-
ter information, MATLAB ®  converts the character to its decimal equivalent:   

'a' + 3
ans =

100

 Since the decimal equivalent of   'a'   is 97, the problem is converted to 

   97 �  3 � 100     

 PRACTICE EXERCISES 11.2 

   1.    Create a character array consisting of the letters in your name.   
   2.    What is the decimal equivalent of the letter  g ?   
   3.    Upper- and lowercase letters are 32 apart in decimal equivalent. 

(Uppercase comes fi rst.) Using nested functions, convert the string 
“matlab” to the uppercase equivalent, “MATLAB  .”   

  11.1.3   Symbolic Data 

 The symbolic toolbox uses symbolic data to perform symbolic algebraic calcula-
tions. One way to create a symbolic variable is to use the   sym   function:   

L = sym('x^2-2')
L =
x^2-2

 The storage requirements of a symbolic object depend on how large the object 
is. Notice, however, in  Figure   11.1   , that   L   is a    1 � 1    array. Subsequent symbolic 
objects could be grouped together into an array of mathematical expressions. The 
symbolic-variable icon shown in the left-hand column of  Figure   11.1    is a cube.  

  11.1.4   Logical Data 

 Logical arrays may look like arrays of ones and zeros because MATLAB ®  (as well as 
other computer languages) uses these numbers to denote true and false:      

M = [true,false,true]
M =

1  0  1

 We don’t often create logical arrays this way. Usually, they are the result of logi-
cal operations. For example,   

x = 1:5;
y = [2,0,1,9,4];
z = x>y

 returns   

z =
0  1  1  0  1

 KEY IDEA 
 Computer programs use the 
number 0 to mean false 
and the number 1 to mean 
true 
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 We can interpret this to mean that     x 7 y     is false for elements 1 and 3, and true 
for elements 2, 3, and 5. These arrays are used in logical functions and usually are 
not even seen by the user. For example,   

find(x>y)

ans =
2  3  5

 tells us that elements 2, 3, and 5 of the  x  array are greater than the corresponding 
elements of the  y  array. Thus, we don’t have to analyze the results of the logical opera-
tion ourselves. The icon representing logical arrays is a check mark ( Figure   11.1   ).  

  11.1.5   Sparse Arrays 

 Both double-precision and logical arrays can be stored either in full matrices or as 
sparse matrices. Sparse matrices are “sparsely populated,” which means that many 
or most of the values in the array are zero. (Identity matrices are examples of sparse 
matrices.) If we store double-precision sparse arrays in the full-matrix format, every 
data value takes 8 bytes of storage, be it a zero or not. The sparse-matrix format 
stores only the nonzero values and remembers where they are—a strategy that saves 
a lot of computer memory. 

 For example, defi ne a    1000 � 1000    identity matrix, which is a one-million- 
element matrix:   

N = eye(1000);

 At 8 bytes per element, storing this matrix takes 8 MB. If we convert it to a 
sparse matrix, we can save some space. The code to do this is   

P = sparse(N);

 Notice in the workspace window that array   P   requires only 16,004 bytes! Sparse 
matrices can be used in calculations just like full matrices. The icon representing a 
sparse array is a group of diagonal lines ( Figure   11.1   ).   

  11.2   MULTIDIMENSIONAL ARRAYS 

 When the need arises to store data in multidimensional (more than two-dimensional) 
arrays, MATLAB ®  represents the data with additional pages. Suppose you would like 
to combine the following four two-dimensional arrays into a three-dimensional array:      

x = [1,2,3;4,5,6];
y = 10*x;
z = 10*y;
w = 10*z;

 You need to defi ne each page separately:   

my_3D_array(:,:,1) = x;
my_3D_array(:,:,2) = y;
my_3D_array(:,:,3) = z;
my_3D_array(:,:,4) = w;

 Read each of the previous statements as all the rows, all the columns, page 1, 
and so on. 

 When you call up   my_3D_array  , using the code   

my_3D_array

 KEY IDEA 
 MATLAB ®  supports arrays 
in more than two 
dimensions 
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 the result is   

my_3D_array
my_3D_array(:,:,1) =

1  2  3
4  5  6

my_3D_array(:,:,2) =
10  20  30
40  50  60

my_3D_array(:,:,3) =
100  200  300
400  500  600

my_3D_array(:,:,4) =
1000  2000  3000
4000  5000  6000

 An alternative approach is to use the   cat   function. When you concatenate a list 
you group the members together in order, which is what the   cat   function does. 
The fi rst fi eld in the function specifi es which dimension to use to concatenate the 
arrays, which follow in order. For example, to create the array we used in the previ-
ous example the syntax is   

cat(3,x,y,z,w)

 A multidimensional array can be visualized as shown in  Figure   11.5   . Even 
higher-dimensional arrays can be created in a similar fashion.     

rows

columns

pages

 Figure 11.5 
 Multidimensional arrays 
are grouped into pages.       

 HINT    
 The   squeeze   function can be used to eliminate singleton dimensions in 
multidimensional arrays. For example, consider the three-dimensional array 
with the following dimensions 

3 �  1 �  4

 This represents an array with three rows, one column, and four pages. It 
could be stored more effi ciently as a two-dimensional array by   squeezing   out 
the singleton column dimension   

b = squeeze(a)

 to give a new array with the dimensions 

3 �  4
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  11.3   CHARACTER ARRAYS 

 We can create two-dimensional character arrays only if the number of elements in 
each row is the same. Thus, a list of names such as the following won’t work, because 
each name has a different number of characters:   

Q = ['Holly';'Steven';'Meagan';'David';'Michael';'Heidi']
??? Error using ==> vertcat
All rows in the bracketed expression must have the same number 
of columns.

 The   char   function “pads” a character array with spaces, so that every row has 
the same number of elements:   

Q = char('Holly','Steven','Meagan','David','Michael','Heidi')
Q =
Holly
Steven
Meagan
David
Michael
Heidi

  Q  is a    6 �  7    character array. Notice that commas are used between each 
string in the   char   function. 

 Not only alphabetic characters can be stored in a MATLAB ®  character array. 
Any of the symbols or numbers found on the keyboard can be stored as characters. 
We can take advantage of this feature to create tables that appear to include both 
character and numeric information, but really are composed of just characters. 

 For example, let’s assume that the array   R   contains test scores for the students 
in the character array   Q  :   

R = [98;84;73;88;95;100]

R = 
 98
84
73
88
95
100

 If we try to combine these two arrays, we’ll get a strange result, because they are 
two different data types:   

table = [Q,R]

table =

 PRACTICE EXERCISES 11.3 

   1.    Create a three-dimensional array consisting of a    3 �  3    magic square, 
a    3 �  3    matrix of zeros, and a    3 �  3    matrix of ones.   

   2.    Use triple indexing such as   A(m,n,p)   to determine what number is in 
row 3, column 2, page 1 of the matrix you created in Exercise 1.   

   3.    Find all the values in row 2, column 3 (on all the pages) of the matrix.   
   4.    Find all the values in all the rows and pages of column 3 of the matrix.   
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Holly b
Steven T
Meagan I
David X
Michael_
Heidi d

 The double-precision values in   R   were used to defi ne characters on the basis of 
their ASCII equivalent. When doubles and chars are used in the same array, 
MATLAB® converts all the information to chars. This is confusing, since, when we 
combine characters and numeric data in mathematical computations, MATLAB ®  
converts the character information to numeric information. 

 The   num2str   (number to string) function allows us to convert the double   R   
matrix to a matrix composed of character data:   

S = num2str(R)
S =
98
84
73
88
95
100

   R   and   S   look alike, but if you check the workspace window ( Figure   11.6   ), you’ll 
see that   R   is a    6 �  1    double array and   S   is the    6 � 3    char array shown below.    

 space  9  8 

 space  8  4 

 space  7  3 

 space  8  8 

 space  9  5 

 1  0  0 

 Now we can combine   Q  , the character array of names, with   S  , the character array 
of scores:   

 Figure 11.6 
 Character and numeric 
data can be combined in a 
single array by changing 
the numeric values to 
characters with the 
  num2str   function.       
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table = [Q,S]

table =
Holly 98
Steven 84
Meagan 73
David 88
Michael 95
Heidi 100

 We show the results in the monospace font, which is evenly spaced. You can 
control the font that MATLAB ®  uses; if you choose a proportional font, such as 
Times New Roman, your columns won’t line up. 

 We could also use the   disp   function to display the results:   

disp([Q,S])
Holly 98
Steven 84
Meagan 73
David 88
Michael 95
Heidi 100

  HINT    
 Put a space after your longest string, so that when you create a padded char-
acter array, there will be a space between the character information and the 
numeric information you’ve converted to character data. 

 KEY IDEA 
 Combine character and 
numeric arrays using the 
  num2str   function to 
create data fi le names 

 A useful application of character arrays and the   num2str   function is the crea-
tion of fi le names. On occasion you may want to save data into   .dat   or   .mat   fi les, 
without knowing ahead of time how many fi les will be required. One solution would 
be to name your fi les using the following pattern:      

my_data1.dat
my_data2.dat
my_data3.dat etc.

 Imagine that you load a fi le of unknown size, called   some_data  , into MATLAB ®  
and want to create new fi les, each composed of a single column from   some_data  :   

load some_data

 You can determine how big the fi le is by using the   size   function:   

[rows,cols] = size(some_data)

 If you want to store each column of the data into its own fi le, you’ll need a fi le 
name for each column. You can do this in a   for   loop, using the function form of 
the   save   command:   

for k = 1:cols
file_name = ['my_data',num2str(k)]
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data = some_data(:,k) '
save(file_name,'data')

end

 The loop will execute once for each column. You construct the fi le name by 
creating an array that combines characters and numbers with the statement   

file_name = ['my_data',num2str(k)];

 This statement sets the variable   file_name   equal to a character array, such as 
  my_data1   or   my_data2  , depending on the current pass through the loop. The 
  save   function accepts character input. In the line   

save(file_name,'data')

   file_name   is a character variable, and   'data'   is recognized as character infor-
mation because it is inside single quotes. If you run the preceding   for   loop on a 
fi le that contains a    5 �  3    matrix of random numbers, you get the following result:   

rows =
5

cols =
3

file_name =
my_data1
data =

-0.4326  -1.6656  0.1253  0.2877  -1.1465
file_name =
my_data2
data =

1.1909  1.1892  -0.0376  0.3273  0.1746
file_name =
my_data3
data =

-0.1867  0.7258  -0.5883  2.1832  -0.1364

 The current folder now includes three new fi les.   

 PRACTICE EXERCISES 11.4 

   1.    Create a character matrix called   names   of the names of all the planets. 
Your matrix should have nine rows.   

   2.    Some of the planets can be classifi ed as rocky midgets and others as gas 
giants. Create a character matrix called   type  , with the appropriate 
designation on each line.   

   3.    Create a character matrix of nine spaces, one space per row.   
   4.    Combine your matrices to form a table listing the names of the planets 

and their designations, separated by a space.   
   5.    Use the Internet to fi nd the mass of each of the planets, and store the 

information in a matrix called   mass  . (Or use the data from  Example 
  11.2   .) Use the   num2str   function to convert the numeric array into a 
character array, and add it to your table.   
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  EXAMPLE 11.1
  CREATING A SIMPLE SECRET CODING SCHEME 
 Keeping information private in an electronic age is becoming more and more dif-
fi cult. One approach is to encode information, so that even if an unauthorized 
person sees the information, he or she won’t be able to understand it. Modern cod-
ing techniques are extremely complicated, but we can create a simple code by tak-
ing advantage of the way character information is stored in MATLAB ® . If we add a 
constant integer value to character information, we can transform the string into 
something that is diffi cult to interpret. 

1.   State the Problem 
  Encode and decode a string of character information.  
2.   Describe the Input and Output 

Input     Character information entered from the command window  
Output     Encoded information    

3.   Develop a Hand Example 
  The lowercase letter  a  is equivalent to the decimal number 97. If we add 5 to  a

and convert it back to a character, it becomes the letter  f .  
4.   Develop a MATLAB ®  Solution   

%Example 11.1
%Prompt the user to enter a string of character information.
A=input('Enter a string of information to be encoded: ')
encoded=char(A+5);
disp('Your input has been transformed!');
disp(encoded);
disp('Would you like to decode this message?');
response=menu('yes or no?','YES','NO');
switch response

case 1
disp(char(encoded-5));

case 2
disp('OK - Goodbye');

end

  5.   Test the Solution 
  Run the program and observe what happens. The program prompts you for 

input, which must be entered as a string (inside single quotes):   

Enter a string of information to be encoded:

'I love rock and roll'

 Once you hit the return key, the program responds   

Your input has been transformed!

N%qt{j%wthp%fsi%wtqq

Would you like to decode this message?
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  Because we chose to use a menu option for the response, the menu window 
pops up. When we choose YES, the program responds with   

I love rock and roll

 If we choose NO, it responds with   

OK - Goodbye     

Because we chose to use a menu option for the response, the menu window 
pops up. When we choose YES, the program responds with   

I love rock and roll

If we choose NO, it responds with

OK - Goodbye

  11.4   CELL ARRAYS 

 Unlike the numeric, character, and symbolic arrays, the cell array can store differ-
ent types of data inside the same array. Each element in the array is also an array. 
For example, consider these three different arrays:      

A = 1:3;
B = ['abcdefg'];
C = single([1,2,3;4,5,6]);

 We have created three separate arrays, all of a different data type and size.   A   is 
a double,   B   is a char, and   C   is a single. We can combine them into one cell array by 
using curly brackets as our cell-array constructor (the standard array constructors 
are square brackets):   

my_cellarray = {A,B,C}

 returns   

my_cellarray =
[1x3 double] 'abcdefg' [2x3 single]

 To save space, large arrays are listed just with size information. You can show 
the entire array by using the   celldisp   function:   

celldisp(my_cellarray)
my_cellarray{1} =

1  2  3
my_cellarray{2} =
abcdefg
my_cellarray{3} =

1  2  3

 The indexing system used for cell arrays is the same as that used in other arrays. 
You may use either a single index or a row-and-column indexing scheme. There are 
two approaches to retrieving information from cell arrays: You can use parentheses, 
as in   

my_cellarray(1)
ans =

[1x3 double]

 KEY IDEA 
 Cell arrays can store 
information using various 
data types 
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 which returns a result as new cell array. An alternative is to use curly brackets, 
as in   

my_cellarray{1}
ans =

1  2  3

 In this case the answer is a double. To access a particular element inside 
an array stored in a cell array, you must use a combination of curly brackets and 
parentheses:   

my_cellarray{3}(1,2)
ans =

2

 Cell arrays can become quite complicated. The   cellplot   function is a useful 
way to view the structure of the array graphically, as shown in  Figure   11.7   .    

cellplot(my_cellarray)

 Cell arrays are useful for complicated programming projects or for database 
applications. A use in common engineering applications would be to store various 
kinds of data from a project in one variable name that can be disassembled and 
used later.  

  11.5   STRUCTURE ARRAYS 

 Structure arrays are similar to cell arrays. Multiple arrays of differing data types can 
be stored in structure arrays, just as they can in cell arrays. Instead of using content 
indexing, however, each matrix stored in a structure array is assigned a location 
called a  field . For example, using the three arrays from the previous section on cell 
arrays,      

A = 1:3;
B = ['abcdefg'];
C = single([1,2,3;4,5,6]);

 we can create a simple structure array called   my_structure  :   

my_structure.some_numbers = A

a b c d e f g

 Figure 11.7 
 The   Cellplot   function 
provides a graphical 
representation of the 
structure of a cell array.       

 KEY IDEA 
 Structure arrays can store 
information using various 
data types 
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 which returns   

my_structure =
some_numbers: [1 2 3]

 The name of the structure array is   my_structure  . It has one fi eld, called 
  some_numbers  . We can now add the content in the character matrix   B   to a second 
fi eld called   some_letters:

my_structure.some_letters = B
my_structure =

some_numbers: [1 2 3]
some_letters: 'abcdefg'

 Finally, we add the single-precision numbers in matrix   C   to a third fi eld called 
  some_more_numbers:   

my_structure.some_more_numbers = C
my_structure =

some_numbers: [1 2 3]
some_letters: 'abcdefg'
some_more_numbers: [2x3 single]

 Notice in the workspace window ( Figure   11.8   ) that the structure matrix (called 
a   struct  ) is a    1 *  1    array that contains all the information from all three dissimilar 
matrices. The structure has three fi elds, each containing a different data type:    

  some_numbers   double-precision numeric data 

  some_letters   character data 

  some_more_numbers   single-precision numeric data 

 We can add more content to the structure, and expand its size, by adding more 
matrices to the fi elds we’ve defi ned:   

my_structure(2).some_numbers = [2 4 6 8]
my_structure =
1x2 struct array with fields:

some_numbers
some_letters
some_more_numbers

 Figure 11.8 
 Structure arrays can 
contain many different 
types of data .      
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 You can access the information in structure arrays by using the matrix name, 
fi eld name, and index numbers. The syntax is similar to what we have used for 
other types of matrices. An example is   

my_structure(2)
ans =

some_numbers: [2 4 6 8]
some_letters: []

some_more_numbers: []

 Notice that   some_letters   and   some_more_numbers   are empty matrices, 
because we didn’t add information to those fi elds. 

 To access just a single fi eld, add the fi eld name:   

my_structure(2).some_numbers
ans =

2   4   6   8

 Finally, if you want to know the content of a particular element in a fi eld, you 
must specify the element index number after the fi eld name:   

my_structure(2).some_numbers(2)
ans =

4

 The   disp   function displays the contents of structure arrays. For example,   

disp(my_structure(2).some_numbers(2))

 returns   

4

 You can also use the array editor to access the content of a structure array (and 
any other array, for that matter). When you double-click the structure array in the 
workspace window, the array editor opens ( Figure   11.9   ). If you double-click one of 
the elements of the structure in the array editor, the editor expands to show you the 
contents of that element ( Figure   11.10   ).   

 Figure 11.9 
 The array editor reports the 
size of an array in order to 
save space.       
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 Structure arrays are of limited use in engineering  calculations , but they are 
widely used in large computer programs to pass information between functions. The 
GUIDE program in MATLAB ® , which is used to design graphical user interfaces, 
uses this approach. They are also extremely useful in applications such as  database 

management . Since large amounts of engineering data are often stored in a data-
base, the structure array is extremely useful for data analysis. The examples that 
 follow will give you a better idea of how to manipulate and use structure arrays. 

 Figure 11.10 
 Double-clicking on a 
component in the array 
editor allows us to see the 
data stored in the array.       

  EXAMPLE 11.2
  STORING PLANETARY DATA WITH STRUCTURE ARRAYS 
 Structure arrays can be used much like a database. You can store numeric informa-
tion, as well as character data or any of the other data types supported by MATLAB ® . 
Create a structure array to store information about the planets. Prompt the user to 
enter the data. 

   1.   State the Problem 
  Create a structure array to store planetary data and input the information from 

 Table   11.3   . 

  Table 11.3   Planetary Data 

 Planet Name 
 Mass, in Earth 

Multiples 
 Length of Year, in 

Earth Years 
 Mean Orbital 
Velocity, km/s 

 Mercury  0.055  0.24  47.89 

 Venus  0.815  0.62  35.03 

 Earth  1  1  29.79 

 Mars  0.107  1.88  24.13 

 Jupiter  318  11.86  13.06 

 Saturn  95  29.46  9.64 

 Uranus  15  84.01  6.81 

 Neptune  17  164.8  5.43 

 Pluto  0.002  247.7  4.74 
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2.   Describe the Input and Output 

    Input       

Output         A structure array storing the data  

3.   Develop a Hand Example 
  Developing a hand example for this problem would be diffi cult. Instead, a fl ow-

chart would be useful.  
4.   Develop a MATLAB ®  Solution   

%% Example 11.2
clear,clc
k = 1;
response = menu('Would you like to enter planetary 
data?','yes','no');
while response==1

disp('Remember to enter strings in single quotes')
planetary(k).name = input('Enter a planet name in single 

quotes: ');
planetary(k).mass = input('Enter the mass in multiples of 

earth''s mass: ');
planetary(k).year = input('Enter the length of the 

planetary year in Earth years: ');
planetary(k).velocity = input('Enter the mean orbital 

velocity in km/sec: ');
%Review the input
planetary(k)
increment = menu('Was the data correct?','Yes','No');
switch increment

case 1
increment = 1;

case 2
increment = 0;

end
k = k+increment;
response = menu('Would you like to enter more planetary 

data?','yes','no');
end
%%
planetary %output the information stored in planetary

 Here’s a sample interaction in the command window when we run the program 
and start to enter data:   

Remember to enter strings in single quotes
Enter a planet name in single quotes: 'Mercury'
Enter the planetary mass in multiples of Earth's mass: 0.055
Enter the length of the planetary year in Earth years: 0.24
Enter the mean orbital velocity in km/sec: 47.89
ans =

name: 'Mercury'
mass: 0.0550
year: 0.2400
velocity: 47.8900
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5.   Test the Solution 
  Enter the data, and compare your array with the input table. As part of the pro-

gram, we reported the input values back to the screen so that the user could 
check for accuracy. If the user responds that the data are not correct, the infor-
mation is overwritten the next time through the loop. We also used menus instead 
of free responses to some questions, so that there would be no ambiguity regard-
ing the answers. Notice that the structure array we built, called   planetary  , is 
listed in the workspace window. If you double-click on   planetary  , the array 
editor pops up and allows you to view any of the data in the array ( Figure   11.11   ). 
You can also update any of the values in the array editor.  

 Figure 11.11 
 The array editor allows 
you to view (and 
change) data in the 
structure array.       

 We’ll be using this structure array in  Example   11.3    to perform some calcula-
tions. You’ll need to save your results as   

save planetary_information planetary

 This command sequence saves the structure array  planetary  into the fi le 
  planetary_information.mat.    

  EXAMPLE 11.3
  EXTRACTING AND USING DATA FROM STRUCTURE ARRAYS 
 Structure arrays have some advantages for storing information. First, they use fi eld 
names to identify array components. Second, information can be added to the array 
easily and is always associated with a group. Finally, it’s hard to accidentally scram-
ble information in structure arrays. To demonstrate these advantages, use the data 
you stored in the   planetary_information   fi le to complete the following tasks: 

   •   Identify the fi eld names in the array, and list them.  
  •   Create a list of the planet names.  
  •   Create a table representing the data in the structure array. Include the fi eld 

names as column headings in the table.  
  •   Calculate and report the average of the mean orbital velocity values.  
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  •   Find the biggest planet and report its size and name.  
  •   Find and report the orbital period of Jupiter.   

1.   State the Problem 
  Create a program to perform the tasks listed.  
2.   Describe the Input and Output 

Input         planetary_information.mat  , stored in the current folder  

    Output    Create a report in the command window    

  3.   Develop a Hand Example 
  You can complete most of the designated tasks by accessing the information in 

the planetary structural array through the array editor  
  4.   Develop a MATLAB ®  Solution   

%Example 11.3

clear,clc

load planetary_information

%Identify the field names in the structure array

planetary    %recalls the contents of the structure 

           %array named planetary

pause(2)

%Create a list of planets in the file

disp('These names are OK, but they''re not in an array');

planetary.name

pause(4)

fprintf('\n')  %Creates an empty line in the output

%Using square brackets puts the results into an array

disp('This array isn''t too great');

disp('Everything runs together');

names = [planetary.name]

pause(4)

fprintf('\n')  %Creates an empty line in the output

%Using char creates a padded list, which is more useful

disp('By using a padded character array we get what we 

    want');

names = [char(planetary.name)]

pause(4)

%Create a table by first creating character arrays of all

%the data

disp('These arrays are character arrays too');

mass = num2str([planetary.mass]')

fprintf('\n')  %Creates an empty line in the output

pause(4)

year = num2str([planetary.year]')

fprintf('\n')  %Creates an empty line in the output

pause(2)

velocity = num2str([planetary(:).velocity]')

fprintf('\n')  %Creates an empty line in the output
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pause(4)

fprintf('\n')  %Creates an empty line in the output

%Create an array of spaces to separate the data

spaces = ['      ']';

%Use disp to display the field names

disp('The overall result is a big character array');

fprintf('\n')  %Creates an empty line in the output

disp('Planet mass  year velocity');

table = [names,spaces,mass,spaces,year,spaces,velocity];

disp(table);

fprintf('\n')  %Creates an empty line in the output

pause(2)

%Find the average planet mean orbital velocity

MOV = mean([planetary.velocity]);

fprintf('The mean orbital velocity is %8.2f km/sec\n',MOV)

pause(1)

%Find the planet with the maximum mass

max_mass = max([planetary.mass]);

fprintf('The maximum mass is %8.2f times the earth''s 

    \n',max_mass)

pause(1)

%Jupiter is planet #5

%Find the orbital period of Jupiter

planet_name = planetary(5).name;

planet_year = planetary(5).year;

fprintf(' %s has a year %6.2f times the earth''s

    \n',planet_name,planet_year)

  Most of this program consists of formatting commands. Before you try to analyze 
the code, run the program in MATLAB ®  and observe the results.  

  5.   Test the Solution 
  Compare the information extracted from the array with that available from the array 

editor. Using the array editor becomes unwieldy as the data stored in   planetary
increases. It is easy to add new fi elds and new information as they become avail-
able. For example, we could add the number of moons to the existing structure:   

planetary(1).moons = 0;

planetary(2).moons = 0;

planetary(3).moons = 1;

planetary(4).moons = 2;

planetary(5).moons = 60;

planetary(6).moons = 31;

planetary(7).moons = 27;

planetary(8).moons = 13;

planetary(9).moons = 1;

  This code adds a new fi eld called   moons   to the structure. We can report the 
number of moons for each planet to the command window with the command   

disp([planetary.moons]);
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 MATLAB ® ’s primary data structure is the array. Within the array, MATLAB® allows the 
user to store a number of different types of data. The default numeric data type is the 
double-precision fl oating-point number, usually referred to as a double. MATLAB® 
also supports single-precision fl oating-point numbers, as well as eight different types of 
integers. Character information, too, is stored in arrays. Characters can be grouped 
together into a string, although the string represents a one-dimensional array in which 
each character is stored in its own element. The   char   function allows the user to 
 create two-dimensional character arrays from strings of different sizes by “padding” 
the array with an appropriate number of blank spaces. In addition to numeric and 
character data, MATLAB ®  includes a symbolic data type. 

 All these kinds of data can be stored as two-dimensional arrays. Scalar and vec-
tor data are actually stored as two-dimensional arrays—they just have a single row or 
column. MATLAB® also allows the user to store data in multidimensional arrays. 
Each two-dimensional slice of a three-dimensional or higher array is called a page. 

 In general, all data stored in a MATLAB ®  array must be of the same type. If 
character and numeric data are mixed, the numeric data are changed to character 
data on the basis of their ASCII-equivalent decimal values. When calculations are 
attempted on combined character and numeric data, the character data are con-
verted to their ASCII equivalents. 

 MATLAB® offers two array types that can store multiple types of data at the same 
time: the cell array and the structure array. Cell arrays use curly brackets,    {and}    as 
array constructors. Structure arrays depend on named fi elds. Both cell and structure 
arrays are particularly useful in database applications. 

  MATLAB® SUMMARY 

 The following MATLAB ®  summary lists and briefl y describes all the special charac-
ters, commands, and functions that are defi ned in this chapter:         

Special Characters

 { }  cell-array constructor 

  ' '   string data (character information) 

         character array 

        
 numeric array 

        
 symbolic array 

        
 logical array 

        
 sparse array 

        
 cell array 

        
 structure array 

 Commands and Functions 

     celldisp    displays the contents of a cell array 

     char    creates a padded character array 

(Continued)

     SUMMARY 
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 Commands and Functions 

     cumsum    fi nds the cumulative sum of the members of an array 

     double    changes an array to a double-precision array 

     eye    creates an identity matrix 

     format rat    converts the display format to rational numbers (fractions) 

     int16    16-bit signed integer 

     int32    32-bit signed integer 

     int64    64-bit signed integer 

     int8    8-bit signed integer 

     intmax    determines the largest integer that can be stored in MATLAB ®  

     intmin    determines the smallest integer that can be stored in MATLAB ®  

     num2str    converts a numeric array to a character array 

     realmax    determines the largest real number that can be expressed in MATLAB ®  

     realmin    determines the smallest real number that can be expressed in MATLAB ®  

     single    changes an array to a single-precision array 

     sparse    converts a full-format matrix to a sparse-format matrix 

     squeeze    removes singleton dimensions from multidimensional arrays 

     str2num    converts a character array to a numeric array 

     uint16    16-bit unsigned integer 

     uint32    32-bit unsigned integer 

     uint64    64-bit unsigned integer 

     uint8    8-bit unsigned integer 

 ASCII 
 base 2 
 cell 
 character 
 class 
 complex numbers 
 data type 

 double precision 
 drawers 
 EBCDIC 
 fl oating-point numbers 
 integer 
 logical data 
 pages 

 rational numbers 
 single precision 
 string 
 structure 
 symbolic data  

  KEY TERMS 

  Numeric Data Types  

   11.1    Calculate the sum (not the partial sums) of the fi rst 10 million terms in the 
harmonic series 

   
1
1

 +  
1
2

 +  
1
3

 +  
1
4

 +  
1
5
 +  

1
6
 � c+  

1
n

� c   

   using both double-precision and single-precision numbers. Compare the 
results. Explain why they are different.   

  PROBLEMS 
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   11.2    Defi ne an array of the fi rst 10 integers, using the   int8   type designation. Use 
these integers to calculate the fi rst 10 terms in the harmonic series. Explain 
your results.   

   11.3    Explain why it is better to allow MATLAB ®  to default to double-precision 
fl oating-point number representations for most engineering calculations 
than to specify single and integer types.   

   11.4    Complex numbers are automatically created in MATLAB ®  as a result of cal-
culations. They can also be entered directly, as the addition of a real and an 
imaginary number, and can be stored as any of the numeric data types. Defi ne 
two variables: a single- and a double-precision complex number, as   

      doublea � 5 � 3i      
               singlea � single(5 � 3i)

   Raise each of these numbers to the 100th power. Explain the difference in 
your answers.   

  Character Data  

   11.5    Use an Internet search engine to fi nd a list showing the binary equivalents 
of characters in both ASCII and EBCDIC. Briefl y outline the differences in 
the two coding schemes.   

   11.6    Sometimes it is confusing to realize that numbers can be represented as both 
numeric data and character data. Use MATLAB ®  to express the number 85 
as a character array. 

   (a)   How many elements are in this array?  
  (b)   What is the numeric equivalent of the character 8?  
  (c)   What is the numeric equivalent of the character 5?     

  Multidimensional Arrays  

   11.7    Create each of the following arrays: 

   A � c1 2
3 4

d , B � c10 20
30 40

d , C � c3 16
9 12

d    
   (a)   Combine them into one large    2 � 2 � 3    multidimensional array called 

  ABC  .  
  (b)   Extract each column 1 into a    2 � 3    array called   Column_A1B1C1  .  
  (c)   Extract each row 2 into a    3 � 2    array called   Row_A2B2C2  .  
  (d)   Extract the value in row 1, column 2, page 3.     

   11.8    A college professor would like to compare how students perform on a test 
she gives every year. Each year, she stores the data in a two-dimensional 
array. The fi rst and second year’s data are as follows:   

 Year 1  Question 1  Question 2  Question 3  Question 4 

 Student 1  3  6  4  10 

 Student 2   5  8  6  10 

 Student 3  4  9  5  10 

 Student 4  6  4  7   9 

 Student 5  3  5  8  10 
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 Year 2  Question 1  Question 2  Question 3  Question 4 

 Student 1  2  7  3  10 

 Student 2  3  7  5  10 

 Student 3  4  5  5  10 

 Student 4  3  3  8  10 

 Student 5  3  5  2  10 

   (a)   Create a two-dimensional array called   year1   for the fi rst year’s data, 
and another called   year2   for the second year’s data.  

  (b)   Combine the two arrays into a three-dimensional array with two pages, 
called   testdata  .  

  (c)   Use your three-dimensional array to perform the following calculations:   

    •    Calculate the average score for each question, for each year, and store 
the results in a two-dimensional array. (Your answer should be either 
a    2 � 4    array or a    4 � 2    array.)  

   •   Calculate the average score for each question, using    all    the data.  
   •    Extract the data for Question 3 for each year, and create an array with 

the following format:     

    Question 3, Year 1  Question 3, Year 2  

 Student 1       

 Student 2       

 and so on       

   11.9    If the teacher described in the preceding problem wants to include the 
results from a second and third test in the array, she would have to create a 
four-dimensional array. (The fourth dimension is sometimes called a  drawer .) 
All the data are included in a fi le called   test_results.mat   consisting 
of six two-dimensional arrays similar to those described in Problem 11.8. 
The array names are   

test1year1
test2year1
test3year1
test1year2
test2year2
test3year2

 Organize these data into a four-dimensional array that looks like the following:   

 dimension 1  (row)  student 

 dimension 2  (column)  question 

 dimension 3  (page)  year 

 dimension 4  (drawer)  test 

   (a)   Extract the score for Student 1, on Question 2, from the fi rst year, on Test 3.  
  (b)   Create a one-dimensional array representing the scores from the fi rst 

student, on Question 1, on the second test, for all the years.  
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  (c)   Create a one-dimensional array representing the scores from the sec-
ond student, on all the questions, on the fi rst test, for Year 2.  

  (d)   Create a two-dimensional array representing the scores from all the stu-
dents, on Question 3, from the second test, for all the years.     

  Character Arrays  

   11.10           (a)   Create a padded character array with fi ve different names.  
  (b)   Create a two-dimensional array called   birthdays   to represent the 

birthday of each person. For example, your array might look something 
like this:   

birthdays=
6  11  1983
3  11  1985
6  29  1986
12  12  1984
12  11  1987

  (c)   Use the   num2str   function to convert   birthdays   to a character array.  
  (d)   Use the   disp   function to display a table of names and birthdays.     

   11.11    Imagine that you have the following character array, which represents the 
dimensions of some shipping boxes:   

box_dimensions =

box1  1  3  5
box2  2  4  6
box3  6  7  3
box4  1  4  3

   You need to fi nd the volumes of the boxes to use in a calculation to deter-
mine how many packing “peanuts” to order for your shipping department. 
Since the array is a    4 � 12    character array, the character representation of 
the numeric information is stored in columns 6 to 12. Use the   str2num   func-
tion to convert the information into a numeric array, and use the data to cal-
culate the volume of each box. (You’ll need to enter the   box_dimensions   
array as string data, using the   char   function.)   

   11.12    Consider the fi le called   thermocouple.dat   as shown in the table on the 
next page: 

   (a)   Create a program that: 

    •   Loads   thermocouple.dat   into MATLAB ® .  
   •   Determines the size (number of rows and columns) of the fi le.  
   •    Extracts each set of thermocouple data and stores it into a separate 

fi le. Name the various fi les   thermocouple1.mat, thermocou-
ple2. mat  , etc.    

  (b)   Your program should be able to accept a two-dimensional fi le of any 
size. Do not assume that there are only three columns; let the program 
determine the array size and assign appropriate fi le names.   

 Thermocouple 1  Thermocouple 2  Thermocouple 3 

 84.3  90.0  86.7 

 86.4  89.5  87.6 
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 Thermocouple 1  Thermocouple 2  Thermocouple 3 

 85.2  88.6  88.3 

 87.1  88.9  85.3 

 83.5  88.9  80.3 

 84.8  90.4  82.4 

 85.0  89.3  83.4 

 85.3  89.5  85.4 

 85.3  88.9  86.3 

 85.2  89.1  85.3 

 82.3  89.5  89.0 

 84.7  89.4  87.3 

 83.6  89.8  87.2 

   11.13    Create a program that encodes text entered by the user and saves it into a 
fi le. Your code should add 10 to the decimal equivalent value of each char-
acter entered.   

   11.14    Create a program to decode a message stored in a data fi le by subtracting 10 
from the decimal equivalent value of each character.   

  Cell Arrays  

   11.15    Create a cell array called   sample_cell   to store the following individual 
arrays: 

   A �  £ 1 3 5
3 9 2
11 8 2

§     (a double-precision fl oating-point array)

   B �  c  fred ralph
ken susan

d  (a padded character array)    

   C �  ≥  

4
6
3
1

¥  (an int8 integer array)    

   (a)   Extract array  A  from   sample_cell  .  
  (b)   Extract the information in array  C , row 3, from   sample_cell  .  
  (c)   Extract the name  fred  from   sample_cell  . Remember that the name 

  fred   is a    1 � 4    array, not a single entity.     

   11.16    Cell arrays can be used to store character information without padding the 
character arrays. Create a separate character array for each of the strings 

   aluminum  
  copper  
  iron  
  molybdenum  
  cobalt  
  and store them in a cell array.     



Problems 423

   11.17    Consider the following information about metals:   

 Metal 
 
Symbol 

  Atomic  
Number 

  Atomic 
 Weight 

  Density,    
 g/cm3    

  Crystal  
Structure 

 Aluminum  Al  13  26.98   2.71  FCC 

 Copper  Cu  29  63.55   8.94  FCC 

 Iron  Fe  26  55.85   7.87  BCC 

 Molybdenum  Mo  42  95.94  10.22  BCC 

 Cobalt  Co  27  58.93   8.9  HCP 

 Vanadium    V  23  50.94   6.0  BCC 

   (a)   Create the following arrays: 

    •    Store the name of each metal into an individual character array, and 
store all these character arrays into a cell array.  

   •    Store the symbol for all these metals into a single padded character 
 array.  

   •   Store the atomic number into an   int8   integer array.  
   •   Store the atomic weight into a double-precision numeric array.  
   •   Store the density into a single-precision numeric array.  
   •   Store the structure into a single padded character array.    

  (b)   Group the arrays you created in part (a) into a single cell array.  
  (c)   Extract the following information from your cell array: 

    •    Find the name, atomic weight, and structure of the fourth element in 
the list.  

   •   Find the names of all the elements stored in the array.  
   •    Find the average atomic weight of the elements in the table. (Remem-

ber, you need to extract the information to use in your calculation 
from the cell array.)       

  Structure Arrays  

   11.18    Store the information presented in Problem 11.17 in a structure array. Use 
your structure array to determine the element with the maximum density.   

   11.19    Create a program that allows the user to enter additional information into 
the structure array you created in Problem 11.18. Use your program to add 
the following data to the array:   

 Metal 
  
Symbol 

  Atomic  
Number 

  Atomic 
 Weight 

  Density,
    g/cm3    

  Crystal 
 Structure 

 Lithium  Li   3    6.94   0.534  BCC 

 Germanium  Ge  32   72.59   5.32  Diamond cubic 

 Gold  Au  79  196.97  19.32  FCC 

   11.20    Use the structure array you created in Problem 11.19 to fi nd the element 
with the maximum atomic weight.      
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12  

  INTRODUCTION 

 MATLAB ®  has a number of different data types, including both double-precision and 
single-precision numeric data, character data, logical data, and symbolic data, all of 
which are stored in a variety of different arrays. In this chapter, we will explore how 
symbolic arrays allow MATLAB ®  users to manipulate and use symbolic data. 

 MATLAB ® ’s symbolic capability is based on the   MuPad   software, originally pro-
duced by SciFace Software (based on research done at the University of Paderborn, 
Germany). SciFace was purchased by the   Mathworks   (publishers of MATLAB ® ) in 
2008. The MuPad engine is part of the symbolic toolbox, which is included with the 
Student Edition of MATLAB ® . It is available for purchase separately for the Professional 
Edition of MATLAB ® . There are two ways to use   MuPad   inside the MATLAB ®  software. 
You can access it directly and create a   MuPad   notebook by typing   

mupad

 at the command prompt. The MuPad notebook interface opens as a MATLAB ®  fi gure 
window, as shown in  Figure   12.1   . If you are familiar with other symbolic algebra pro-
grams such as MAPLE the syntax will probably look familiar.  

 After reading this chapter, you 
should be able to: 
  •   Create and manipulate 

symbolic variables  
  •   Factor and simplify mathe-

matical expressions  

  •   Solve symbolic expressions  
  •   Solve systems of equations  
  •   Determine the symbolic 

derivative of an expression  
  •   Integrate an expression   

     Objectives 

 Symbolic 
Mathematics 

  C H A P T E R
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   Mupad   can also be used to create symbolic objects inside MATLAB ®  itself. This 
offers the advantage of a familiar interface, and the ability to interact with 
MATLAB ® ’s other functions. Earlier versions of MATLAB ®  (before 2007b) used the 
MAPLE symbolic algebra program as the engine for the symbolic math toolbox. 
Most of the symbolic manipulations performed in this chapter should work with 
these earlier versions of MATLAB ® ; however, some of the results will be represented 
in the command window in a different order. If your version of MATLAB ®  is 2007b 
or later, the Mupad interface should be functional; however, problems can occur if 
Maple is also installed on your computer. The standard installation of Maple adds a 
Maple toolbox to MATLAB ® , which supersedes the Symbolic Toolbox. You can 
determine if this has occurred on your system, by checking the help feature, which 
lists the installed toolboxes. If the Maple toolbox is installed, you won’t be able to 
use the MuPad interface. 

 MATLAB ® ’s symbolic toolbox allows us to manipulate symbolic expressions to 
simplify them, to solve them symbolically, and to evaluate them numerically. It also 
allows us to take derivatives, to integrate, and to perform linear algebraic manipula-
tions. More advanced features include LaPlace transforms, Fourier transforms, and 
variable-precision arithmetic.     

     12.1   SYMBOLIC ALGEBRA 

 Symbolic mathematics is used regularly in math, engineering, and science classes. It 
is often preferable to manipulate equations symbolically before you substitute val-
ues for variables. For example, consider the equation   

    y �
21x � 322

x2 � 6x � 9
   

   Mupad   can also be used to create symbolic objects inside MATLAB ®  itself. This 
offers the advantage of a familiar interface, and the ability to interact with 
MATLAB ® ’s other functions. Earlier versions of MATLAB ®  (before 2007b) used the 
MAPLE symbolic algebra program as the engine for the symbolic math toolbox. 
Most of the symbolic manipulations performed in this chapter should work with 
these earlier versions of MATLAB ® ; however, some of the results will be represented 
in the command window in a different order. If your version of MATLAB ®  is 2007b 
or later, the Mupad interface should be functional; however, problems can occur if 
Maple is also installed on your computer. The standard installation of Maple adds a 
Maple toolbox to MATLAB ® , which supersedes the Symbolic Toolbox. You can 
determine if this has occurred on your system, by checking the help feature, which 
lists the installed toolboxes. If the Maple toolbox is installed, you won’t be able to 
use the MuPad interface. 

 MATLAB ® ’s symbolic toolbox allows us to manipulate symbolic expressions to 
simplify them, to solve them symbolically, and to evaluate them numerically. It also 
allows us to take derivatives, to integrate, and to perform linear algebraic manipula-
tions. More advanced features include LaPlace transforms, Fourier transforms, and 
variable-precision arithmetic.  

   12.1   SYMBOLIC ALGEBRA 

 Symbolic mathematics is used regularly in math, engineering, and science classes. It 
is often preferable to manipulate equations symbolically before you substitute val-
ues for variables. For example, consider the equation   

    y �
21x � 322

x2 � 6x � 9
   

 Figure 12.1 
 The MuPad interface in 
MATLAB ® .         

 KEY IDEA 
 The symbolic toolbox is an 
optional component of the 
professional version, but is 
standard with the student 
version of MATLAB. 
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 At fi rst glance,  y  appears to be a fairly complicated function of  x . However, if 
you expand the quantity    1x � 322

 ,    it becomes apparent that you can simplify the 
equation to 

   y �
2*1x � 322

x2 � 6x � 9
�

2 *1x2 � 6x � 921x2 � 6x � 92 � 2   

 You may or may not want to perform this simplifi cation, because, in doing so, 
you lose some information. For example, for values of  x  equal to    -3,     y  is undefi ned, 
since    x � 3    becomes 0, as does    x2 � 6x � 9.    Thus, 

   y �
21-3 � 322

9 � 18 � 9
� 2

0
0

� undefined   

 MATLAB ® ’s symbolic algebra capabilities allow you to perform this simplifi ca-
tion or to manipulate the numerator and denominator separately. 

 Relationships are not always constituted in forms that are so easy to solve. For 
instance, consider the equation 

   k � k0 e�Q >  RT    

 If we know the values of    k0,     Q ,  R , and  T , it’s easy to solve for  k . It’s not so easy if 
we want to fi nd  T  and we know the values of  k ,    k0,     R , and  Q . We have to manipulate 
the relationship to get  T  on the left-hand side of the equation:   

     ln(k) � ln(k0)-
Q

RT
   

    lna k
k0
b � -

Q

RT
   

    lna k0

k
b �

Q

RT
   

    T �
Q

R ln1k0>k2    

 Although solving for  T  was awkward manually, it’s easy with MATLAB ® ’s sym-
bolic capabilities. 

  12.1.1   Creating Symbolic Variables 

 Before we can solve any equations, we need to create some symbolic variables. 
Simple symbolic variables can be created in two ways. For example, to create the 
symbolic variable   x  , type either   

x = sym('x')

 or   

syms x

 Both techniques set the character   'x'   equal to the symbolic variable   x  . More 
complicated variables can be created by using existing symbolic variables, as in the 
expression   

y = 2*(x + 3)^2/(x^2 + 6*x + 9)

 Notice in the workspace window ( Figure   12.2   ) that both   x   and   y   are listed as 
symbolic variables and that the array size for each is    1 � 1.      

 KEY IDEA 
 MATLAB ®  makes it easy 
to solve equations 
symbolically 

 KEY IDEA 
 Expressions are different 
from equations 
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   The   syms   command is particularly convenient, because it can be used to create 
multiple symbolic variables at the same time, as with the command   

syms Q R T k0

 These variables could be combined mathematically to create another symbolic 
variable,   k  :      

k = k0*exp(-Q/(R*T))

 Notice that in both examples we used the standard algebraic operators, not the 
array operators, such as  .*  or  .^ . This makes sense when we observe that array 
 operators specify that corresponding elements in arrays are used in the associated 
calculations—a situation that does not apply here. 

 The   sym   function can also be used to create either an entire expression or an 
entire equation. For example  ,    

E = sym('m*c^2')

 creates a symbolic variable named   E  . Notice that   m   and  c  are not listed in the work-
space window ( Figure   12.3   ); they have not been specifi cally defi ned as symbolic 
variables. Instead, the input to sym was a character string, identifi ed by the single 
quotes inside the function.  

  Figure 12.2 
 Symbolic variables are 
identifi ed in the workspace 
window. They require a 
variable amount of storage.       

 EXPRESSION 
 A set of mathematical 
operations 

 EQUATION 
 An expression set equal to 
a value or another 
expression 

  Figure 12.3 
 Unless a variable is 
explicitly defi ned, it is not 
listed in the workspace 
window.       
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 In this example, we set the   expression        m * c^2      equal to the variable   E  . We can 
also create an entire  equation  and give it a name. For example, we can defi ne the 
ideal gas law       

ideal_gas_law = sym('P*V = n*R*Temp')

 At this point, if you’ve been typing in the examples as you read along, 
your workspace window should look like  Figure   12.4   . Notice that only   ideal_
gas_law   is listed as a symbolic variable, since   P  ,   V  ,   n  ,   R  , and   Temp   have not 
been explicitly defi ned, but were part of the character string input to the   sym   
function. 

 KEY IDEA 
 The symbolic toolbox uses 
standard algebraic 
operators 

  Figure 12.4 
 The variable ideal_gas_
law   is an equation, not an 
expression.       

 HINT    
 One ideosyncracy of the implementation of MuPad inside MATLAB ®  is that a 
number of commonly used variables are reserved. They can be overwritten, 
however, if you try to use them inside expressions or equations you may run 
into problems. Try to avoid these names: 

D, E, I, O, beta, zeta, theta, psi, gamma, Ci, Si, Ei

 HINT    
 Notice that when you use symbolic variables, MATLAB ®  does not indent the 
result, unlike the format used for numeric results. This can help you keep 
track of variable types without referring to the workspace window. 
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    PRACTICE EXERCISES 12.1 

   1.    Create the following symbolic variables, using either the   sym   or   syms   
command:   

x, a, b, c, d

   2.    Verify that the variables you created in Exercise 1 are listed in the 
workspace window as symbolic variables. Use them to create the 
following symbolic  expressions :   

ex1 = x^2-1
ex2 = (x+1)^2
ex3 = a*x^2-1
ex4 = a*x^2 + b*x + c
ex5 = a*x^3 + b*x^2 + c*x + d
ex6 = sin(x)

   3.    Create the following symbolic  expressions , using the   sym   function:   

EX1 = sym('X^2 - 1 ')
EX2 = sym(' (X + 1)^2 ')
EX3 = sym('A*X ^2 - 1 ')
EX4 = sym('A*X ^2 + B*X + C ')
EX5 = sym('A*X ^3 + B*X ^2 + C*X + F ')
EX6 = sym('sin(X) ')

   4.    Create the following symbolic  equations , using the   sym   function:   

eq1 = sym(' x^2=1 ')
eq2 = sym(' (x+1)^2=0 ')
eq3 = sym(' a*x^2=1 ')
eq4 = sym('a*x^2 + b*x + c=0 ')
eq5 = sym('a*x^3 + b*x^2 + c*x + d=0 ')
eq6 = sym('sin(x)=0 ')

   5.    Create the following symbolic  equations , using the   sym   function:   

EQ1 = sym('X^2 = 1 ')
EQ2 = sym('(X +1)^2=0 ')
EQ3 = sym('A*X ^2 =1 ')
EQ4 = sym('A*X ^2 + B*X + C = 0 ')
EQ5 = sym('A*X ^3 + B*X ^2 + C*X + F = 0 ')
EQ6 = sym(' sin(X) = 0 ')

 Notice that only the explicitly defi ned variables, expressions, and equa-
tions are listed in the workspace window. Also notice that instead of D in 
the places where it should logically occur, we’ve used F. The reason is that 
D (and E for that matter) is a reserved name, and can cause problems 
if used in expressions or equations. Save the variables, expressions, and 
equations you created in this practice to use in later practice exercises in 
the chapter.     
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  12.1.2   Manipulating Symbolic Expressions and Symbolic Equations 

 First, we need to remind ourselves how expressions and equations differ. Equations 
are set equal to something; expressions are not. The variable   ideal_gas_law   has 
been set equal to an equation. If you type in   

ideal_gas_law

 MATLAB ®  will respond   

ideal_gas_law =
P*V = n*R*Temp

 However, if you type in   

E

 MATLAB ®  responds   

E=
m*c^2

 or if you type in   

y

 MATLAB ®  responds   

y =
2*(x+3)^2/(x^2+6*x+9)

 The variables   E   and   y   are  expressions , but the variable   ideal_gas_law   is an  equation . 
Most of the time you will be working with symbolic  expressions . 

 MATLAB ®  has a number of functions designed to manipulate symbolic variables, 
including functions to separate an expression into its numerator and denominator, to 
expand or factor expressions, and to simplify expressions in a number of ways. 

  Extracting Numerators and Denominators 
 The   numden   function extracts the numerator and denominator from an expres-
sion. For example, if you’ve defi ned  y  as   

y = 2*(x+3)^2/(x^2+6*x+9)

 then you can extract the numerator and denominator with   

[num,den] = numden(y)

 MATLAB ®  creates two new variables,   num   and   den   (of course, you could name 
them whatever you please):   

num =
2*(x+3)^2
den =
x^2+6*x+9

 We can recombine these expressions or any symbolic expressions by using 
standard algebraic operators:   

num*den
ans =
2*(x+3)^2*(x^2+6*x+9)
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num/den
ans =
2*(x+3)^2/(x^2+6*x+9)
num+den
ans =
2*(x+3)^2+x^2+6*x+9

  Expanding Expressions, Factoring Expressions, and Collecting Terms 
 We can use the expressions we have defi ned to demonstrate the use of the   expand  , 
  factor  , and   collect   functions. Thus,   

expand(num)

 returns   

ans =
2*x^2+12*x+18

 and   

factor(den)

 returns   

ans =
(x+3)^2

 The   collect   function collects like terms and is similar to the   expand   function:   

collect(num)
ans =
2*x^2 + 12*x + 18

 This works regardless of whether each individual variable in an expression has 
or has not been defi ned as a symbolic variable. Defi ne a new variable   z  :   

z = sym('3*a-(a+3)*(a-3)^2')

 In this case, both   expand   and   factor   give the same result:   

factor(z)
ans =
-a^3 + 3*a^2 + 12*a – 27
expand(z)
ans =
-a^3 + 3*a^2 + 12*a – 27

 The result obtained by using   collect   is also the same:   

collect(z)
ans =
-27-a^3+3*a^2+12*a

 You can use both factor and expand with equations as well as with expressions. 
The collect function requires an expression. With equations, each side of the equa-
tion is treated as a separate expression. To illustrate, we can defi ne an equation   w  :   

w = sym('x^3-1 = (x-3)*(x+3)')
expand(w)
ans =
x^3-1 = x^2-9
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factor(w)
ans =
(x-1)*(x^2+x+1) = (x-3)*(x+3)
collect(w)
??? Error using ==> mupadmex

 Note that an error was generated when we tried to use the   collect   function with 
  w  , because   w   is an equation, not an expression.  

  Simplifi cation Functions 
 We can think of the   expand  ,   factor  , and   collect   functions as ways to simplify 
an expression or equation. However, what constitutes a “simple” equation is not 
always obvious. The   simplify   function simplifi es each part of an expression or 
equation, using MuPad’s built-in simplifi cation rules. For example, assume again 
that   z   has been defi ned as   

z = sym('3*a-(a+3)*(a-3)^2')

 Then, the command   

simplify(z)

 returns   

ans =
3*a-(a-3)^2*(a+3)

 If the equation   w   has been defi ned as   

w = sym('x^3-1 = (x-3)*(x+3)')

 then   

simplify(w)

 returns   

ans =
x^3 + 8 = x^2

 Notice again that this works regardless of whether each individual variable in 
an expression has or has not been defi ned as a symbolic variable: The expression   z   
contains the variable   a  , which has not been explicitly defi ned and is not listed in the 
workspace window. 

 The   simple   function is slightly different. It tries a number of different simpli-
fi cation techniques and reports the result that is  shortest.  All the attempts are 
reported to the screen. For example,      

simple(w)

 gives the following results:   

simplify:
x^3-1 = x^2 - 9
radsimp:
x^3-1 = (x-3)*(x+3)
simplify(100):
x in RootOf(X90^3 - X90^2 + 8, X90)
combine(sincos):
x^3-1 = (x-3)*(x+3)

 KEY IDEA 
 MATLAB ®  defi nes the 
simplest representation of 
an expression as the 
shortest version of the 
expression 
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combine(sinhcosh):
x^3-1 = (x-3)*(x+3)
combine(ln):
x^3-1 = (x-3)*(x+3)
factor:
x^3-1 = x^2-9
expand:
x^3-1 = x^2-9
combine:
x^3-1 = (x-3)*(x+3)
rewrite(exp):
x^3-1 = (x-3)*(x+3)
rewrite(sincos):
x^3-1 = (x-3)*(x+3)
rewrite(sinhcosh):
x^3-1 = (x-3)*(x+3)
rewrite(tan):
x^3-1 = (x-3)*(x+3)
mwcos2sin:
x^3-1 = (x-3)*(x+3)
ans =
x^3-1 = x^2–9

 Notice that although a large number of results are displayed, there is only one 
answer:      

ans =
x^2-1 = x^2-9

 Both   simple   and   simplify   work on expressions as well as equations. 
  Table   12.1    lists some of the MATLAB ®  functions used to manipulate expressions 

and equations.  

 KEY IDEA 
 Many, but not all, symbolic 
functions work for both 
expressions and equations 

 HINT    
 A shortcut to create a symbolic polynomial is the   poly2sym   function. This 
function requires a vector as input and creates a polynomial, using the vector 
for the coeffi cients of each term of the polynomial.   

a = [1,3,2]
a =

1 3 2
b = poly2sym(a)
b =
x^2+3*x+2

 Similarly, the   sym2poly   function converts a polynomial into a vector of coef-
fi cient values:   

c = sym2poly(b)
c =

1  3  2
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 Table 12.1   Functions Used to Manipulate Expressions and Equations 

  expand(S)   Multiplies out all the portions 
of the expression or equation 

  syms x    
expand((x-5)*(x+5))     
ans =    
x^2-25  

  factor(S)   Factors the expression 
or equation 

  syms x    
factor(x^3-1)    
ans =    
(x-1)*(x^2+x+1)  

  collect(S)   Collects like terms   S=2*(x+3)^2+x^2+6*x+9     
collect(S)    
S =    
27+3*x^2+18*x  

  simplify(S)   Simplifi es in accordance with 
MuPad’s simplifi cation rules 

  syms a    
simplify(exp(log(a)))
    ans =    
a  

  simple(S)   Simplifi es to the shortest 
representation of the expression 
or equation 

  syms x    
simple(sin(x)^2+
    cos(x)^2)    
ans =    
1  

  numden(S)   Finds the numerator of an 
expression; this function is not 
valid for equations 

  syms x    
numden((x-5)/(x+5))
    ans =    
x-5  

  [num,den]=numden(S)   Finds both the numerator and 
the denominator of an expression; 
this function is not valid for 
equations 

  syms x    
[num,den] = numden((x-5)/
(x+5))
    num =    
x-5    
den =
    x+5  

  PRACTICE EXERCISES 12.2 

 Use the variables defi ned in Practice Exercises 12.1 in these exercises. 

   1.    Multiply   ex1   by   ex2  , and name the result   y1  .   
   2.    Divide   ex1   by   ex2  , and name the result   y2  .   
   3.    Use the   numden   function to extract the numerator and denominator 

from   y1   and   y2  .   
   4.    Multiply   EX1   by   EX2  , and name the result   Y1  .   
   5.    Divide   EX1   by   EX2  , and name the result   Y2  .   
   6.    Use the   numden   function to extract the numerator and denominator 

from   Y1   and   Y2  .   
   7.    Try using the   numden   function on one of the equations you’ve defi ned. 

Does it work?   
   8.    Use the   factor  ,   expand  ,   collect  , and   simplify   functions on   y1  , 

  y2  ,   Y1  , and   Y2  .   
   9.    Use the   factor  ,   expand  ,   collect  , and   simplify   functions on the 

expressions   ex1   and   ex2   and on the corresponding equations   eq1   
and   eq2  . Explain any differences you observe.         
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  12.2   SOLVING EXPRESSIONS AND EQUATIONS 

 A highly useful function in the symbolic toolbox is   solve  . It can be used to deter-
mine the roots of expressions, to fi nd numerical answers when there is a single vari-
able, and to solve for an unknown symbolically. The   solve   function can also solve 
systems of equations, both linear and nonlinear. When paired with the substitution 
function (  subs  ), the   solve   function allows the user to fi nd analytical solutions to 
a variety of problems. 

  12.2.1   The Solve Function 

 When used with an expression, the   solve   function sets the expression equal to 
zero and solves for the roots. For example (assuming that   x   has already been 
defi ned as a symbolic variable), if   

E1 = x-3

 then   

solve(E1)

 returns   

ans =
3

   Solve   can be used either with an expression name or by creating a symbolic 
expression directly in the   solve   function. Thus,   

solve('x^2-9')

 returns   

ans =
-3
3

 Notice that   ans   is a    2 � 1    symbolic array. If  x  has been previously defi ned as a 
symbolic variable, then  single quotes are not necessary . If not, the entire expression 
must be enclosed within single quotes. 

 You can readily solve symbolic expressions with more than one variable. For 
example, for the quadratic expression    ax2 � bx � c,      

solve('a*x^2+b*x +c')

 returns   

ans =
-(b + (b^2-4*a*c)^(1/2))/(2*a)
-(b - (b^2-4*a*c)^(1/2))/(2*a)

 MATLAB ®  preferentially solves for   x  . If there is no   x   in the expression, 
MATLAB ®  fi nds the variable closest to   x  . If you want to specify the variable to solve 
for, just include it in the second fi eld. For instance, to solve the quadratic expres-
sion for   a  , the command      

solve('a*x^2+b*x +c', 'a')

 returns   

ans =
-(c+b*x)/x^2

 KEY IDEA 
 MATLAB ®  solves 
preferentially for  x  
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 Again, if   a   has been specifi cally defi ned as a symbolic variable, it is not neces-
sary to enclose it in single quotes:   

syms a b c x
solve(a*x*x^2+b*x+c, b)
ans =
-(a*x^3+c)/x

 To solve an expression set equal to something besides zero, you must use one of 
two approaches. If the equation is simple, you can transform it into an expression 
by subtracting the right-hand side from the left-hand side. For example,    

   5x2 � 6x � 3 � 10   

 could be reformulated as 

   5x2 � 6x � 7 � 0     

solve('5*x^2+6*x-7')
ans =
-(2*11^(1/2))/5-3/5
(2*11^(1/2))/5-3/5

 If the equation is more complicated, you may prefer to defi ne a new equation, 
as in   

E2 = sym('5*x^2 + 6*x +3 = 10')
solve(E2)

 which returns   

ans =
-(2*11^(1/2))/5-3/5
(2*11^(1/2))/5-3/5

 Notice that in both cases the results are expressed as simply as possible, using 
fractions (i.e., rational numbers). In the workspace,   ans   is listed as a    2 � 1    symbolic 
matrix. You can use the   double   function to convert a symbolic representation to a 
double-precision fl oating-point number:   

double(ans)
ans =
0.7266
-1.9266

 KEY IDEA 
 Even when the result of 
the   solve   function is a 
number, it is still stored as 
a symbolic variable 

  HINT    
 Because MATLAB ® ’s symbolic capability is based on MuPad, we need to 
understand how MuPad handles calculations. MuPad recognizes two types of 
numeric data: integers and fl oating point. Floating-point numbers are approx-
imations and use decimal points, whereas integers are exact and are repre-
sented without decimal points. In calculations using integers, MuPad forces 
an exact answer resulting in fractions. If there are decimal points (fl oating-
point numbers) in MuPad calculations, the result will also be an approxima-
tion and will contain decimal points. MuPad defaults to 32 signifi cant fi gures, 
so 32 digits are shown in the results. Consider an example using   solve  . If the 
expression uses fl oating-point numbers, we get the following result:   
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 The   solve   function is particularly useful with symbolic expressions having 
multiple variables:   

E3 = sym('P = P0*exp(r*t)')
solve(E3,'t')
ans =
log(P/P0)/r

 If you have previously defi ned   t   as a symbolic variable, it does not need to be in 
single quotes. (Recall that the log function is a natural log.) 

 It is often useful to redefi ne a variable, such as   t  , in terms of the other variables:   

t = solve(E3,'t')
t =
log(P/P0)/r

  PRACTICE EXERCISES 12.3 

 Use the variables and expressions you defi ned in Practice Exercises 12.1 to 
solve these exercises: 

   1.    Use the   solve   function to solve all four versions of expression/
equation 1:   ex1  ,   EX1  ,   eq1  , and   EQ1  .   

   2.    Use the   solve   function to solve all four versions of expression/
equation 2:   ex2  ,   EX2  ,   eq2  , and   EQ2  .   

   3.    Use the   solve   function to solve   ex3  , and   eq3   for both   x   and   a  .   
   4.    Use the   solve   function to solve   EX3  , and   EQ3   for both   X   and   A  . Recall 

that neither   X   nor   A   has been explicitly defi ned as a symbolic variable.   
   5.    Use the   solve   function to solve   ex4  , and   eq4   for both   x   and   a  .   
   6.    Use the   solve   function to solve   EX4  , and   EQ4   for both   X   and   A  . Recall 

that neither   X   nor   A   has been explicitly defi ned as a symbolic variable.   
   7.    All four versions of expression/equation 4 represent the quadratic 

equation—the general form of a second-order polynomial. The 
solution for  x  is usually memorized by students in early algebra classes. 
Expression/equation 5 in these exercises is the general form of a third-
order polynomial. Use the   solve   function to solve these expressions/
equations, and comment on why students do not memorize the general 
solution of a third-order polynomial.   

   8.    Use the   solve   function to solve   ex6  ,   EX6  ,   eq6  , and   EQ6  . On the basis 
of your knowledge of trigonometry, comment on this solution.    

solve('5.0*x^2.0+6.0*x-7.0')
ans =
.72664991614215993964597309466828
-1.9266499161421599396459730946683

 If the expression uses integers, the results are fractions:   

solve('5*x^2+6*x-7')
ans =
-(2*11^(1/2))/5-3/5
(2*11^(1/2))/5-3/5
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    USING SYMBOLIC MATH 
 MATLAB ® ’s symbolic capability allows us to let the computer do the math. 
 Consider the equation for reaction rate constants: 

   k � k0 expa -Q

RT
b    

 Solve this equation for  Q , using MATLAB ® . 

   1.   State the Problem 

  Find the equation for Q.  

  2.   Describe the Input and Output 

   Input     Equation for the reaction rate constant,  k   

  Output   Equation for  Q     

  3.   Develop a Hand Example 

    k � k0 expa -Q

RT
b    

    
k
k0

� expa -Q

RT
b    

    lna k
k0
b �

-Q

RT
   

    Q � RT lna k0

k
b    

  Notice that the minus sign caused the values inside the natural logarithm to be 
inverted.  

  4.   Develop a MATLAB ®  Solution  
     First, defi ne a symbolic equation and give it a name (recall that it’s OK to use an 

equation as the function input argument):   

X = sym('k = k0*exp(-Q/(R*T))')
X =
k = k0/exp(Q/(R*T))

  Now, we can ask MATLAB ®  to solve our equation. We need to specify that 
MATLAB ®  is to solve for  Q , and  Q  needs to be in single quotes, because it has 
not been separately defi ned as a symbolic variable:   

solve(X,'Q')
ans =
-R*T*log(k/k0)

EXAMPLE 12.1
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  Alternatively, we could defi ne our answer as  Q :   

Q = solve(X,'Q')
Q =
-R*T*log(k/k0)

5.   Test the Solution 
  Compare the MATLAB ®  solution with the hand solution. The only difference is 

that we pulled the minus sign outside the logarithm instead of inverting the 
ratio of  k / k 0. Notice that MATLAB ®  (as well as most computer programs) rep-
resents ln as   log   (   log10    is represented as   log10  ). 

 Now that we know this strategy works, we can solve for any of the variables. 
For example, we could have   

T = solve(X,'T')
T =
-Q/(R*log(k/k0))

  HINT    
 The   findsym   command is useful in determining which variables exist in a 
symbolic expression or equation. In the previous example, the variable  X  was 
defi ned as   

X = sym('k = k0*exp(-Q/(R*T))')

 The   findsym   function identifi es all the variables, whether explicitly defi ned 
or not:   

findsym(X)
ans =
k, k0, Q, R, T

  12.2.2   Solving Systems of Equations 

 Not only can the   solve   function solve single equations or expressions for any of 
the included variables, it can also solve systems of equations. Take, for example, 
these three symbolic equations:      

one = sym('3*x + 2*y -z = 10');
two = sym('-x + 3*y + 2*z = 5');
three = sym('x - y - z = -1');

 To solve for the three embedded variables   x  ,   y  , and   z  , simply list all three equa-
tions in the   solve   function:   

answer = solve(one,two,three)
answer =

x: [1x1 sym]
y: [1x1 sym]
z: [1x1 sym]

 KEY IDEA 
 The   solve   function can 
solve both linear and 
nonlinear systems of 
equations 
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 These results are puzzling. Each answer is listed as a    1 � 1    symbolic variable, 
but the program doesn’t reveal the values of those variables. In addition,   answer   is 
listed in the workspace window as a    1 � 1    structure array. To access the actual val-
ues, you’ll need to use the structure array syntax:      

answer.x
ans =
-2
answer.y
ans =
5
answer.z
ans =
-6

 To force the results to be displayed without using a structure array and the asso-
ciated syntax, we must assign names to the individual variables. Thus, for our exam-
ple, we have   

[x,y,z] = solve(one,two,three)
x =
-2
y =
5
z =
-6

 The results are assigned alphabetically. For instance, if the variables used in 
your symbolic expressions are   q  ,   x  , and   p  , the results will be returned in the order 
  p  ,   q  , and   x  ,  independently  of the names you have assigned for the results. 

 Notice in our example that   x  ,   y  , and   z   are still listed as symbolic variables, even 
though the results are numbers. The result of the   solve   function is a symbolic 
variable, either   ans   or a user-defi ned name. If you want to use that result in a 
MATLAB ®  expression requiring a double-precision fl oating-point input, you can 
change the variable type with the   double   function. For example,   

double(x)

 changes   x   from a symbolic variable to a corresponding numeric variable. 

  HINT    
 Using the   solve   function for multiple equations has both advantages and 
disadvantages over using linear algebra techniques. In general, if a problem 
can be solved by means of matrices, the matrix solution will take less com-
puter time. However, linear algebra is limited to fi rst-order equations. The 
  solve   function may take longer, but it can solve nonlinear problems and 
problems with symbolic variables.  Table   12.2    lists some uses of the   solve   
function.  

 KEY IDEA 
 The results of the symbolic 
  solve   function are listed 
alphabetically 
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 Table 12.2   Using the Solve Function 

   PRACTICE EXERCISES 12.4 

 Consider the following system of linear equations to use in Exercises 12.1 
through 12.5: 

     5x � 6y � 3z � 10
  3x � 3y � 2z � 14
2x � 4y � 12z � 24   

  solve(S)   Solves an expression with a 
single variable 

  solve('x-5')
    ans =     
5  

  solve(S)   Solves an equation with a 
single variable 

  solve('x^2-2 = 5')    
ans =    
 7^(1/2)
    -    7^(1/2)  

  solve(S)   Solves an equation whose 
solutions are complex numbers 

  solve('x^2 = -5')
    ans =
     i*5^(1/2)
    -i*5^(1/2)  

  solve(S)   Solves an equation with more 
than one variable for  x  or the 
closest variable to  x  

  solve('y = x^2+2')
    ans =
     (y-2)^(1/2)    
-(y-2)^(1/2)  

  solve(S,y)   Solves an equation with more 
than one variable for a 
specifi ed variable 

  solve('y+6*x',x)    
ans =    
-1/6*y  

  solve(S1,S2,S3)   Solves a system of equations 
and presents the solutions as 
a structure array 

  one = sym('3*x+2*y-z =10');    
two = sym('-x+3*y+2*z =5');    
three = sym('x - y- z = - 1');
    solve(one,two,three)    
ans =

    x: [1x1 sym]
    y: [1x1 sym]    
z: [1x1 sym]  

  [A,B,C]= solve 
(S1,S2,S3)  

 Solves a system of equations 
and assigns the solutions to 
user-defi ned variable names; 
displays the results 
alphabetically 

  one = sym('3*x+2*y -z =10');    
two = sym('-x+3*y+2*z =5');    
three = sym('x - y- z = -1');
    [x,y,z] = solve(one,two, 
three)    
x =-2    
y = 5    
z = -6  
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   1.    Solve this system of equations by means of the linear algebra techniques 
discussed in  Chapter   10   .   

   2.    Defi ne a symbolic equation representing each equation in the given 
system of equations. Use the   solve   function to solve for  x ,  y , and  z .   

   3.    Display the results from Exercise 2 by using the structure array syntax.   
   4.    Display the results from Exercise 2 by specifying the output names.   
   5.    Add decimal points to the numbers in your equation defi nitions and 

  solve   them again. How do your answers change?   
   6.    Consider the following nonlinear system of equations: 

   x2 � 5y � 3z3 � 15
4x � y2 � z � 10
x � y � z � 15   

  Solve the nonlinear system with the   solve   function. Use the   double   
function on your results to simplify the answer.     

 KEY IDEA 
 If a variable is not listed 
as a symbolic variable in 
the workspace window, it 
must be enclosed in single 
quotes when used in the 
  subs   function 

  12.2.3   Substitution 

 Particularly for engineers or scientists, once we have a symbolic expression, we 
often want to substitute values into it. Consider the quadratic equation again:      

E4 = sym('a*x^2+b*x+c')

 There are a number of substitutions we might want to make. For example, we 
might want to change the variable   x   into the variable   y  . To accomplish this, the 
  subs   function requires three inputs: the expression to be modifi ed, the variable to 
be modifi ed, and the new variable to be inserted. To substitute   y   for all the   x  ’s, we 
would use the command   

subs(E4,'x','y')

 which returns   

ans =
a*(y)^2+b*(y)+c

 The variable   E4   has not been changed; rather, the new information is stored in 
  ans  , or it could be given a new name, such as   E5  :   

E5 = subs(E4,'x','y')
E5 =
a*(y)^2+b*(y)+c

 Recalling   E4  , we see that it remains unchanged:   

E4
E4 =
a*x^2+b*x+c

 To substitute numbers, we use the same procedure:   

subs(E4,'x',3)
ans =
9*a+3*b+c
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 As with other symbolic operations, if the variables have been previously explic-
itly defi ned as symbolic, the single quotes are not required. For example,   

syms a b c x
subs(E4,x,4)

 returns   

ans =
16*a+4*b+c

 We can make multiple substitutions by listing the variables inside curly brack-
ets, defi ning a cell array:   

subs(E4,{a,b,c,x},{1,2,3,4})
ans =

27

 We can even substitute in numeric arrays. For example, fi rst we create a new 
expression containing only   x  :   

E6 = subs(E4,{a,b,c},{1,2,3})

 This gives us   

E6 =
x^2+2*x+3

 Now we defi ne an array of numbers and substitute them into   E6  :   

numbers = 1:5;
subs(E6,x,numbers)
ans =

6  11  18  27  38

  PRACTICE EXERCISES 12.5 

   1.    Using the   subs   function, substitute   4   into each expression/equation 
defi ned in Practice Exercises 12.1 for   x   (or   X  ). Comment on your 
results.   

   2.    Defi ne a vector  v  of the even numbers from 0 to 10. Substitute this vector 
into all four versions of expression/equation 1:   ex1  ,   EX1  ,   eq1  , and 
  EQ1  . Does this work for all four versions? Comment on your results.   

   3.    Substitute the following values into all four versions of expression/
equation 4—  ex4  ,   EX4  ,   eq4  , and   EQ4   (this is a two-step process because 
  x   is a vector):   

a � 3 A � 3
b � 4 or B � 4
c � 5  C � 5
x � 1:0.5:5 X � 1:0.5:5 

   4.    Check your results for Exercise 3 in the workspace window. What kind 
of a variable is your result—double or symbolic?    
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EXAMPLE 12.2
    USING SYMBOLIC MATH TO SOLVE A BALLISTICS PROBLEM 
 We can use the symbolic math capabilities of MATLAB ®  to explore the equations 
representing the trajectory of an unpowered projectile, such as the cannonball 
shown in  Figure   12.5   .  

Range

vertical
distance

horizontal distance

 Figure 12.5 
 The range of a projectile depends on the initial velocity and the launch 
angle.       

 We know from elementary physics that the distance a projectile travels horizontally is 

   dx � v0t cos1u2   
 and the distance traveled vertically is 

   dy � v0t sin(u) �
1
2

gt2   

 where 

v0 � velocity    at launch,  
t   � time,     
u � launch    angle, and  
g  � acceleration    due to gravity.   

 Use these equations and MATLAB ® ’s symbolic capability to derive an equation for 
the distance the projectile has traveled horizontally when it hits the ground (the 
range). 

   1.   State the Problem 
  Find the range equation.  

  2.   Describe the Input and Output 

   Input   Equations for horizontal and vertical distances  

  Output   Equation for range    

  3.   Develop a Hand Example 

   dy � v0t sin1u2 - 
1
2

gt2 � 0   

  Rearrange to give 

   v0t sin1u2 �
1
2

gt2   
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  Divide by  t  and solve: 

   t �
2v0 sin1u2

g
   

  Now substitute this expression for  t  into the horizontal-distance formula to obtain 

    dx � v0t cos1u2    

    range � v0  a2v0 sin1u2
g

bcos1u2   
 We know from trigonometry that    2 sin u cos u    is the same as    sin12u2,    which 
would allow a further simplifi cation if desired.  

4.   Develop a MATLAB ®  Solution 
  First defi ne the symbolic variables:   

syms v0 t theta g

 Next defi ne the symbolic expression for the vertical distance traveled:   

Distancey = v0 * t *sin(theta) - 1/2*g*t^2;

 Now defi ne the symbolic expression for the horizontal distance traveled:   

Distancex = v0 * t *cos(theta);

 Solve the vertical-distance expression for the time of impact, since the vertical 
   distance � 0    at impact:   

impact_time = solve(Distancey,t)

 This returns two answers:   

impact_time =
[ 0]
[ 2*v0*sin(theta)/g]

 This result makes sense, since the vertical distance is zero at launch and again at 
impact. Substitute the impact time into the horizontal-distance expression. Since 
we are interested only in the second time, we’ll need to use   impact_time(2)  :   

impact_distance = subs(Distancex,t,impact_time(2))

 The substitution results in an equation for the distance the projectile has 
traveled when it hits the ground:   

impact_distance =
2*v0^2*sin(theta)/g*cos(theta)

  5.   Test the Solution 
 Compare the MATLAB ®  solution with the hand solution. Both approaches give 
the same result. 

 MATLAB ®  can simplify the result, although it is already pretty simple. We 
chose to use the   simple   command to demonstrate all the possibilities. The 
command   

simple(impact_distance)

(continued)
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  gives the following results:   

simplify: (v0^2*sin(2*theta))/g
radsimp: (2*v0^2*cos(theta)*sin(theta))/g
simplify(100): (v0^2*sin(2*theta))/g
combine(sincos): (v0^2*sin(2*theta))/g
combine(sinhcosh): (2*v0^2*cos(theta)*sin(theta))/g
combine(ln): (2*v0^2*cos(theta)*sin(theta))/g
factor: (2*v0^2*cos(theta)*sin(theta))/g
expand: (2*v0^2*cos(theta)*sin(theta))/g
combine: (2*v0^2*cos(theta)*sin(theta))/g
rewrite(exp): (2*v0^2*((1/exp(theta*i))/2 
 +exp(theta*i)/2)*(((1/exp(theta*i))*i)/
 2-(exp(theta*i)*i)/2))/g
rewrite(sincos): (2*v0^2*cos(theta)*sin(theta))/g
rewrite(sinhcosh): (2*v0^2*cosh(-theta*i)*sinh
 (-theta*i)*i)/g
rewrite(tan): -(4*v0^2*tan(theta/2)*(tan(theta/2)^
 2-1))/(g*(tan(theta/2)^2 + 1)^2)
mwcos2sin: -(2*v0^2*sin(theta)*(2*sin(theta/2)^
 2-1))/g
collect(v0): ((2*cos(theta)*sin(theta))/g)*v0^2

ans =
(v0^2*sin(2*theta))/g

  12.3   SYMBOLIC PLOTTING 

 The symbolic toolbox includes a group of functions that allow you to plot symbolic 
functions. The most basic is   ezplot  . 

  12.3.1   The Ezplot Function 

 Consider a simple function of  x , such as   

y = sym('x^2-2')

 To plot this function, use   

ezplot(y)

 The resulting graph is shown in  Figure   12.6   . The   ezplot   function defaults to 
an  x  range from    -2p    to    +2p.    MATLAB ® created this plot by choosing values of   x
and calculating corresponding values of   y  , so that a smooth curve is produced. 
Notice that the expression plotted is automatically displayed as the title of an 
  ezplot  .  

 The user who does not want to accept the default values can specify the mini-
mum and maximum values of  x  in the second fi eld of the   ezplot   function:   

ezplot(y,[-10,10])

 The values are enclosed in square brackets, indicating that they are elements in 
the array that defi nes the plot extremes. You can also specify titles, axis labels, and 
annotations, just as you do for other MATLAB ®  plots. For example, to add a title 
and labels to the plot, use   
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title('Second Order Polynomial')
xlabel('x')
ylabel('y')

 The   ezplot   function also allows you to plot implicit functions of  x  and  y , as 
well as parametric functions. For instance, consider the implicit equation 

   x2 � y2 � 1   

 which you may recognize as the equation for a circle of radius 1. You could solve 
for  y,  but it’s not necessary with   ezplot  . Any of the commands   

ezplot('x^2 + y^2 = 1',[-1.5,1.5])
ezplot('x^2 + y^2 -1',[-1.5,1.5])

 and   

z = sym('x^2 + y^2 -1')
ezplot(z,[-1.5,1.5])

 can be used to create the graph of the circle shown on the left-hand side in 
 Figure   12.7   . 

 Another way to defi ne an equation is parametrically; that is, defi ne separate 
equations for  x  and for  y  in terms of a third variable. A circle can be defi ned para-
metrically as 

   x � sin1t2   
   y � cos1t2   

 To plot the circle parametrically with   ezplot  , list fi rst the symbolic expression 
for  x  and then that for  y :      

ezplot('sin(t)','cos(t)')

 The results are shown on the right-hand side of  Figure   12.7   .  
 Although annotation is done the same way for symbolic plots as for standard 

numeric plots, in order to plot multiple lines on the same graph, you’ll need to use 
the   hold on   command. To adjust colors, line styles, and marker styles, use the inter-
active tools available in the plotting window. For example, to plot sin( x ), sin(2 x ), and 
sin(3 x ) on the same graph, fi rst defi ne some symbolic expressions:   

y1 = sym('sin(x)')
y2 = sym('sin(2*x)')
y3 = sym('sin(3*x)')
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 Symbolic expressions can 
be plotted with   ezplot  . In 
the left-hand graph, the 
default title is the plotted 
expression and the default 
range is    -2p    to    +2p.    In 
the right-hand graph, titles, 
labels, and other 
annotations are added to 
  ezplot   with the use of 
standard MATLAB ®  
annotation functions.       

 PARAMETRIC 
EQUATIONS 
 Equations that defi ne  x  and 
 y  in terms of another 
variable, typically  t  
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 Then plot each expression:   

ezplot(y1)
hold on
ezplot(y2)
ezplot(y3)

 The results are shown in  Figure   12.8   . To change the line colors, line styles, or 
marker styles, you’ll need to select the arrow on the menu bar (circled in the fi gure) 
and then select the line you’d like to edit. Once you’ve selected the line, right-click 
to activate the editing menu. When you’ve done plotting, don’t forget to issue the   

hold off

 command.  
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 The   ezplot   function can 
be used to graph both 
implicit and parametric 
functions, in addition to 
functions of a single 
variable.       

Editing
Icon

 Figure 12.8 
 Use the interactive plotting 
tools to adjust line style, 
color, and markers.       
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  HINT    
 Most symbolic functions will allow you to enter either a symbolic variable that 
represents a function or the function itself enclosed in single quotes. For 
example,   

y = sym('x^2-1')
ezplot(y)

 is equivalent to   

ezplot('x^2-1')

 Be sure to add titles and axis labels to all your plots. 
   1.    Use   ezplot   to plot   ex1   from    -2p    to    +2p.      
   2.    Use   ezplot   to plot   EX1   from    -2p    to    +2p.      
   3.    Use   ezplot   to plot   ex2   from    -10    to    +10.      
   4.    Use   ezplot   to plot   EX2   from    -10    to    +10.      
   5.    Why can’t we plot equations with only one variable?   
   6.    Use   ezplot   to plot   ex6   from    -2p    to    +2p.      
   7.    Use   ezplot   to plot cos( x ) from    -2p    to    +2p.    Don’t define an 

expression for cos( x ); just enter it into   ezplot   as a character string:   

ezplot('cos(x)')

   8.    Use   ezplot   to create an implicit plot of      x  ^2 � y^4 � 5.        
   9.    Use   ezplot   to plot sin( x ) and cos( x ) on the same graph. Use the 

interactive plotting tools to change the color of the sine graph.   
   10.    Use   ezplot   to create a parametric plot of    x � sin1t2    and    y � 3 cos1t2.        

  PRACTICE EXERCISES 12.6 

  12.3.2   Additional Symbolic Plots 

 Additional symbolic plotting functions that mirror the functions used in numeric 
MATLAB ®  plotting options are listed in  Table   12.3   . 

 To demonstrate how the three-dimensional surface plotting functions (  ezmesh  , 
  ezmeshc  ,   ezsurf  , and   ezsurfc  ) work, fi rst defi ne a symbolic version of the 
  peaks   function:   

z1 = sym('3*(1-x)^2*exp(-(x^2) - (y+1)^2)')
z2 = sym('- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)')
z3 = sym('- 1/3*exp(-(x+1)^2 - y^2)')
z = z1+z2+z3

 We broke this function into three parts to make it easier to enter into 
the  computer. Notice that no “dot” operators are used in these expressions, since 
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  Table 12.3   Symbolic Plotting Functions 

  subplot(2,2,1)  
  ezmesh(z)  
  title('ezmesh')  

  subplot(2,2,2)  
  ezmeshc(z)  
  title('ezmeshc')  

  subplot(2,2,3)  

 The plots resulting from these commands are 
shown in  Figure   12.9   . When we created the 
same plots via a standard MATLAB ®  approach, 
it was necessary to defi ne an array of both  x - 
and  y -values, mesh them together, and calculate 
the values of  z  on the basis of the two-
dimensional arrays. 
 The symbolic plotting capability contained in the 
symbolic toolbox makes creating these graphs 
much easier. 

  ezsurf(z)  
  title('ezsurf')  
  subplot(2,2,4)  
  ezsurfc(z)  
  title('ezsurfc')  

 All these graphs can be annotated by using the 
standard MATLAB ®  functions, such as title, 
xlabel, text  , etc. 
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 Examples of three-
dimensional symbolic 
surface plots.       

they are all symbolic. The   ezplot   functions work similarly to their numeric 
counterparts:        

  ezplot   Function plotter  If  z  is a function of  x : ezplot(z)   
  ezmesh   Mesh plotter  If  z  is a function of  x  and  y : ezmesh(z)   
  ezmeshc   Combined mesh and contour plotter  If  z  is a function of  x  and  y : ezmeshc(z)   
  ezsurf   Surface plotter  If  z  is a function of  x  and  y : ezsurf(z)   
  ezsurfc   Combined surface and contour plotter  If  z  is a function of  x  and  y : ezsurfc(z)   
  ezcontour   Contour plotter  If  z  is a function of  x  and  y : ezcontour(z)   
  ezcontourf   Filled contour plotter  If  z  is a function of  x  and  y : ezcontourf(z)   
  ezplot3   Three-dimensional parametric curve 

plotter 
 If  x  is a function of  t , if  y  is a function of  t , and if 
 z  is a function of  t : ezplot3(x,y,z)   

  ezpolar   Polar coordinate plotter  If  r  is a function of  u :  ezpolar(r)   

 

KEY IDEA
Most of the MATLAB® 
plotting functions for arrays 
have corresponding 
functions for symbolic 
applications
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 The two-dimensional plots and contour plots are also similar to their numeric 
counterparts. For example, these contour plots are a two-dimensional representa-
tion of the three-dimensional   peaks   function and are shown in  Figure   12.10   a and b.   

subplot(2,2,1)
ezcontour(z)
title ('ezcontour')
subplot(2,2,2)
ezcontourf(z)
title('ezcontourf')

 To demonstrate the use of   ezpolar   we need a new function to graph. For 
example, when sin( x ) is plotted in polar coordinates the result is a circle, as shown 
in  Figure   12.10   c.   

subplot(2,2,3)
z = sym('sin(x)')
ezpolar(z)
title('ezpolar')

 Any of these functions (ezmesh, ezsurf, ezmeshc, ezsurfc, and ezcontour) can 
also handle parameterized functions (one function for  x , one for  y , and one for  z ). 
For example, the following code produces the torus shown in  Figure   12.10   d.   

subplot(2,2,4)
x=sym('4+(3+cos(v))*sin(u)')
y=sym('4 + (3 + cos(v))*cos(u)')
z=sym('4+sin(v)')
ezsurf(x,y,z)
title('A Parameterized ezsurf Plot') 
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 A variety of symbolic plots.       
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 Create a symbolic expression for    Z � sin(1X 2 � Y 2).    

   1.    Use   ezmesh   to create a mesh plot of   Z  . Be sure to add a title and axis labels.   
   2.    Use   ezmeshc   to create a combination mesh plot and contour plot of 

  Z  . Be sure to add a title and axis labels.   
   3.    Use   ezsurf   to create a surface plot of   Z  . Be sure to add a title and axis 

labels.   
   4.    Use   ezsurfc   to create a combination surface plot and contour plot of 

  Z  . Be sure to add a title and axis labels.   
   5.    Use   ezcontour   to create a contour plot of   Z  . Be sure to add a title 

and axis labels.   
   6.    Use   ezcontourf   to create a fi lled contour plot of   Z  . Be sure to add a 

title and axis labels.   
   7.    Use   ezpolar   to create a polar plot of  x  sin( x ). Don’t defi ne a symbolic 

expression, but enter this expression directly into   ezpolar  :   

ezpolar('x*sin(x)')

  Be sure to add a title.   
   8.    The   ezplot3   function requires us to defi ne three variables as a function 

of a fourth. To do this, fi rst defi ne  t  as a symbolic variable, and then let 

   x � t    
            y � sin1t2   
             z � cos1t2   

   Use   ezplot3   to plot this parametric function from 0 to 30. 
   You may have problems creating   ezplot3   graphs inside subplot 

windows, because of a MATLAB ®  program idiosyncrasy. Later versions 
may fi x this problem.    

  PRACTICE EXERCISES 12.7 

EXAMPLE 12.3
  USING SYMBOLIC PLOTTING TO ILLUSTRATE A BALLISTICS PROBLEM 
 In  Example   12.2   , we used MATLAB ® ’s symbolic capabilities to derive an equation 
for the distance a projectile travels before it hits the ground. The horizontal- 
distance formula 

   dx � v0t cos1u2   
 and the vertical-distance formula 

   dy � v0t sin1u2 �
1
2

gt2   

 where 
v0 � the    velocity at launch,  
t   � time,     
u � launch    angle, and  
g  � acceleration    due to gravity,   
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 were combined to give 

   range � v0a2v0 sin1u2
g

b cos1u2   
 Using MATLAB ® ’s symbolic plotting capability, create a plot showing the range 
traveled for angles from 0 to    p >  2.    Assume an initial velocity of 100 m/s and an 
acceleration due to gravity of    9.8 m >  s2.    

   1.   State the Problem 
  Plot the range as a function of launch angle.  

  2.   Describe the Input and Output 

    Input   Symbolic equation for range 

   v0 � 100 m>s    

   g  � 9.8 m>s2    

   Output   Plot of range versus angle    

  3.   Develop a Hand Example 

   range � v0a2v0 sin1u2
g

b cos1u2   
 We know from trigonometry that    2 sin u cos u    equals    sin12u2.    Thus, we can 
simplify the result to 

   range �
v2

0

g
 sin12u2   

  With this equation, it is easy to calculate a few data points:      

  Angle    Range, m  

 0  0 

     p>6      884 

     p>4      1020 
     p>3      884 

     p>2      0 

 The range appears to increase with increasing angle and then decrease back to 
zero when the cannon is pointed straight up.  

4.   Develop a MATLAB ®  Solution 
 First, we need to modify the equation from  Example   12.2    to include the launch 
velocity and the acceleration due to gravity. Recall that   

impact_distance =
2*v0^2*sin(theta)/g*cos(theta)

 Use the   subs   function to substitute the numerical values into the equation:   

impact_100 = subs(impact_distance,{v0,g},{100, 9.8})
(continued)



454 Chapter 12 Symbolic Mathematics

 This returns   

impact_100 =
100000/49*sin(theta)*cos(theta)

 Finally, plot the results and add a title and labels:   

ezplot(impact_100,[0, pi/2])
title('Maximum Projectile Distance Traveled')
xlabel('angle, radians')
ylabel('range, m')

 This generates  Figure   12.11   .  

5.   Test the Solution 
  The MATLAB ®  solution agrees with the hand solution. The range is zero when 

the cannon is pointed straight up and zero when it is pointed horizontally. The 
range appears to peak at an angle of about 0.8 radian, which corresponds 
roughly to 45°.       
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 Figure 12.11 
 Projectile range.       

  12.4   CALCULUS 

 MATLAB ® ’s symbolic toolbox allows the user to differentiate symbolically and to 
perform integrations. This makes it possible to fi nd analytical solutions, instead of 
numeric approximations, for many problems. 

  12.4.1   Differentiation 

 Differential calculus is studied extensively in fi rst-semester calculus. The derivative can 
be thought of as the slope of a function or as the rate of change of the function. For 
example, consider a race car. The velocity of the car can be approximated by the 
change in distance divided by the change in time. Suppose that, during a race, the car 
starts slowly and reaches its fastest speed at the fi nish line. Of course, to avoid running 
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into the stands, the car must then slow down until it fi nally stops. We might model the 
position of the car with a sine wave, as shown in  Figure   12.12   . The relevant equation is  

   d � 20 � 20 sinap1t � 102
20

b    

 The graph in  Figure   12.12    was created with   ezplot   and symbolic mathematics. 
 First, we defi ne a symbolic expression for distance:   

dist = sym('20+20*sin(pi*(t-10)/20)')

 Once we have the symbolic expression, we can substitute it into the   ezplot   
function and annotate the resulting graph:   

ezplot(dist,[0,20])
title('Car Position')
xlabel('time, s')
ylabel('Distance from Starting Line')
text(10,20,'Finish Line')

 MATLAB ®  includes a function called   diff   to fi nd the derivative of a symbolic 
expression. (The word  differential  is another term for the derivative.) The velocity is 
the derivative of the position, so to fi nd the equation of the velocity of the car, we’ll 
use the   diff   function:   

velocity = diff(dist)
velocity =
pi*cos((pi*(t-10))/20)

 We can use the   ezplot   function to plot the velocity:   

ezplot(velocity,[0,20])
title('Race Car Velocity')
xlabel('time, s')
ylabel('velocity, distance/time')
text(10,3,'Finish Line')
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 Figure 12.12 
 Position of a race car. The 
car speeds up until it 
reaches the fi nish line. Then 
it slows to a stop. (The 
dotted line indicating the 
fi nish line was added after 
the graph was created.)       
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 The results are shown in  Figure   12.13   .  
 The acceleration of the race car is the change in the velocity divided by the 

change in time, so the acceleration is the derivative of the velocity function:   

acceleration = diff(velocity)
acceleration =
-(pi^2*sin((pi*(t-10))/20))/20

 The plot of acceleration ( Figure   12.14)    was also created with the use of the 
symbolic plotting function:    

ezplot(acceleration,[0,20])
title('Race Car Acceleration')
xlabel('time, s')
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 Figure 12.13 
 The maximum velocity is 
reached at the fi nish line.       
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 Figure 12.14 
 The race car is accelerating 
up to the fi nish line and 
then is decelerating. The 
acceleration at the fi nish 
line is zero.       
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ylabel('acceleration, velocity/time')
text(10,0,'Finish Line')

 The acceleration is the fi rst derivative of the velocity and the second derivative 
of the position. MATLAB ®  offers several slightly different techniques to fi nd both 
fi rst derivatives and  n th derivatives (see  Table   12.4   ).     

 If we have a more complicated equation with multiple variables, such as   

y = sym('x^2+t-3*z^3')

 MATLAB ®  will calculate the derivative with respect to  x , the default variable:   

diff(y)
ans =
2*x

 Our result is the rate of change of   y   as   x   changes (if we keep all the other vari-
ables constant). This is usually depicted as    0y>0x    and is called a  partial derivative . If 
we want to see how   y   changes with respect to another variable, such as   t  , we must 
specify it in the   diff   function (remember that if  t  has been previously defi ned as a 
symbolic variable, we don’t need to enclose it in single quotes):   

diff(y,'t')
ans =
1

 Similarly, to see how   y   changes with   z   when everything else is kept constant, we 
use   

diff(y,'z')
ans =
-9*z^2

 DERIVATIVE 
 The instantaneous rate of 
change of one variable 
with respect to a second 
variable 

 Table 12.4   Symbolic Differentiation 

  diff(f)   Returns the derivative of the 
expression   f   with respect to 
the default independent 
variable 

y=sym('x^3+z^2')

diff(y)

ans = 

3*x^2

  diff(f,'t')   Returns the derivative of the 
expression   f   with respect to 
the variable   t   

y=sym('x^3+z^2')

diff(y,'z')

ans = 

2*z

  diff(f,n)   Returns the  n th derivative of 
the expression   f   with respect 
to the default independent 
variable 

y=sym('x^3+z^2')

diff(y,2)

ans = 

6*x

  diff(f,'t',n)   Returns the  n th derivative of 
the expression f with respect 
to the variable t   

y=sym('x^3+z^2')

diff(y,'z',2)

ans = 

2
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 To fi nd higher-order derivatives, we can either nest the   diff   function or spec-
ify the order of the derivative in the   diff   function. Either of the statements      

diff(y,2)

 and   

diff(diff(y))

 returns the same result:   

ans =
2

 Notice that although the result appears to be a number, it is a symbolic variable. 
In order to use it in a MATLAB ®  calculation, you’ll need to convert it to a double-
precision fl oating-point number. 

 If we want to take a higher derivative of   y   with respect to a variable that is not 
the default, we need to specify both the degree of the derivative and the variable. 
For example, to fi nd the second derivative of y   with respect to   z  , we type   

diff(y,'z',2)
ans =
-18*z

 KEY IDEA 
 Integration is the opposite 
of taking the derivative 

  PRACTICE EXERCISES 12.8 

   1.    Find the fi rst derivative with respect to  x  of the following expressions: 

   x2 � x � 1   

   sin(x)   

   tan(x)   

   ln(x)     

   2.    Find the fi rst partial derivative with respect to  x  of the following 
expressions: 

   ax2 � bx � c   

   x0.5 � 3y   

   tan1x � y2   
   3x � 4y � 3xy     

   3.    Find the second derivative with respect to  x  for each of the expressions 
in Exercises 12.1 and 12.2.   

   4.    Find the fi rst derivative with respect to  y  for the following expressions: 

   y2 � 1   

   2y � 3x2   

   ay � bx � cz     

   5.    Find the second derivative with respect to  y  for each of the expressions 
in Problem 12.4.    



12.4 Calculus 459

  USING SYMBOLIC MATH TO FIND THE OPTIMUM LAUNCH ANGLE 
 In  Example   12.3   , we used the symbolic plotting capability of MATLAB ®  to create a 
graph of range versus launch angle, based on the range formula derived in  Example 
  12.2   , namely 

   range � v0a2v0 sin1u2
g

b cos1u2   
 where 

      v0 � velocity    at launch, which we chose to be 100 m/s,  
u � launch    angle, and  
g � acceleration    due to gravity, which we chose to be    9.8 m >  s2.      

 Use MATLAB ® ’s symbolic capability to fi nd the angle at which the maximum range 
occurs and to fi nd the maximum range. 

1.   State the Problem 
  Find the angle at which the maximum range occurs. 
  Find the maximum range.  

2.   Describe the Input and Output 

Input      Symbolic equation for range 

v0 � 100 m >  s   

     g � 9.8 m >s2    

Output    The angle at which the maximum range occurs 
   The maximum range    

3.   Develop a Hand Example 
 From the graph in  Figure   12.15   , the maximum range appears to occur at a 
launch angle of approximately 0.7 or 0.8 radian, and the maximum height 
appears to be approximately 1000 m.   
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 Figure 12.15 
 The projectile range as a function of launch angle.       

EXAMPLE 12.4
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4.   Develop a MATLAB ®  Solution 
  Recall that the symbolic expression for the impact distance with    v0    and  g

defi ned as 100 m/s and    9.8 m >  s2,    respectively, is   

impact_100 =
100000/49*sin(theta)*cos(theta)

 From the graph, we can see that the maximum distance occurs when the slope 
is equal to zero. The slope is the derivative of   impact_100  , so we need to set 
the derivative equal to zero and solve. Since MATLAB ®  automatically assumes 
that an expression is equal to zero, we have   

max_angle = solve(diff(impact_100))

 which returns the angle at which the maximum height occurs:   

max_angle =
[ 1/4*pi]

 Now the result can be substituted into the expression for the range:   

max_distance = subs(impact_100,theta,max_angle)

 Finally, the result should be changed to a double precision number   

double(max_distance)
ans =
1.0204e+003

  12.4.2   Integration 

 Integration can be thought of as the opposite of differentiation (fi nding a deriva-
tive) and is even sometimes called the antiderivative. It is commonly visualized as 
the area under a curve. For example, work done by a piston–cylinder device as it 
moves up or down can be calculated by taking the integral of  P  with respect to  V —
that is, 

   W � 1
2

1 PdV    

 In order to do the calculation, we need to know how  P  changes with  V . If, for 
example,  P  is a constant, we could create the plot shown in  Figure   12.16   .  

 The work consumed or produced as we move the piston is the area under the 
curve from the initial volume to the fi nal volume. For example, if we moved the piston 
from    1 cm3    to    4 cm3,    the work would correspond to the area shown in  Figure   12.17     

 As you may know from a course in integral calculus (usually Calculus II), the 
integration is quite simple: 

   W � 1
2

1 P dV � P 1
2

1 dV � PV � 2
1 � PV2 - PV1 � P �V    

 If 

   P � 100 psia, and �V � 3 cm3   
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 then 

   W � 3 cm3 � 100 psia   

 The symbolic toolbox allows us to easily take integrals of some very complicated 
functions. For example, if we want to fi nd an indefi nite integral (an integral for 
which we don’t specify the boundary values of the variable), we can use the   int   
function. First, we need to specify a function:   

y = sym('x^3 + sin(x)')

 To fi nd the indefi nite integral, we type   

int(y)
ans =
1/4*x^4-cos(x)
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 Figure 12.16 
 Pressure profi le in a 
piston–cylinder device. In 
this example, the pressure 
is constant.       
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 Figure 12.17 
 The work produced in a 
piston–cylinder device is 
the area under the curve.       
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 The   int   function uses   x   as the default variable. For example, if we defi ne a 
function with two variables, the   int   function will fi nd the integral with respect to  x  
or the variable closest to   x  :   

y = sym('x^3 +sin(t)')
int(y)
ans =
1/4*x^4+sin(t)*x

 If we want to take the integral with respect to a user-defi ned variable, that vari-
able needs to be specifi ed in the second fi eld of the   int   function:   

int(y,'t')
ans =
x^3*t-cos(t)

 To fi nd the defi nite integral, we need to specify the range of interest. Consider 
this expression:   

y = sym('x^2')

 If we don’t specify the range of interest, we get   

int(y)
ans =
1/3*x^3

 We could evaluate this from 2 to 3 by using the   subs   function:   

yy = int(y)
yy =
1/3*x^3
subs(yy,3)-subs(yy,2)
ans =

6.3333

 Notice that the result of the subs function is a double-precision fl oating-point 
number. 

 A simpler approach to evaluating an integral between two points is to specify 
the bounds in the   int   function:   

int(y,2,3)
ans =
19/3

 Notice, however, that the result is a symbolic number. To change it to a double we 
can use the   double   function.   

double(ans)
ans =

6.3333

 If we want to specify both the variable and the bounds, we need to list them all:   

y = sym('sin(x)+cos(z)')
int(y,'z',2,3)
ans =
sin(x)+sin(3)-sin(2)
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 Bounds can be numeric, or they can be symbolic variables:   

int(y,'z','b','c')
ans =
sin(x)*c+sin(c)-sin(x)*b-sin(b)

  Table   12.5    lists the MATLAB ®  functions having to do with integration.  

 Table 12.5   Symbolic Integration

  int(f)   Returns the integral of the 
expression   f   with respect to 
the default independent 
variable 

y = sym('x^3+z^2') 

int(y)

ans = 

1/4*x^4+z^2*x

  int(f,'t')   Returns the integral of the 
expression   f   with respect 
to the variable   t   

y = sym('x^3+z^2') 

int(y,'z')

ans = 

x^3*z+1/3*z^3

  int(f,a,b)   Returns the integral, with 
respect to the default variable, 
of the expression   f   between 
the numeric bounds   a   and   b   

y = sym('x^3+z^2') 

int(y,2,3)

ans = 

65/4+z^2

  int(f,'t',a,b)   Returns the integral, with 
respect to the variable   t  , of 
the expression   f   between the 
numeric bounds a   and   b   

y = sym('x^3+z^2') 

int(y,'z',2,3)

ans = 

x^3+19/3

  int(f,'t',a,b)   Returns the integral, with 
respect to the variable   t  , of 
the expression   f   between the 
symbolic bounds   a   and   b   

y = sym('x^3+z^2') 

int(y,'z','a','b')
ans = 

x^3*(b-a)+1/3*b^3-1/3*a^3

  PRACTICE EXERCISES 12.9 

   1.    Integrate the following expressions with respect to  x : 

   x2 � x � 1   

   sin(x)   

   tan(x)   

   ln(x)     

   2.    Integrate the following expressions with respect to  x : 

   ax2 � bx � c   

   x0.5 � 3y   

   tan1x � y2   
   3x � 4y � 3xy     
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 3.    Perform a double integration with respect to  x  for each of the 
expressions in Exercises 1 and 2.   

 4.    Integrate the following expressions with respect to  y : 

   y2 � 1   

   2y � 3x2   

   ay � bx � cz     

   5.    Perform a double integration with respect to  y  for each of the expressions 
in Exercise 12.4.   

   6.    Integrate each of the expressions in Exercise 1 with respect to  x  from 0 to 5.    

  EXAMPLE 12.5
  USING SYMBOLIC MATH TO FIND WORK PRODUCED 
IN A PISTON–CYLINDER DEVICE 
 Piston–cylinder devices are used in a wide range of scientifi c instrumentation and 
engineering devices. Probably, the most pervasive is the internal combustion engine 
( Figure   12.18   ), which typically uses four to eight cylinders.  

 The work produced by a piston–cylinder device depends on the pressure inside 
the cylinder and the amount the piston moves, resulting in a change in volume 

inside the cylinder. Mathematically, 

   W = 1PdV   

 In order to integrate this equation, we need to understand how the pressure 
changes with the volume. We can model most combustion gases as air and assume 
that they follow the ideal gas law 

   PV � nRT    

 where 

P � pressure, kPa,     
     V � volume, m3,     
     n � number    of moles, kmol,  
     R � universal    gas constant,    8.314 kPa m3

 >  kmol K,    and  
T � temperature,    K.   

 Figure 12.18 
 Internal combustion 
engine.       
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 If we assume that there is 1 mole of gas at 300 K and that the temperature stays con-
stant during the process, we can use these equations to calculate the work either 
done on the gas or produced by the gas as it expands or contracts between two 
known volumes. 

1.   State the Problem 
 Calculate the work done per mole in an isothermal (constant-temperature) 
 piston–cylinder device as the gas expands or contracts between two known 
 volumes.  

2.   Describe the Input and Output 

   Input 
Temperature � 300 K     
Universal gas constant � 8.314 kPa m3

 >  kmol K � 8.314 kJ >  kmol K     
   Arbitrary values of initial and fi nal volume; for this example, we’ll use   

   initial volume � 1 m3   

   final volume � 5 m3   
Output 
  Work produced by the piston–cylinder device, in kJ.    

3.   Develop a Hand Example 
  First, we’ll need to solve the ideal gas law for  P  : 

   PV � nRT    

   P � nRT >  V    

 Since  n ,  R , and  T  are constant during the process, we can now perform the 
integration: 

   W �L
nRT

V
 dV � nRTL

dV
V

� nRT lnaV2

V1
b    

 Substituting the values, we fi nd that 

   W � 1 kmol � 8.314 kJ>kmol K � 300 K � lnaV2

V1
b    

 If we use the arbitrary values    V1 � 1 m3    and    V2 � 5 m3,    then the work becomes 

   W � 4014 kJ   

 Because the work is positive, it is produced  by  (not  on ) the system.  

  4.   Develop a MATLAB ®  Solution 
  First, we’ll need to solve the ideal gas law for pressure. The code   

syms P V n R T V1 V2 %Define variables
ideal_gas_law = sym('P*V = n*R*T') %Define ideal gas law
P = solve(ideal_gas_law,'P') %Solve for P

  returns   

P =
n*R*T/V
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 Once we have the equation for  P , we can integrate. The command   

W = int(P,V,V1,V2)       %Integrate P with respect
%to V from V1 to V2

 returns   

W =
n*R*T*log(V2)-n*R*T*log(V1)

 Finally, we can substitute the values into the equation. We type   

work = subs(W,{n,R,V1,V2,T},{1,8.314,1,5,300.0})

 giving us   

work =
4.0143e+003

  5.   Test the Solution 
 The most obvious test is to compare the hand and computer solutions. However, the 
same answer with both techniques just means that we did the calculations the 
same way. One way to check reasonability would be to create a  PV  plot and esti-
mate the area under the curve. 

 To create the plot, we’ll need to return to the equation for  P  and substitute 
values for  n ,  R , and  T :   

p = subs(P,{n,R,T},{1,8.314, 300})

 This returns the following equation for  P  :   

p =
12471/5/V

 Now, we can use   ezplot   to create a graph of  P  versus  V  (see  Figure   12.19   ):    

1 2 3 4 5
0

500

1000

1500

2000

2500

Volume, cm3

Pressure Change with Volume for an Isothermal System

P
re

ss
ur

e,
 p

si
a

 Figure 12.19 
 For an isothermal system, 
as the volume increases 
the pressure decreases.       
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ezplot(p,[1,5]) %Plot the pressure versus V
title('Pressure Change with Volume for an Isothermal System')
xlabel('Volume')
ylabel('Pressure, psia')
xlabel('Volume, cm^3')
axis([1,5,0,2500])

 To estimate the work, we could fi nd the area of a triangle that approximates the 
shape shown in  Figure   12.20   . We have  

   area �
1
2

base * height    

   area � 0.5 * 15 � 12 * 2400 � 4800   

 which corresponds to 4800 kJ. This matches quite nicely with the calculated 
value of 4014 kJ. 

 Now that we have a process that works, we could create an M-fi le that 
prompts the user to enter values for any change in volume:   

clear,clc
syms P V n R T V1 V2                 %Define variables
ideal_gas_law = sym('P*V = n*R*T')   %Define ideal gas law
P = solve(ideal_gas_law,'P')         %Solve for P
W = int(P,V,V1,V2)                   %Integrate to find work

%Now let the user input the data

temp = input('Enter a temperature: ')
v1 = input('Enter the initial volume: ')
v2 = input('Enter the final volume: ')
work = subs(W,{n,R,V1,V2,T},{1,8.314,v1,v2,temp})

1 2 3 4 5
0

500

1000

1500

2000

2500

Volume, cm3

Pressure Change with Volume for an Isothermal System

P
re

ss
ur

e,
 p

si
a

 Figure 12.20 
 We can estimate the area 
under the curve with a 
triangle.       
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  This M-fi le generates the following user interaction:   

Enter a temperature: 300
temp =

300
Enter the initial volume: 1
v1 =

1
Enter the final volume: 5
v2 =

5
work =

4.0143e+003

  12.5   DIFFERENTIAL EQUATIONS 

 Differential equations contain both the dependent variable and its derivative with 
respect to the independent variable. For example,    

   
dy

dt
� y   

 is a differential equation. 
 Although any symbol can be used for either the independent or the dependent 

variable, the default independent variable in MATLAB ®  is  t  (and it is the usual 
choice for most ordinary differential equation formulations). Consider this simple 
equation: 

   y � e t   

 The derivative of  y  with respect to  t  is 

   
dy

dt
� e t   

 We could also express this as a differential equation, since    y � e t
 :    

   
dy

dt
� y   

 When we solve a differential equation, we are looking for an expression for  y  in 
terms of  t . Differential equations typically have more than one solution. The follow-
ing family of functions of  t  could be expressed by the same differential equation 
   1dy >  dt � y2  :    

   y � C1e
t   

 We can specify the particular equation of interest by specifying an initial condi-
tion. For example, if 

   y102 � 1,   

 then 

   C1 � 1   

 KEY IDEA 
 The default independent 
variable for differential 
equations in MATLAB ®  is  t  
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 A slightly more complicated function of  y  might be 

   y � t2   

 The derivative of  y  with respect to  t  is 

   
dy

dt
� 2t    

 If we wanted to, we could rewrite this equation as 

   
dy

dt
�

2t2

t
�

2y

t
   

 The symbolic toolbox includes a function called   dsolve   that solves differential 
equations, that is, it solves for  y  in terms of  t . This function requires the user to 
enter the differential equation, using the symbol   D   to specify derivatives with respect 
to the independent variable, as in   

dsolve('Dy = y')
ans =
C1*exp(t)

 Using a single input results in a family of results. If you also include a second 
fi eld specifying an initial condition (or a boundary condition), the exact answer is 
returned:   

dsolve('Dy = y','y(0) = 1')
ans =
exp(t)

 Similarly,   

dsolve('Dy = 2*y/t','y(-1) = 1')
ans =
t^2

 If  t  is not the independent variable in your differential equation, you can spec-
ify the independent variable in a third fi eld:   

dsolve('Dy = 2*y/t','y(-1) = 1', 't')
ans =
t^2

 If a differential equation includes only a fi rst derivative, it’s called a fi rst-order 
differential equation. Second-order differential equations include a second deriva-
tive, third-order equations a third derivative, and so on. To specify a higher-order 
derivative in the   dsolve   function, put the order immediately after the   D  . For 
example,   

dsolve('D2y = -y')
ans =
C1*sin(t)+C2*cos(t)

 solves a second-order differential equation. 
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  HINT    
 Don’t use the letter   D   in your variable names in differential equations. The 
function will interpret the   D   as specifying a derivative. 

 KEY IDEA 
 Not every differential 
equation can be solved 
analytically 

 The   dsolve   function can also be used to solve systems of differential equa-
tions. First, list the equations to be solved, then list the conditions. The   dsolve   
function will accept up to 12 inputs. For example:   

dsolve('eq1,eq2, . . .', 'cond1,cond2, . . .', 'v')

 or   

dsolve('eq1','eq2',. . .,'cond1','cond2',. . .,'v')

 (The variable  v  is the independent variable.) Now consider the following example:   

a = dsolve('Dx = y','Dy = x')
a =

x: [1x1 sym]
y: [1x1 sym]

 The results are reported as symbolic elements in a structure array, just as the results 
were reported with the   solve   command. To access these elements, use the struc-
ture array syntax:   

a.x
ans =
C1*exp(t)-C2*exp(-t)

 and   

a.y
ans =
C1*exp(t)+C2*exp(-t)

 You could also specify multiple outputs from the function:   

[x,y] = dsolve('Dx = y','Dy = x')
x =
C1*exp(t)-C2*exp(-t)
y =
C1*exp(t)+C2*exp(-t)

 MATLAB ®  cannot solve every differential equation symbolically. For compli-
cated (or ill-behaved) systems of equations, you may fi nd it easier to use MuPad. 
(Remember that MATLAB ® ’s symbolic capability is based on the MuPad engine.) 
Many differential equations can’t be solved analytically at all, no matter how sophis-
ticated the tool. For those equations, numerical techniques often suffi ce.   

      12.6    CONVERTING SYMBOLIC EXPRESSIONS 

TO MATLAB ®  FUNCTIONS 

 It is often useful to evaluate mathematical expressions symbolically before using the 
results in more traditional MATLAB ®  functions. To accomplish this the   matlab-
Function   function converts a symbolic expression into an anonymous function. 
Here’s a really simple example.   
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syms x
y=cos(x)
dy=diff(y)

 which returns the derivative of cos( x )   

dy=-sin(x)

 To convert this symbolic variable,   dy  , into an anonymous function use the fol-
lowing approach.   

f=matlabFunction(dy)

 which returns   

f =
@x –sin(x)

 Now   f   can be used to evaluate –sin( x ). For example to evaluate –sin( x ) at  x  = 2   

f(2)
ans =

-0.9093

 Here’s a more complicated example, which also involves symbolically fi nding a 
derivative.   

syms x
y=(exp(-x)-1)/x
dy=diff(y)
g=matlabFunction(dy)

 which results in a new anonymous function called   g  .   

g=
@(x) -1./(x.*exp(x))-(1./exp(x)-1)./x.^2

 Anonymous functions can be used like any other MATLAB ®  function. 

  HINT    
 If you have a version of MATLAB ®  before 2007b, or if the Maple toolbox is 
installed on your computer, the   matlabFunction   will not work.     

     SUMMARY 

 MATLAB ® ’s symbolic mathematics toolbox uses the MuPad software engine. The 
symbolic toolbox is an optional component of the professional version of 
MATLAB ® , but is included with the Student Version. The syntax used by the sym-
bolic toolbox is similar to that used by MuPad. However, because the underlying 
structure of each program is different, MuPad users will recognize some differ-
ences in syntax. 
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 Symbolic variables are created in MATLAB ®  with either the   sym   or the   syms   
command:   

x = sym('x') or
syms x

 The   syms   command has the advantage of making it easy to create multiple 
symbolic variables in one statement:   

syms a b c

 The   sym   command can be used to create complete expressions or equations in 
a single step:   

y = sym('z^2-3')

 Although   z   is included in this symbolic expression, it has not been explicitly defi ned 
as a symbolic variable. 

 Once symbolic variables have been defi ned, they can be used to create more 
complicated expressions. Since   x  ,   a  ,   b  , and   c   were defi ned as symbolic variables, 
they can be combined to create the quadratic equation:   

EQ = a*x^2 + b*x + c

 MATLAB ®  allows users to manipulate either symbolic expressions or sym-
bolic equations. Equations are set equal to something; expressions are not. All 
the statements in this summary so far have created expressions. By contrast, the 
statement   

EQ = sym('n = m/MW')

 defi nes a symbolic equation. 
 Both symbolic expressions and equations can be manipulated by using built-

in MATLAB ®  functions from the symbolic toolbox. The   numden   function extracts 
the numerator and denominator from an expression but is not valid for equa-
tions. The   expand  ,   factor  , and   collect   functions can be used to modify 
either an expression or an equation. The   simplify   function simplifi es an 
expression or an equation on the basis of built-in MuPad rules, and the   simple   
function tries each member of the family of simplifi cation functions and reports 
the shortest answer. 

 A highly useful symbolic function is   solve  , which allows the user to solve equa-
tions symbolically. If the input to the function is an expression, MATLAB ®  sets the 
expression equal to zero. The   solve   function can solve not only a single equation 
for the specifi ed variable, but also systems of equations. Unlike the techniques used 
in matrix algebra to solve systems of equations, the input to   solve   need not be 
linear. 

 The substitution function,   subs  , allows the user to replace variables with either 
numeric values or new variables. It is important to remember that if a variable has 
not been explicitly defi ned as symbolic, it must be enclosed in single quotes when it 
is used in the   subs   function. When  y  is defi ned as   

y = sym('m +2*n + p')

 the variables   m  ,   n  , and   p   are not explicitly defi ned as symbolic and must therefore 
be enclosed in single quotes. Notice that when multiple variables are replaced, they 
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are listed inside curly brackets. If a single variable is replaced, the brackets are not 
required. Given the preceding defi nition of   y  , the command   

subs(y,{'m','n','p'}, {1,2,3})

  returns    

ans =
8

 The   subs   command can be used to substitute both numeric values and symbolic 
variables. 

 MATLAB ® ’s symbolic plotting capability roughly mirrors the standard plotting 
options. The most useful of these plots for engineers and scientists is probably the 
 x–y  plot,   ezplot  . This function accepts a symbolic expression and plots it for val-
ues of   x   from    -2p    to    +2p.    The user can also assign the minimum and maximum 
values of   x  . Symbolic plots are annotated with the use of the same syntax as stand-
ard MATLAB ®  plots. 

 The symbolic toolbox includes a number of calculus functions, the most basic 
being   diff   (differentiation) and   int   (integration). The   diff   function allows the 
user to take the derivative with respect to a default variable (  x or whatever is closest 
to   x   in the expression) or to specify the differentiation variable. Higher-order deriva-
tives can also be specifi ed. The   int   function also allows the user to integrate with 
respect to the default variable (  x  ) or to specify the integration variable. Both defi nite 
and indefi nite integrals can be evaluated. Additional calculus functions not dis-
cussed in this chapter are available. Use the   help   function for more information. 

 When solving a problem it is often useful to manipulate expressions symboli-
cally before creating MATLAB ®  functions. The   matlabFunction   function allows 
you to do this easily. 

  MATLAB ®  SUMMARY 

 The following MATLAB ®  summary lists all the special characters, commands, and 
functions that are defi ned in this chapter:        

  Special Characters    

  ''   identifi es a symbolic variable that has not been 
explicitly defi ned 

  { }   encloses a cell array, used in the solve function to 
create lists of symbolic variables 

  Commands and Functions    

  collect   collects like terms 

  diff   fi nds the symbolic derivative of a symbolic expression 

  dsolve   differential equation solver 

  expand   expands an expression or equation 

  ezcontour   creates a contour plot 

  ezcontourf   creates a fi lled contour plot 

  ezmesh   creates a mesh plot from a symbolic expression 
(continued )
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  Commands and Functions    

  ezmeshc   plots both a mesh and a contour plot created from a 
symbolic expression 

  ezplot   plots a symbolic expression (creates an  x – y  plot) 

  ezplot3   creates a three-dimensional line plot 

  ezpolar   creates a plot in polar coordinates 

  ezsurf   creates a surface plot from a symbolic expression 

  ezsurfc   plots both a mesh and a contour plot created from a 
symbolic expression 

  factor   factors an expression or equation 

  int   fi nds the symbolic integral of a symbolic expression 

  matlabFunction   converts a symbolic expression into an anonymous 
MATLAB ®  function 

  numden   extracts the numerator and denominator from an 
expression or an equation 

  simple   tries and reports all the simplifi cation functions and 
selects the shortest answer 

  simplify   simplifi es, using MuPad’s built-in simplifi cation rules 

  solve   solves a symbolic expression or equation 

  subs   substitutes into a symbolic expression or equation 

  sym   creates a symbolic variable, expression, or equation 

  syms   creates symbolic variables 

  PROBLEMS 

  Algebra  

   12.1    Create the symbolic variables   

a b c d x

 and use them to create the following symbolic expressions:   

se1 = x^3 -3*x^2 +x
se2 = sin(x) + tan(x)
se3 =(2*x^2 - 3*x - 2)/(x^2 - 5*x)
se4 = (x^2 -9)/(x+3)

   12.2        (a)   Divide   se1   by   se2  .  

  (b)   Multiply  se3  by se4 .  

  (c)   Divide  se1  by  x .  

  (d)   Add  se1  to  se3 .     

   12.3    Create the following symbolic equations: 
   (a)    sq1 = sym('x^2 + y^2 = 4')   

  (b)    sq2 = sym('5*x^5 - 4*x^4 + 3*x^3 + 2*x^2 -x = 24 ')   

  (c)    sq3 = sym('sin(a) + cos(b) -x*c = d')   

  (d)    sq4 = sym('(x^3 - 3*x)/(3-x) = 14')      
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   12.4    Try to use the   numden   function to extract numerator and denominator 
from   se4  and   sq4  . Does this function work for both expressions and equa-
tions? Describe how your results vary. Try to explain the differences.   

   12.5    Use the   expand  , factor  , collect  , simplify  , and simple   functions 
on   se1 to   se4  , and on sq1   to   sq4  . In your own words, describe how these 
functions work for the various types of equations and expressions.   

  Solving Symbolically and Using the Subs Command  

   12.6    Solve each of the expressions created in Problem 12.1 for   x  .   
   12.7    Solve each of the equations created in Problem 12.3 for   x  .   
   12.8    Solve equation   sq3  , created in Problem 12.3, for   a  .   
   12.9    A pendulum is a rigid object suspended from a frictionless pivot point (see 

 Figure   P12.9   ). If the pendulum is allowed to swing back and forth with a 
given inertia, we can fi nd the frequency of oscillation with the equation 

 

   2pf � AmgL

I
   

 where 
        f � frequency,     
     m � mass    of the pendulum,  
      g � acceleration    due to gravity,  
      L � distance    from the pivot point to the center of gravity of 
        the pendulum, and  
      I � inertia.      

 Use MATLAB ® ’s symbolic capability to solve for the length  L .   

Pivot Point

L

 Figure P12.9 
 Pendulum  described in 
 Problem 12.9.       

   12.10    Let the mass, inertia, and frequency of the pendulum in the previous prob-
lem be, respectively, 

    m � 10 kg    

    f � 0.2 s�1    

    I � 60 kg m>s.   
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 If the pendulum is on the earth    1g � 9.8 m >  s22    what is the length from the 
pivot point to the center of gravity? (Use the   subs   function to solve this 
problem.)   

   12.11    Kinetic energy is defi ned as 

   KE �
1
2

mV 2   

 where 

      KE � kinetic    energy, measured in J  
     m  � mass,    measured in kg  
     V  � velocity,    measured in m/s.   

 Create a symbolic equation for kinetic energy, and solve it for velocity.   
   12.12    Find the kinetic energy of a car that weighs    2000 lbm    and is traveling at 60 

mph (see  Figure   P12.12   ). Your units will be    lbm mile2
 >  h2.    Once you’ve cal-

culated this result, change it to Btu by using the following conversion factors: 
 

    1 lbf � 32.174 lbm
# ft>s2   

    1 h � 3600 s    
    1 mile � 5280 ft    
    1 Btu � 778.169 ft # lbf      

KE mV2

m  2000 lbm

60 mph

1
2

 Figure P12.12 
 Car described in 
problem 12.12.       

   12.13    The heat capacity of a gas can be modeled with the following equation, 
composed of the empirical constants  a, b, c , and  d  and the temperature  T  in 
kelvins: 

   CP � a � bT � cT 2 � dT 3   

 Empirical constants do not have a physical meaning but are used to make 
the equation fi t the data. Create a symbolic equation for heat capacity and 
solve it for  T .   

   12.14    Substitute the following values for  a ,  b ,  c , and  d  into the heat-capacity equa-
tion from the previous problem and give your result a new name [these 
values model the heat capacity of nitrogen gas in kJ/(kmol K) as it changes 
temperature between approximately 273 and 1800 K]: 

   a � 28.90    
    b � -0.1571 � 10�2   
    c � 0.8081 � 10�5    
   d � -2.873 � 10�9    
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 Solve your new equation for  T  if the heat capacity    1Cp2    is equal to 29.15 kJ/ 
(kmol K).   

   12.15    The Antoine equation uses empirical constants to model the vapor pressure 
of a gas as a function of temperature. The model equation is 

   log101P2 � A �
B

C � T
   

 where 
      P � pressure,    in mmHg  
     A � empirical    constant  
     B � empirical    constant  
     C � empirical    constant  
     T � temperature    in °C.   

 The normal boiling point of a liquid is the temperature at which the vapor 
pressure ( P ) of the gas is equal to atmospheric pressure, 760 mmHg. Use 
MATLAB ® ’s symbolic capability to fi nd the normal boiling point of benzene 
if the empirical constants are 

   A � 6.89272    
   B � 1203.531   
   C � 219.888      

   12.16    A hungry college student goes to the cafeteria and buys lunch. The next 
day he spends twice as much. The third day he spends $1 less than he did 
the second day. At the end of 3 days he has spent $35. How much did he 
spend each day? Use MATLAB ® ’s symbolic capability to help you solve this 
problem.   

  Solving Systems of Equations  

   12.17    Consider the following set of seven equations: 

    3x1 � 4x2 � 2x3 � x4 � x5 � 7x6 � x7 � 42
 2x1 � 2x2 � 3x3 � 4x4 � 5x5 � 2x6 � 8x7 � 32

 x1 � 2x2 � 3x3 � x4 � 2x5 � 4x6 � 6x7 � 12
 5x1 � 10x2 � 4x3 � 3x4 � 9x5 � 2x6 � x7 � -5
 3x1 � 2x2 � 2x3 � 4x4 � 5x5 � 6x6 � 7x7 � 10
 -2x1 � 9x2 � x3 � 3x4 � 3x5 � 5x6 � x7 � 18

 x1 � 2x2 � 8x3 � 4x4 � 2x5 � 4x6 � 5x7 � 17    

 Defi ne a symbolic variable for each of the equations, and use MATLAB ® ’s 
symbolic capability to solve for each unknown.   

   12.18    Compare the amount of time it takes to solve the preceding problem by 
using left division and by using symbolic math with the   tic   and   toc   func-
tions, whose syntax is   

tic
o
code to be timed
o
toc
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   12.19    Use MATLAB ® ’s symbolic capabilities to solve the following problem by 
means of matrix algebra: 
 Consider a separation process in which streams of water, ethanol, and 
methanol enter a process unit. Two streams leave the unit, each with varying 
amounts of the three components (see  Figure   P12.19   ). 
 Determine the mass fl ow rates into the system and out of the top and 
bottom of the separation unit. 

     (a)    First set up the following material-balance equations for each of the 
three components: 

   Water 
    0.511002 � 0.2mtops � 0.65mbottoms   
    50 � 0.2mtops � 0.65mbottoms    

  Ethanol 
    100x � 0.35mtops � 0.25mbottoms   
    0 � -100x � 0.35mtops � 0.25mbottoms    

  Methanol 
    10011 � 0.5 � x2 � 0.45mtops � 0.1mbottoms   
    50 � 100x � 0.45mtops � 0.1mbottoms      
   (b)   Create symbolic equations to represent each material balance.  
   (c)    Use the   solve   function to solve the system of three equations and three 

unknowns.     

xH2O 0.50
xEthanol x
xMethanol  1 0.5 x

xH2O 0.65
xEthanol  0.25
xMethanol  0.10

xH2O 0.20
xEthanol  0.35
xMethanol  0.45min  100

mtops  ?

mbottoms  ?

 Figure P12.19 
 Separation process with 
three components: Water, 
ethanol, and methanol.       

   12.20    Consider the following two equations: 

   x2 � y2 � 42   

   x � 3y � 2y2 � 6   

 Defi ne a symbolic equation for each, and solve it by using MATLAB ® ’s 
symbolic capability. Could you solve these equations by using matrices? Try 
this problem twice, once using only integers in your equation defi nitions 
and once using fl oating-point numbers (those with decimal points). How 
do your results vary? Check the workspace window to determine whether 
the results are still symbolic.   
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  Symbolic Plotting  

   12.21    Create plots of the following expressions from    x � 0    to 10: 

   (a)      y � ex     
  (b)      y � sin1x2     
  (c)      y � ax2 � bx � c,    where    a � 5, b � 2,    and    c � 4     
  (d)      y � 2x      

 Each of your plots should include a title, an  x -axis label, a  y -axis label, and a 
grid.   

   12.22    Use   ezplot   to graph the following expressions on the same fi gure for 
 x -values from    -2p    to    2p    (you’ll need to use the   hold on   command): 

   y1 � sin1x2   
     y2 � sin12x2   
     y3 � sin13x2   

 Use the interactive plotting tools to assign each line a different color and 
line style.   

   12.23    Use   ezplot   to graph the following implicit equations: 

   (a)      x2 � y3 � 0     
  (b)      x � x2 � y � 0     
  (c)      x2 � 3y2 � 3     
  (d)      x #  y � 4        

   12.24    Use   ezplot   to graph the following parametric functions: 

   (a)      f11t2 � x � sin1t2    
    f21t2 � y � cos1t2    

  (b)      f11t2 � x � sin1t2    
   f21t2 � y � 3 cos1t2    

  (c)      f11t2 � x � sin1t2    
    f21t2 � y � cos13t2    

  (d)       f1(t) � x � 10sin(t)  
from t � 0 to 30     f2(t) � y � t cos(t)

(e) f1(t) � x � t sin(t)  
from t � 0 to 30     f2(t) � y � t cos(t)                       

   12.25    The distance a projectile travels when fi red at an angle    u    is a function of 
time and can be divided into horizontal and vertical distances (see  Figure 
  P12.25   ), given respectively by 

 

   horizontal1t2 � tV0 cos1u2   
 and 

   vertical1t2 � tV0 sin1u2 � 1
2gt2   
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 where 
      horizontal �    distance traveled in the  x  direction  
     vertical  �    distance traveled in the  y  direction  
     V0  �    initial velocity of the projectile  
     g  �    acceleration due to gravity,    9.8 m>s2      
   t                    �       time, s.

 Suppose a projectile is fi red at an initial velocity of 100 m/s and a launch 
angle of    p >  4    radians (45°). Use   ezplot   to graph horizontal distance on 
the  x -axis and vertical distance on the  y -axis for times from 0 to 20 seconds.   

h(t)

u

v(t)

 Figure P12.25 
 Trajectory of a projectile.       

   12.26    For each of the following expressions, use the   ezpolar   plot function to 
create a graph of the expression, and use the   subplot   function to put all 
four of your graphs in the same fi gure: 

   (a)      sin21u2 � cos21u2     
  (b)      sin1u2     
  (c)      eu >  5    for    u    from 0 to 20  
  (d)      sinh(u)    for    u    from 0 to 20     

   12.27    Use  ezplot3   to create a three-dimensional line plot of the following functions: 

    f11t2 � x � t sin1t2    
    f21t2 � y � t cos1t2   
    f31t2 � z � t      

   12.28    Use the following equation to create a symbolic function  Z : 

   Z �
sin12X 2 � Y 222X 2 � Y 2

   

   (a)    Use the   ezmesh   plotting function to create a three-dimensional plot of  Z .  
  (b)    Use the   ezsurf   plotting function to create a three-dimensional plot of  Z .  
  (c)    Use   ezcontour   to create a contour map of   Z  .  
  (d)    Generate a combination surface and contour plot of   Z  , using   ezsurfc  .   

 Use subplots to put all the graphs you create into the same fi gure.   

  Calculus  

   12.29    Determine the fi rst and second derivatives of the following functions, using 
MATLAB ® ’s symbolic functions: 

   (a)      f11x2 � y � x3 � 4x2 � 3x � 8     
  (b)      f21x2 � y � 1x2 � 2x � 12 1x � 12     
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  (c)      f31x2 � y � cos12x2 sin1x2     
  (d)      f41x2 � y � 3xe4x2

        

   12.30    Use MATLAB ® ’s symbolic functions to perform the following integrations: 

   (a)      L1x2 � x2 dx      

  (b)      L
1.3

0.3
1x2 � x2 dx      

  (c)      L1x2 � y22 dx      

  (d)      L
24

3.5
1ax2 � bx � c2 dx         

   12.31    Let the following polynomial represent the altitude in meters during the 
fi rst 48 hours following the launch of a weather balloon: 

   h1t2 � -0.12t4 � 12t3 � 380t2 � 4100t � 220   

 Assume that the unit of  t  is hours. 

   (a)    Use MATLAB ®  together with the fact that the velocity is the fi rst derivative 
of the altitude to determine the equation for the velocity of the balloon.  

  (b)    Use MATLAB ®  together with the fact that acceleration is the derivative 
of velocity, or the second derivative of the altitude, to determine the 
equation for the acceleration of the balloon.  

  (c)    Use MATLAB ®  to determine when the balloon hits the ground. Because 
 h ( t ) is a fourth-order polynomial, there will be four answers. However, 
only one answer will be physically meaningful.  

  (d)    Use MATLAB ® ’s symbolic plotting capability to create plots of altitude, 
velocity, and acceleration from time 0 until the balloon hits the ground 
[which was determined in part (c)]. You’ll need three separate plots, 
since altitude, velocity, and acceleration have different units.  

  (e)   Determine the maximum height reached by the balloon.   

 Use the fact that the velocity of the balloon is zero at the maximum height.   

   12.32    Suppose that water is being pumped into an initially empty tank (see  Figure 
  P12.32   ). It is known that the rate of fl ow of water into the tank at time  t  (in 
seconds) is    50 -  t     l/s. The amount of water  Q  that fl ows into the tank dur-
ing the fi rst  x  seconds can be shown to be equal to the integral of the expres-
sion    150 -  t2    evaluated from 0 to  x  seconds.  *   

Empty tank at t  0;
hence, Q  0

Amount of
water in the
tank Q

Flow rate at time t is
(50 – t) liters/s

 Figure P12.32 
 Tank-fi lling problem.       

  *  From Etter, Kuncicky, and Moore,  Introduction to MATLAB 7  (Upper Saddle River, NJ: Pearson/Prentice 
Hall, 2005).    
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   (a)    Determine a symbolic equation that represents the amount of water in 
the tank after  x  seconds.  

  (b)   Determine the amount of water in the tank after 30 seconds.  
  (c)    Determine the amount of water that fl owed into the tank between 10 

and 15 seconds after the fl ow was initiated.      

   12.33    Consider a spring with the left end held fi xed and the right end free to 
move along the  x -axis (see  Figure   P12.33   ). We assume that the right end of 
the spring is at the origin    x � 0    when the spring is at rest. When the spring 
is stretched, the right end of the spring is at some new value of  x  greater 
than zero. When the spring is compressed, the right end of the spring is at 
some value less than zero. Suppose that the spring has a natural length of 
1 ft and that a force of 10 lb is required to compress it to a length of 0.5 ft. 
Then, it can be shown that the work, in    ft lbf    performed to stretch the 
spring from its natural length to a total of  n  ft is equal to the integral of 20 x  
over the interval from 0 to    n � 1.    

    (a)    Use MATLAB ®  to determine a symbolic expression that represents the 
amount of work necessary to stretch the spring to a total length of  n  ft.  

  (b)    What is the amount of work done to stretch the spring to a total of 2 ft?  
  (c)    If the amount of work exerted is    25 ft lbf   , what is the length of the 

stretched spring?     

x  0

x  0 x > 0

Length  1

x  0x < 0

 Figure P12.33 
 Spring problem described 
in Problem 12.33.       

   12.34    The constant-pressure heat capacity    Cp    of a gas can be modeled with the 
empirical equation 

   Cp � a � bT � cT 2 � dT3   

 where  a ,  b ,  c , and  d  are empirical constants and  T  is the temperature in 
Kelvin. The change in enthalpy (a measure of energy) as a gas is heated 
from    T1    to    T2    is the integral of this equation with respect to  T : 

   �h �L
T2

T1
Cp dT    



Problems 483

 Find the change in enthalpy of oxygen gas as it is heated from 300 to 1000 
K. The values of  a ,  b ,  c , and  d  for oxygen are 

    a � 25.48    

    b � 1.520 � 10�2    

    c � -0.7155 � 10�5   

    d � 1.312 � 10�9      

  Creating Anonymous Functions from Symbolic Expressions  

  12.35     A third-order polynomial is often represented as 

   ax3 � bx2 � cx3 � d � 0   

   (a)    Use the symbolic algebra capability in MATLAB ®  to solve this equation 
for  x .  

  (b)    Use the   matlabFunction   function to convert your result from part a 
into a MATLAB ®  function.  

  (c)   Evaluate your function with the following input: 

   a � 4   
   b � 3   
   c � 1   
   d � 3       

  12.36     Consider the simple trigonometric function tan( x ). 

   (a)    Use the symbolic algebra capability in MATLAB ®  to integrate this function.  
  (b)    Use the   matlabFunction   function to convert your result from part a 

into a MATLAB ®  function.  
  (c)   Use   fplot   to plot your function from �5 to �5.                    
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13   

     13.1   INTERPOLATION 

 Especially when we measure things, we don’t gather data at every possible data point. 
Consider a set of  x–y  data collected during an experiment. By using an interpolation 
technique, we can estimate the value of  y  at values of  x  where we didn’t take a meas-
urement (see  Figure   13.1   ). The two most common interpolation techniques are lin-
ear interpolation and cubic spline interpolation, both of which are supported by 
MATLAB ® .   

  13.1.1   Linear Interpolation 

 The most common way to estimate a data point between two known points is  linear 
interpolation . In this technique, we assume that the function between the points can be 
estimated by a straight line drawn between them, as shown in  Figure   13.2   . If we fi nd 
the equation of a straight line defi ned by the two known points, we can fi nd  y  for any 
value of  x . The closer together the points are, the more accurate our approximation is 
likely to be. 

 After reading this chapter, you 
should be able to: 
  •   Interpolate between data 

points, using either linear 
or cubic spline models  

  •   Model a set of data points 
as a polynomial  

  •   Use the basic fi tting tool  

  •   Use the curve-fi tting 
toolbox  

  •   Perform numerical 
differentiations  

  •   Perform numerical 
integrations  

  •   Solve differential equations 
numerically    

     Objectives 

 Numerical 
Techniques  

  C H A P T E R



13.1 Interpolation 485

0 1 2 3 4 5 6
0

2

4

6

8

10

12
A Data Plot

x-axis

y-
ax

is

What is the
corresponding value
of y for this x?

 Figure 13.1 
 Interpolation between data 
points.       
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 HINT    
 Although possible, it is rarely wise to  extrapolate  past the region where you’ve 
collected data. It may be tempting to assume that data continue to follow the 
same pattern, but this assumption can lead to large errors. 

 HINT    
 The last character in the function name   interp1   is the number 1. Depending 
on the font, it may look like the lowercase letter “ell” (l). 

 We can perform linear interpolation in MATLAB ®  with the   interp1   
function. We’ll fi rst need to create a set of ordered pairs to use as input to the 
function. The data used to create the right-hand graph of  Figure   13.2    are 

x = 0:5;
y = [15, 10, 9, 6, 2, 0];

 Figure 13.2 
 Linear interpolation: 
Connect the points with a 
straight line to fi nd  y   .     
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 To perform a single interpolation, the input to   interp1   is the   x   data, the   y   
data, and the new   x   value for which you’d like an estimate of   y  . For example, to 
estimate the value of   y   when   x   is equal to 3.5, type   

interp1(x,y,3.5)
ans =

4

 You can perform multiple interpolations all at the same time by putting a vec-
tor of   x  -values in the third fi eld of the   interp1   function. For example, to estimate 
  y  -values for new   x  ’s spaced evenly from 0 to 5 by 0.2, type       

new_x = 0:0.2:5;
new_y = interp1(x,y,new_x)

 which returns   

new_y =
Columns 1 through 5
15.0000 14.0000 13.0000 12.0000 11.0000
Columns 6 through 10
10.0000 9.8000 9.6000 9.4000 9.2000
Columns 11 through 15
9.0000 8.4000 7.8000 7.2000 6.6000
Columns 16 through 20
6.0000 5.2000 4.4000 3.6000 2.8000
Columns 21 through 25
2.0000 1.6000 1.2000 0.8000 0.4000
Column 26

0

 We can plot the results on the same graph with the original data in  Figure   13.3   : 

plot(x,y,new_x,new_y,'o')

 INTERPOLATION 
 A technique for estimating 
an intermediate value 
based on nearby values 
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Measured and Interpolated Data Figure 13.3 
 Both measured data points 
and interpolated data were 
plotted on the same graph. 
The original points were 
modifi ed in the interactive 
plotting function to make 
them solid circles.       
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 (For simplicity, the commands used to add titles and axis labels to plots in this 
chapter have been left out.) 

 The   interp1   function defaults to linear interpolation to make its estimates. 
However, as we will see in the next section, other approaches are possible. If we 
want (probably for documentation purposes) to explicitly defi ne the approach 
used in   interp1   as linear interpolation, we can specify it in a fourth fi eld:   

interp1(x, y, 3.5, 'linear')
ans =

4

  13.1.2   Cubic Spline Interpolation 

 Connecting data points with straight lines probably isn’t the best way to estimate 
intermediate values, although it is surely the simplest. We can create a smoother 
curve by using the cubic spline interpolation technique, included in the   interp1   
function. This approach uses a third-order polynomial to model the behavior of the 
data. To call the cubic spline, we need to add a fourth fi eld to   interp1  :   

interp1(x,y,3.5,'spline')

 This command returns an improved estimate of   y   at  x � 3.5:    

ans =
3.9417

 Of course, we could also use the cubic spline technique to create an array of 
new estimates for   y   for every member of an array of   x  -values:   

new_x = 0:0.2:5;
new_y_spline = interp1(x,y,new_x,'spline');

 A plot of these data on the same graph as the measured data ( Figure   13.4   ) 
using the command     

plot(x,y,new_x,new_y_spline,'-o')

 results in two different lines. 
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 Figure 13.4 
 Cubic spline interpolation. 
The data points on the 
smooth curve were 
calculated.       
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Table 13.1 Interpolation Options in the Interp1 Function

'linear' linear interpolation, which is the default interp1(x,y,3.5,'linear')
ans =
  4

'nearest' nearest-neighbor interpolation interp1(x,y,3.5,'nearest')
ans =
  2

'spline' piecewise cubic spline interpolation interp1(x,y,3.5,'spline')
ans =
  3.9417

'pchip' shape-preserving piecewise cubic 
interpolation

interp1(x,y,3.5,'pchip')
ans =
  3.9048

'cubic' same as 'pchip' interp1(x,y,3.5,'cubic')
ans =
  3.9048

'v5cubic' the cubic interpolation from MATLAB® 
5, which does not extrapolate and uses 
'spline' if x is not equally spaced

interp1(x,y,3.5,'v5cubic')
ans =
  3.9375

EXAMPLE 13.1
THERMODYNAMIC PROPERTIES: USING THE STEAM TABLES
The subject of thermodynamics makes extensive use of tables. Although many ther-
modynamic properties can be described by fairly simple equations, others are either 
poorly understood, or the equations describing their behavior are very compli-
cated. It is much easier to tabulate the values. For example, consider the values in 
Table 13.2 for steam at 0.1 MPa (approximately 1 atm) (Figure 13.5).

 The data points on the straight-line segments were measured. Note that every 
measured point also falls on the curved line. 

 The curved line in  Figure   13.4    was drawn with the use of the interpolated data 
points. The line composed of straight-line segments was drawn through just the 
original data. 

 Although the most common ways to interpolate between data points are linear and 
spline approaches, MATLAB ®  does offer some other choices, as listed in  Table   13.1   .    

Table 13.2 Internal Energy of Superheated Steam at 0.1 MPa, 
as a Function of Temperature

Temperature, °C Internal Energy u, kJ/kg

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Source: Data from Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. 
Moore, Steam Tables, SI units (New York: John Wiley & Sons, 1978).
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Figure 13.5
Geysers spray 
high-temperature and 
high-pressure water and 
steam. (Rod Redfern © 
Dorling Kindersley.)

Use linear interpolation to determine the internal energy at 215°C. Use linear 
interpolation to determine the temperature if the internal energy is 2600 kJ/kg.

1. State the Problem
 Find the internal energy of steam, using linear interpolation.

Find the temperature of the steam, using linear interpolation.

2. Describe the Input and Output

Input Table of temperature and internal energy
 u unknown
 T unknown

Output Internal energy
 Temperature

3. Develop a Hand Example
 In the fi rst part of the problem, we need to fi nd the internal energy at 215°C. 

The table includes values at 200°C and 250°C. First we need to determine the 
fraction of the distance between 200 and 250 at which the value 215 falls:

215 � 200
250 � 200

� 0.30

 If we model the relationship between temperature and internal energy as lin-
ear, the internal energy should also be 30% of the distance between the tabu-
lated values:

0.30 �
u � 2658.1

2733.7 � 2658.1
 Solving for u gives

u � 2680.78 kJ>kg

4. Develop a MATLAB® Solution
 Create the MATLAB® solution in an M-fi le, then run it in the command 

 environment:

%Example 13.1
%Thermodynamics
T=[100, 150, 200, 250, 300, 400, 500];
u= [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];
newu=interp1(T,u,215)
newT=interp1(u,T,2600)

(continued)
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 The code returns

newu =
   2680.78
newT =
   161.42

5. Test the Solution
 The MATLAB® result matches the hand result. This approach could be used 

for any of the properties tabulated in the steam tables. The JANAF tables pub-
lished by the National Institute of Standards and Technology are a similar 
source of thermodynamic properties.

  THERMODYNAMIC PROPERTIES: EXPANDING THE STEAM TABLES 
 As we saw in  Example   13.1   , thermodynamics makes extensive use of tables. Commonly, 
many experiments are performed at atmospheric pressure, so you may regularly need 
to use  Table   13.3   , which is just a portion of the steam tables ( Figure   13.6   ).  

 Notice that the table is spaced fi rst at 50°C intervals and then at 100°C intervals. 
Suppose you have a project that requires you to use this table and you prefer not to 

 EXAMPLE 13.2

 Figure 13.6 
 Power plants use steam 
as a “working fl uid.”       

 Table 13.3   Properties of Superheated Steam at 0.1 MPa (Approximately 1 atm) 

 Temperature, °C 
 Specifi c Volume, 

 v ,    m3>kg    
 Internal Energy, 

 u , kJ/kg 
 Enthalpy, 
 h , kJ/kg 

 100  1.6958  2506.7  2676.2 

 150  1.9364  2582.8  2776.4 

 200  2.172  2658.1  2875.3 

 250  2.406  2733.7  2974.3 

 300  2.639  2810.4  3074.3 

 400  3.103  2967.9  3278.2 

 500  3.565  3131.6  3488.1 

  Source : Data from Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore,  Steam Tables, 
SI units  (New York: John Wiley & Sons, 1978). 
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perform a linear interpolation every time you use it. Use MATLAB ®  to create a 
table, employing linear interpolation, with a temperature spacing of 25°C. 

   1.   State the Problem 
  Find the specifi c volume, internal energy, and enthalpy every 5°C.  
  2.   Describe the Input and Output 

    Input    Table of temperature and internal energy 
  New table interval of 25°C  

   Output    Table    

  3.   Develop a Hand Example 
  In  Example   13.1   , we found the internal energy at 215°C. Since 215 is not on 

our output table, we’ll redo the calculations at 225°C: 

   
225 � 200
250 � 200

� 0.50   

  and 

   0.50 �
u � 2658.1

2733.7 � 2658.1
   

  Solving for  u  gives 

   u � 2695.9 kJ>kg   
  We can use this same calculation to confi rm those in the table we create.  
  4.   Develop a MATLAB ®  Solution 
  Create the MATLAB ®  solution in an M-fi le, then run it in the command envi-

ronment:   

%Example 13.2
%Thermodynamics
clear, clc
T = [100, 150, 200, 250, 300, 400, 500]';
v = [1.6958, 1.9364, 2.172, 2.406, 2.639, 3.103, 3.565]';
u = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6]';
h = [2676.2, 2776.4, 2875.3, 2974.3, 3074.3, 3278.2, 3488.1]';
props = [v,u,h];
newT = [100:25:500]';
newprop = interp1(T,props,newT);
disp('Steam Properties at 0.1 MPa')
disp('Temp Specific Volume Internal Energy Enthalpy')
disp(' C m^3/kg kJ/kg kJ/kg')
fprintf('%6.0f %10.4f %8.1f %8.1f \n',[newT,newprop]')

  The program prints the following table to the command window:   

Steam Properties at 0.1 MPa
Temp Specific Volume Internal Energy Enthalpy
C m^3/kg kJ/kg kJ/kg
100 1.6958 2506.7 2676.2
125 1.8161 2544.8 2726.3
150 1.9364 2582.8 2776.4
175 2.0542 2620.4 2825.9
200 2.1720 2658.1 2875.3
225 2.2890 2695.9 2924.8

(continued)
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250 2.4060 2733.7 2974.3
275 2.5225 2772.1 3024.3
300 2.6390 2810.4 3074.3
325 2.7550 2849.8 3125.3
350 2.8710 2889.2 3176.3
375 2.9870 2928.5 3227.2
400 3.1030 2967.9 3278.2
425 3.2185 3008.8 3330.7
450 3.3340 3049.8 3383.1
475 3.4495 3090.7 3435.6
500 3.5650 3131.6 3488.1

5.   Test the Solution 
  The MATLAB result matches the hand result. Now that we know the program 

works, we can create more extensive tables by changing the defi nition of   newT
from   

newT = [100:25:500]';

  to a vector with a smaller temperature increment—for example,   

newT = [100:1:500]';

 PRACTICE EXERCISES 13.1 

 Create  x  and  y  vectors to represe nt the following data:   

  x    y  

  10   23 

  20   45 

  30   60 

  40   82 

  50  111 

  60  140 

  70  167 

  80  198 

  90  200 

 100  220 

   1.    Plot the data on an  x–y  plot.   
2.    Use linear interpolation to approximate the value of  y  when    x � 15.      
3.    Use cubic spline interpolation to approximate the value of  y  when    x � 15.
4.    Use linear interpolation to approximate the value of  x  when    y � 80.      
5.    Use cubic spline interpolation to approximate the value of  x  when    y � 80.
6.    Use cubic spline interpolation to approximate  y -values for  x -values 

evenly spaced between 10 and 100 at intervals of 2.   
7.    Plot the original data on an  x–y  plot as data points not connected by a 

line. Also, plot the values calculated in Exercise 6.   
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  13.1.3   Multidimensional Interpolation 

 Imagine you have a set of data  z  that depends on two variables,  x  and  y . For exam-
ple, consider this table:   

      x � 1        x � 2        x � 3        x � 4    

    y � 2       7   15      22     30 

    y � 4      54  109     164     218 

    y � 6     403  807   1210   1614 

 If you wanted to determine the value of  z  at    y � 3    and    x � 1.5,    you would have 
to perform two interpolations. One approach would be to fi nd the values of  z  at 
   y � 3    and all the given  x -values by using   interp1   and then do a second interpola-
tion in your new chart. First let’s defi ne  x ,  y , and  z  in MATLAB ® :   

y = 2:2:6;
x = 1:4;
z = [ 7     15      22      30

54 109 164 218
403    807    1210    1614];

 Now we can use   interp1   to fi nd the values of  z  at    y � 3    for all the  x -values:   

new_z = interp1(y,z,3) returns
new_z =

30.50  62.00  93.00  124.00

 Finally, since we have  z -values at    y � 3,    we can use   interp1   again to fi nd  z  at    y � 3    
and    x � 1.5:      

new_z2 = interp1(x,new_z,1.5)
new_z2 =

46.25

 Although this approach works, performing the calculations in two steps is awk-
ward. MATLAB ®  includes a two-dimensional linear interpolation function, 
  interp2  , that can solve the problem in a single step:   

interp2(x,y,z,1.5,3)
ans =
46.2500

 The fi rst fi eld in the   interp2   function must be a vector defi ning the value 
associated with each column (in this case,   x  ), and the second fi eld must be a vector 
defi ning the values associated with each row (in this case,   y  ). The array   z   must have 
the same number of columns as the number of elements in   x   and must have the 
same number of rows as the number of elements in   y  . The fourth and fi fth fi elds 
correspond to the values of   x   and of   y   for which you would like to determine new 
  z  -values. 

 MATLAB ®  also includes a function,   interp3  , for three-dimensional interpola-
tion. Consult the   help   feature for the details on how to use this function and 
  interpn  , which allows you to perform  n -dimensional interpolation. All these func-
tions default to the linear interpolation technique but will accept any of the other 
techniques listed in  Table   13.1   .  
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  13.2   CURVE FITTING 

 Although we could use interpolation techniques to fi nd values of  y  between meas-
ured  x -values, it would be more convenient if we could model experimental data as 
   y � f1x2.    Then we could just calculate any value of  y  we wanted. If we know some-
thing about the underlying relationship between  x  and  y , we may be able to deter-
mine an equation on the basis of those principles. For example, the ideal gas law is 
based on two underlying assumptions:    

   •   All the molecules in a gas collide elastically.  
  •   The molecules don’t take up any room in their container.   

 Neither assumption is entirely accurate, so the ideal gas law works only when 
they are a good approximation of reality, but that is true for many situations, and 
the ideal gas law is extremely valuable. However, when real gases deviate from this 
simple relationship, we have two choices for how to model their behavior. Either we 
can try to understand the physics of the situation and adjust the equation accord-
ingly or we can just take the data and model them empirically. Empirical equations 
are not related to any theory of why a behavior occurs; they just do a good job of 
predicting how a parameter changes in relationship to another parameter. 

 MATLAB ®  has built-in curve-fi tting functions that allow us to model data empir-
ically. It’s important to remind ourselves that these models are good only in the 

 PRACTICE EXERCISES 13.2 

 Create  x  and  y  vectors to represent the following data:   

    y T >x:         x � 15        x � 30    

    y � 10        z � 23      33 

 20  45   55 

 30  60   70 

 40  82   92 

 50  111  121 

 60  140  150 

 70  167  177 

 80  198  198 

 90  200  210 

 100  20  230 

   1.    Plot both sets of  y–z  data on the same plot. Add a legend identifying 
which value of  x  applies to each data set.   

   2.    Use two-dimensional linear interpolation to approximate the value of  z  
when    y � 15    and    x � 20.      

   3.    Use two-dimensional cubic spline interpolation to approximate the 
value of  z  when    y � 15    and    x � 20.      

   4.    Use linear interpolation to create a new subtable for    x � 20    and    x � 25    
for all the  y -values.   

 KEY IDEA 
 Curve fi tting is a technique 
for modeling data with an 
equation 



13.2 Curve Fitting 495

region where we’ve collected data. If we don’t understand why a parameter such as 
 y  changes as it does with  x , we can’t predict whether our data-fi tting equation will 
still work outside the range where we’ve collected data. 

  13.2.1   Linear Regression 

 The simplest way to model a set of data is as a straight line. Let’s revisit the data 
from Section 13.1.1:   

x = 0:5;
y = [15, 10, 9, 6, 2, 0];

 If we plot the data in  Figure   13.7   , we can try to draw a straight line through the 
data points to get a rough model of the data’s behavior. This process is sometimes 
called “eyeballing it”—meaning that no calculations were done, but it looks like a 
good fi t. 

  Looking at the plot, we can see that several of the points appear to fall exactly 
on the line, but others are off by varying amounts. In order to compare the quality 
of the fi t of this line to other possible estimates, we fi nd the difference between the 
actual  y -value and the value calculated from the estimate. This difference is called 
the  residual . 

 We can find the equation of the line in  Figure   13.7    by noticing that at 
   x � 0, y � 0    and at    x � 5, y � 0   . Thus, the slope of the line is 

   
rise
run

�
�y

�x
�

y2 � y1

x2 � x1
�

0 � 15
5 � 0

� -3   

 The line crosses the  y -axis at 15, so the equation of the line is 

   y � -3x � 15   

 The differences between the actual values and the calculated values are listed in 
 Table   13.4   . 
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 Figure 13.7 
 A linear model; the line 
was “eyeballed.”       
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  The  linear regression  technique uses an approach called least squares fi t to 
 compare how well different equations model the behavior of the data. In this 
 technique, the differences between the actual and calculated values are squared 
and added together. This has the advantage that positive and negative deviations 
don’t cancel each other out. We could use MATLAB ®  to calculate this parameter 
for our data. We have      

sum_of_the_squares = sum((y-y_calc).^2)

 which gives us   

sum_of_the_squares =
5

 It’s beyond the scope of this chapter to explain how the linear regression tech-
nique works, except to say that it compares different models and chooses the appro-
priate one in which the sum of the squares is the smallest. Linear regression is 
accomplished in MATLAB ®  with the   polyfit   function. Three fi elds are required 
by   polyfit  : a vector of  x -values, a vector of  y -values, and an integer indicating what 
order polynomial should be used to fi t the data. Since a straight line is a fi rst-order 
polynomial, we’ll enter the number 1 into the   polyfit   function:   

polyfit(x,y,1)
ans =
-2.9143 14.2857

 The results are the coeffi cients corresponding to the best-fi t fi rst-order polyno-
mial equation: 

   y � -2.9143x � 14.2857   

 Is this really a better fi t than our “eyeballed” model? We can calculate the sum 
of the squares to fi nd out:   

best_y = -2.9143*x+14.2857;
new_sum = sum((y-best_y).^2)
new_sum =

3.3714

 Since the result of the sum-of-the-squares calculation is indeed less than the 
value found for the “eyeballed” line, we can conclude that MATLAB ®  found a better 
fi t to the data. We can plot the data and the best-fi t line determined by linear regres-
sion (see  Figure   13.8   ) to try to get a visual sense of whether the line fi ts the data well:   

plot(x,y,'o',x,best_y)

 Table 13.4   Difference between Actual and Calculated Values 

 x  y (actual)  y_calc (calculated)     difference � y � y_calc    

 0  15  15    0 

 1  10  12     -2    

 2   9   9    0 

 3   6   6    0 

 4   2   3     -1    

 5   0   0    0 

 LINEAR REGRESSION 
 A technique for modeling 
data as a straight line 
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  13.2.2   Polynomial Regression 

 Of course, straight lines are not the only equations that could be analyzed with the 
regression technique. For example, a common approach is to fi t the data with a 
higher-order polynomial of the form 

   y � a1x
n � a2x

n�1 � a3x
n�2 � . . . � anx � an�1   

  Polynomial regression  is used to get the best fi t by minimizing the sum of the 
squares of the deviations of the calculated values from the data. The   polyfit   func-
tion allows us to do this easily in MATLAB ® . We can fi t our sample data to second- 
and third-order equations with the commands   

a=polyfit(x,y,2)
a =

0.0536 -3.1821 14.4643

 and   

a=polyfit(x,y,3)
a =
-0.0648 0.5397 -4.0701 14.6587

 which correspond to the following equations 

    y2 � 0.0536x2 � 3.1821x � 14.4643

y3 � -0.0648x3 � 0.5397x2 � 4.0701x � 14.6587   

 We can fi nd the sum of the squares to determine whether these models fi t the 
data better:   

y2 = 0.0536*x.^2-3.182*x + 14.4643;
sum((y2-y).^2)
ans =

3.2643
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linear regression.       
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y3 = -0.0648*x.^3+0.5398*x.^2-4.0701*x + 14.6587
sum((y3-y).^2)
ans =

2.9921

 As we might expect, the more terms we add to our equation, the “better” is the 
fi t, at least in the sense that the distance between the measured and predicted data 
points decreases. 

 In order to plot the curves defi ned by these new equations, we’ll need more 
than the six data points used in the linear model. Remember that MATLAB ®   creates 
plots by connecting calculated points with straight lines, so if we want a smooth 
curve, we’ll need more points. We can get more points and plot the curves with the 
following code:   

smooth_x = 0:0.2:5;
smooth_y2 = 0.0536*smooth_x.^2-3.182*smooth_x + 14.4643;
subplot(1,2,1)
plot(x,y,'o',smooth_x,smooth_y2)
smooth_y3 = -0.0648*smooth_x.^3+0.5398*smooth_x.^2-4.0701* 
smooth_x + 14.6587;
subplot(1,2,2)
plot(x,y,'o',smooth_x,smooth_y3)

 The results are shown in  Figure   13.9   . Notice the slight curvature in each model. 
Although mathematically these models fi t the data better, they may not be as good 
a representation of reality as the straight line. As an engineer or scientist, you’ll 
need to evaluate any modeling you do. You’ll need to consider what you know about 
the physics of the process you’re modeling and how accurate and reproducible 
your measurements are.     

  13.2.3   The Polyval Function 

 The   polyfit   function returns the coeffi cients of a polynomial that best fi ts the 
data, at least on the basis of a regression criterion. In the previous section, we 
entered those coeffi cients into a MATLAB ®  expression for the corresponding poly-
nomial and used it to calculate new values of  y . The   polyval   function can perform 
the same job without our having to reenter the coeffi cients. 
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be based not only on the 
data collected but also on 
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of the process 

 Figure 13.9 
 Second- and third-order 
polynomial fi ts.       
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 The   polyval   function requires two inputs. The fi rst is a coeffi cient array, such 
as that created by   polyfit  . The second is an array of  x -values for which we would 
like to calculate new  y -values. For example, we might have   

coef = polyfit(x,y,1)
y_first_order_fit = polyval(coef,x)

 These two lines of code could be shortened to one line by nesting functions:   

y_first_order_fit = polyval(polyfit(x,y,1),x)

 We can use our new understanding of the   polyfit   and   polyval   functions to 
write a program to calculate and plot the fourth- and fi fth-order fi ts for the data 
from Section 13.1.1:   

y4 = polyval(polyfit(x,y,4),smooth_x);
y5 = polyval(polyfit(x,y,5),smooth_x);

subplot(1,2,1)
plot(x,y,'o',smooth_x,y4)
axis([0,6,-5,15])
subplot(1,2,2)
plot(x,y,'o',smooth_x,y5)
axis([0,6,-5,15])

  Figure   13.10    gives the results of our plot. 
 As expected, the higher-order fi ts match the data better and better. The fi fth-

order model matches exactly because there were only six data points.      
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 Figure 13.10 
 Fourth- and fi fth-order 
model of six data points.       

 HINT   
 You could create all four of the graphs shown in  Figures   13.9    and    13.10    by 
using a   for   loop that makes use of subplots and the   sprintf   function.   

x = 0:5;
y = [15, 10, 9, 6, 2, 0];
smooth_x = 0:0.2:5;
for k = 1:4

subplot(2,2,k)
plot(x,y,'o',smooth_x,polyval(polyfit(x,y,k+1),smooth_x))
axis([0,6,-5,15])
a = sprintf('Polynomial plot of order %1.0f \n',k+1);
title(a)

end
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 PRACTICE EXERCISES 13.3 

 Create  x  and  y  vectors to represent the following data:   

    z � 15        z � 30    

  x    y    x    y  

  10   23   10   33 

  20   45   20   55 

  30   60   30   70 

  40   82   40   92 

  50  111   50  121 

  60  140   60  150 

  70  167   70  177 

  80  198   80  198 

  90  200   90  210 

 100  220  100  230 

   1.    Use the   polyfit   function to fi t the data for    z � 15    to a fi rst-order 
polynomial.   

2.    Create a vector of new  x  values from 10 to 100 in intervals of 2. Use 
your new vector in the   polyval   function together with the coeffi cient 
values found in Exercise 1 to create a new  y  vector.   

3.    Plot the original data as circles without a connecting line and the 
calculated data as a solid line on the same graph. How well do you 
think your model fi ts the data?   

4.    Repeat Exercises 1 through 3 for the  x  and  y  data corresponding to    z � 30.

  WATER IN A CULVERT 
 Determining how much water will fl ow through a culvert is not as easy as it might fi rst 
seem. The channel could have a nonuniform shape (see  Figure   13.11   ), obstructions 
might infl uence the fl ow, friction is important, and so on. A numerical approach 
allows us to fold all those concerns into a model of how the water actually behaves.   

 EXAMPLE 13.3

 Figure 13.11 
 Culverts do not necessarily 
have a uniform cross 
section.        

    Consider the Following Data 
Collected From an Actual Culvert 

 Height, ft  Flow,    ft3>s    

 0  0 

 1.7  2.6 

 1.95  3.6 

 2.60  4.03 

 2.92  6.45 

 4.04  11.22 

 5.24  30.61 
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 Compute a best-fi t linear, quadratic, and cubic equation for the data, and plot them 
on the same graph. Which model best represents the data? (Linear is fi rst order, 
quadratic is second order, and cubic is third order.) 

   1.   State the Problem 
  Perform a polynomial regression on the data, plot the results, and determine 

which order best represents the data.  
  2.   Describe the Input and Output 

    Input    Height and fl ow data  

   Output    Plot of the results    

  3.   Develop a Hand Example 
  Draw an approximation of the curve by hand. Be sure to start at zero, since, if the 

height of water in the culvert is zero, no water should be fl owing (see  Figure   13.12   ). 
  4.   Develop a MATLAB ®  Solution 
  Create the MATLAB ®  solution in an M-fi le, then run it in the command 

environment:   

%13.3 Example - Water in a Culvert
height = [1.7, 1.95, 2.6, 2.92, 4.04, 5.24];
flow = [2.6, 3.6, 4.03, 6.45, 11.22, 30.61];
new_height = 0:0.5:6;
newf1 = polyval(polyfit(height,flow,1),new_height);
newf2 = polyval(polyfit(height,flow,2),new_height);
newf3 = polyval(polyfit(height,flow,3),new_height);
plot(height,flow,'o',new_height,newf1,new_height,newf2,
new_height,newf3)
title('Fit of Water Flow')
xlabel('Water Height, ft')
ylabel('Flow Rate, CFS')
legend('Data','Linear Fit','Quadratic Fit', 'Cubic Fit')

  The MATLAB ®  code generates the plot shown in  Figure   13.13   . 
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 Figure 13.12   
Hand fi t of water fl ow.       

(continued)
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  HEAT CAPACITY OF A GAS 
 The amount of energy necessary to warm a gas 1°C (called the  heat capacity  of the 
gas) depends not only on the gas, but on its temperature as well. This relationship 
is commonly modeled with polynomials. For example, consider the data for carbon 
dioxide in  Table   13.5   . 

 Use MATLAB ®  to model these data as a polynomial. Then compare the results 
with those obtained from the model published in B. G. Kyle,  Chemical and Process 
Thermodynamics  (Upper Saddle River, NJ: Prentice Hall PTR, 1999), namely 

   Cp � 1.698 � 10�10T 3 � 7.957 � 10�7T 2 � 1.359 � 10�3T � 5.059 � 10�1   

   1.   State the Problem 
  Create an empirical mathematical model that describes heat capacity as a function 

of temperature. Compare the results with those obtained from published models.  
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 Figure 13.13 
 Different curve-fi tting 
approaches.       

  5.   Test the Solution 
  The question of which line best represents the data is diffi cult to answer. The 

higher-order polynomial approximation will follow the data points better, but it 
doesn’t necessarily represent reality better. 
  The linear fi t predicts that the water fl ow rate will be approximately    -5    
CFS at a height of zero, which doesn’t match reality. The quadratic fi t goes back 
up after a minimum at a height of approximately 1.5 m—again a result incon-
sistent with reality. The cubic (third-order) fi t follows the points the best and is 
probably the best polynomial fi t. We should also compare the MATLAB ®  solu-
tion with the hand solution. The third-order (cubic) polynomial fi t approxi-
mately matches the hand solution.   

EXAMPLE 13.4
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2.   Describe the Input and Output 

Input    Use the table of temperature and heat-capacity data provided.  

Output   Find the coeffi cients of a polynomial that describes the data. 
  Plot the results.    

3.   Develop a Hand Example 
  By plotting the data ( Figure   13.14   ) we can see that a straight-line fi t (fi rst-order 

polynomial) is not a good approximation of the data. We’ll need to evaluate 
several different models—for example, from fi rst to fourth order.    
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 Figure 13.14 
 Heat capacity of 
carbon dioxide as a 
function of temperature.       

 Table 13.5   Heat Capacity of Carbon Dioxide

 Temperature,  T , in K  Heat Capacity,       Cp in kJ/(kg K) 

 250  0.791 

 300  0.846 
 350  0.895 
 400  0.939 
 450  0.978 
 500  1.014 
 550  1.046 
 600  1.075 
 650  1.102 
 700  1.126 
 750  1.148 
 800  1.169 
 900  1.204 

 1000  1.234 
 1500  1.328 

Source :  Tables of Thermal Properties of Gases , NBS Circular 564, 1955. 

(continued)
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4.   Develop a MATLAB ®  Solution   

%Example 13.4 Heat Capacity of a Gas
%Define the measured data
T=[250:50:800,900,1000,1500];
Cp=[0.791, 0.846, 0.895, 0.939, 0.978, 1.014, 1.046, . . . 
 1.075, 1.102, 1.126, 1.148, 1.169, 1.204, 1.234, 1.328];
%Define a finer array of temperatures
new_T = 250:10:1500;

%Calculate new heat capacity values, using four different 
polynomial models
Cp1 = polyval(polyfit(T,Cp,1),new_T);
Cp2 = polyval(polyfit(T,Cp,2),new_T);
Cp3 = polyval(polyfit(T,Cp,3),new_T);
Cp4 = polyval(polyfit(T,Cp,4),new_T);

%Plot the results
subplot(2,2,1)
plot(T,Cp,'o',new_T,Cp1)
axis([0,1700,0.6,1.6])
subplot(2,2,2)
plot(T,Cp,'o',new_T,Cp2)
axis([0,1700,0.6,1.6])
subplot(2,2,3)
plot(T,Cp,'o',new_T,Cp3)
axis([0,1700,0.6,1.6])
subplot(2,2,4)
plot(T,Cp,'o',new_T,Cp4)
axis([0,1700,0.6,1.6])

 By looking at the graphs shown in  Figure   13.15   , we can see that a second- or 
third-order model adequately describes the behavior in this temperature 
region. If we decide to use a third-order polynomial model, we can fi nd the 
coeffi cients with   polyfit  :    

polyfit(T,Cp,3)
ans =
2.7372e-010 -1.0631e-006 1.5521e-003 4.6837e-001

  The results correspond to the equation 

   Cp � 2.7372 � 10�10T 3 � 1.0631 � 10�6T 2 � 1.5521 � 10�3T

� 4.6837 � 10�1    

  5.   Test the Solution 
 Comparing our result with that reported, we see that they are close, but not exact: 

   Cp � 2.737 � 10�10T 3 � 10.63 � 10�7T 2 � 1.552 � 10�3T � 4.683 � 10�1   

 (our fi t) 

   Cp � 1.698 � 10�10T 3 � 7.957 � 10�7T 2 � 1.359 � 10�3T � 5.059 � 10�1   

 (literature) 
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 This is not too surprising, since we modeled a limited number of data points. 
The models reported in the literature use more data and are therefore probably 
more accurate.      
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 Figure 13.15 
 A comparison of 
different polynomials 
used to model the 
heat-capacity data of 
carbon dioxide.       

  13.3   USING THE INTERACTIVE FITTING TOOLS 

 MATLAB ®  7 includes new interactive plotting tools that allow you to annotate your 
plots without using the command window. Also included are basic curve fi tting, 
more complicated curve fi tting, and statistical tools. 

  13.3.1   Basic Fitting Tools 

 To access the basic fi tting tools, fi rst create a fi gure:   

x = 0:5;
y = [0,20,60,68,77,110]
plot(x,y,'o')
axis([-1,7,-20,120])

 These commands produce a graph ( Figure   13.16   ) with some sample data.  
 To activate the curve-fi tting tools, select  Tools: Basic Fitting  from the menu 

bar in the fi gure. The basic fi tting window opens on top of the plot. By checking 
  linear  ,   cubic  , and   show equations   (see  Figure   13.16   ), we generated the plot 
shown in  Figure   13.17   . 



506 Chapter 13 Numerical Techniques

 Figure 13.16 
 Interactive basic fi tting 
window.       
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 Figure 13.17 
 Plot generated with the 
basic fi tting window.       

 Checking the plot residuals box generates a second plot, showing how far each data 
point is from the calculated line, as shown in  Figure   13.18   .     

 In the lower right-hand corner of the basic fi tting window is an arrow button. 
Selecting that button twice opens the rest of the window ( Figure   13.19   ).  

 The center panel of the window shows the results of the curve fi t and offers the 
option of saving those results into the workspace. The right-hand panel allows you 
to select  x -values and calculate  y -values based on the equation displayed in the 
center panel. 

 In addition to the basic fi tting window, you can access the data statistics window 
( Figure   13.20   ) from the fi gure menu bar. Select  Tools: Data Statistics  from the 
fi gure window. The data statistics window allows you to calculate statistical functions 
such as the mean and standard deviation interactively, based on the data in the 
 fi gure, and allows you to save the results to the workspace.   
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 Figure 13.19 
 Basic fi tting window.       
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  13.3.2   Curve-Fitting Toolbox 

 In addition to the basic fi tting utility, MATLAB ®  contains toolboxes to help you 
perform specialized statistical and data-fi tting operations. In particular, the   curve-
fitting toolbox   contains a graphical user interface (GUI) that allows you to fi t 
curves with more than just polynomials. You must have the curve-fi tting toolbox 
installed in your copy of MATLAB ®  before you can execute the examples that fol-
low. At this time the curve-fi tting toolbox is available as an add-on for the student 
edition of MATLAB ® . 

 Before you access the curve-fi tting toolbox, you’ll need a set of data to analyze. 
We can use the data we’ve used earlier in the chapter:   

x = 0:5;
y = [0,20,60,68,77,110];

 To open the curve-fi tting toolbox, type   

cftool

 This launches the curve-fi tting tool window. Now you’ll need to tell the 
curve-fi tting tool what data to use. Select the   data   button, which will open a 
data window. The data window has access to the workspace and will let you select 
an independent ( x ) and dependent ( y ) variable from a drop-down list (see 
 Figure   13.21   ).  

 In our example, you should choose   x   and   y  , respectively, from the drop-down 
lists. You can assign a data-set name, or MATLAB ®  will assign one for you. Once 
you’ve chosen variables, MATLAB ®  plots the data. At this point, you can close the 
data window. 

 Going back to the curve-fi tting tool window, you now select the   Fitting   but-
ton that offers you choices of fi tting algorithms. Select   New fit  , and select a fi t 

 Figure 13.20 
 Data statistics window.       
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 Figure 13.21 
 The curve-fi tting and data 
windows.       

 Figure 13.22 
 Curve-fi tting tool window.       

type from the   Type of fit   list. You can experiment with fi tting choices to fi nd 
the best one for your graph. We chose an interpolated scheme that forces the plot 
through all the points, and a third-order polynomial. The results are shown in 
 Figure   13.22   .  
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  POPULATION  
 The population of the earth is expanding rapidly (see  Figure   13.23   ), as is the popu-
lation of the United States. MATLAB ®  includes a built-in data fi le, called   census  , 
that contains U.S. census data since 1790. The data fi le contains two variables: 
  cdate  , which contains the census dates; and   pop  , which lists the population in 
 millions. To load the fi le into your workspace, type   

load census

 Use the curve-fi tting toolbox to fi nd an equation that represents the data. 

   1.   State the Problem 
  Find an equation that represents the population growth of the United States.  
  2.   Describe the Input and Output 

    Input    Table of population data  

   Output    Equation representing the data    

  3.   Develop a Hand Example 
  Plot the data by hand.  
  4.   Develop a MATLAB ®  Solution 
  The curve-fi tting toolbox is an interactive utility, activated by typing   

cftool

  which opens the curve-fi tting window. You must have the curve-fi tting toolbox 
installed in your copy of MATLAB ®  for this example to work. Select the data 
button and choose   cdate   as the  x -value and   pop   as the  y -value. After closing 
the data window, select the fi tting button. 
  Since we have always heard that population is growing exponentially, 
experiment with the exponential-fi t options. We also tried the polynomial 
option and chose a third-order (cubic) polynomial. Both approaches produced 
a good fi t, but the polynomial was actually the best. We sent the curve-fi tting 
window graph to a fi gure window and added titles and labels (see  Figure   13.24   ). 

 From the data in the fi tting window, we saw that the sum of the squares of 
the errors (SSE) was larger for the exponential fi t, but that both approaches 
gave  R -values greater than 0.99. (An  R -value of 1 indicates a perfect fi t.) 

 Figure 13.23 
 The earth’s population 
is expanding.       

EXAMPLE 13.5
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 The results for the polynomial were as follows:   

Linear model Poly3:
f(x) = p1*x^3 + p2*x^2 + p3*x + p4
where x is normalized by mean 1890 and std 62.05

Coefficients (with 95% confidence bounds):
p1 = 0.921 (-0.9743, 2.816)
p2 = 25.18 (23.57, 26.79)
p3 = 73.86 (70.33, 77.39)
p4 = 61.74 (59.69, 63.8)

Goodness of fit:
SSE: 149.8
R-square: 0.9988
Adjusted R-square: 0.9986
RMSE: 2.968

 We normalized the  x -values used in the equation for a better fi t by subtracting 
the mean and dividing by the standard deviation:   

x = (cdate-mean(cdate))/std(cdate);

  5.   Test the Solution 
 Compare the fi ts by eye; they both appear to model the data adequately. It is 
important to remember that just because a solution models the data well, it is 
rarely appropriate to extend the solution past the measured data.      
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 U.S. census data 
modeled with an 
exponential fi t and a 
third-order polynomial.       
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  13.4   DIFFERENCES AND NUMERICAL DIFFERENTIATION 

  13.4.1   The Diff Function 

 The derivative of the function    y � f(x)    is a measure of how  y  changes with  x . If you 
can defi ne an equation that relates  x  and  y , you can use the functions contained in 
the symbolic toolbox to fi nd an equation for the derivative. However, if all you have 
are data, you can approximate the derivative by dividing the change in  y  by the 
change in  x : 

   
dy

dx
�

�y

�x
�

y2 � y1

x2 � x1
   

 If we plot the data from Section 13.1 that we’ve used throughout the chapter, 
this approximation of the derivative corresponds to the slope of each of the line 
segments used to connect the data, as shown in  Figure   13.25   .     

 If, for example, these data describe the measured temperature of a reaction 
chamber at different points in time, the slopes denote the cooling rate during each 
time segment. MATLAB ®  has a built-in function called   diff   that will fi nd the dif-
ference between element values in a vector and that can be used to calculate the 
slope of ordered pairs of data. (The   diff   function is an example of an “overloaded” 
function. MATLAB ®  contains a version of   diff   used for symbolic algebra calcula-
tions, and a version that uses discrete data points. The software decides which 
 version is appropriate based on the input you provide.) 

 For example, to fi nd the change in our  x -values, we type   

delta_x = diff(x)

 which, because the  x -values are evenly spaced, returns   

delta_x =
1  1  1  1  1

 KEY IDEA 
 The diff function is used 
both with symbolic 
expressions, where it fi nds 
the derivative, and with 
numeric arrays 
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 Figure 13.25 
 The derivative of a data set 
can be approximated by 
fi nding the slope of a 
straight line connecting 
each data point.       
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 Similarly, the difference in  y -values is   

delta_y = diff(y)
delta_y =

−5 −1 −3 −4 −2

 To fi nd the slope, we just need to divide   delta_y   by   delta_x  :   

slope = delta_y./delta_x
slope =

−5 −1 −3 −4 −2

 or   

slope = diff(y)./diff(x)
slope =

−5 −1 −3 −4 −2

 Notice that the vector returned when you use the   diff   function is one element 
shorter than the input vector, because you are calculating differences. When you 
use the   diff   function to help you calculate slopes, you are calculating the slope 
between values of  x , not at a particular value. If you want to plot these slopes against 
 x , probably the best approach is to create a bar graph, since the rates of change are 
not continuous. The  x -values were adjusted to the average for each line segment:   

x = x(:,1:5)+diff(x)/2;
bar(x,slope)

 The resulting bar graph is shown in  Figure   13.26   .  
 The   diff   function can also be used to approximate a derivative numerically if 

you know the relationship between  x  and  y . For example, if 

   y � x2   
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 Figure 13.26 
 The calculated slopes are 
discontinuous if they are 
based on data. The 
appearance of this graph 
was adjusted with the 
interactive plotting tools.       
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 we could create a set of ordered pairs for any number of  x -values. The more values 
of  x  and  y , the smoother the plot will be. Here are two sets of  x  and  y  vectors that 
were used to create the graph in  Figure   13.27a   :    

x = -2:2
y = x.^2;
big_x = -2:0.1:2;
big_y = big_x.^2;
plot(big_x,big_y,x,y,'-o')

 Both lines in the graph are created by connecting the specifi ed points with 
straight lines; however, the   big_x   and   big_y   values are so close together that the 
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points are used to model 
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graph looks like a continuous curve. The slope of the  x – y  plot was calculated with 
the   diff   function and plotted in  Figure   13.27b   :   

slope5 = diff(y)./diff(x);
x5 = x(:,1:4)+diff(x)./2;
%These values were based on a 5-point model
bar(x5,slope5)

 The bar graph was modifi ed slightly with the use of the interactive plotting 
tools to give the representation shown in  Figure   13.27b   . We can get a smoother 
representation, though still discontinuous, by using more points:   

x = -2:0.5:2;
y = x.^2;
plot(big_x,big_y,x,y,'-o')
slope9 = diff(y)./diff(x);
x9 = x(:,1:8)+diff(x)./2;
%These values were based on a 9-point model
bar(x9,slope9)

 These results are shown in  Figures   13.27c    and    13.27d   . We can use even more points:   

plot(big_x,big_y,'-o')
slope41 = diff(big_y)./diff(big_x);
x41 = big_x(:,1:40)+diff(big_x)./2;     % 41-point model
bar(x41,slope41)

 This code results in an almost smooth representation of the slope as a function 
of  x , as seen in  Figures   13.27e    and    13.27f   .  

  13.4.2   Forward, Backward, and Central Difference Techniques 

 What if you want to approximate the derivative at a point, instead of over a range, as 
discussed earlier? One approach is to use the slope between adjacent points as the 
approximation of the derivative at a single value of  x . 

   a dy

dx
b

i
�

yi�1 � yi

xi�1 � xi
   

 We can accomplish this by using the difference function   

dydx = diff(y)./diff(x)

 and assigning the result as the derivative at the fi rst point in the range. This is called 
a forward difference, since we are approximating the derivative by looking forward 
in the array to the next set of  x  and  y  values. 

 Take for example the sine function, whose analytical derivative is cosine. We 
can compare the forward difference derivative approximation to the analytical solu-
tion with the following code. First create an array of values for the independent 
variable,  x , and for the dependent variable,  y .   

x = linspace(0,pi/2,10)
y = sin(x)

 We know from basic calculus that the derivative of sin( x ) is cos( x ), which is 
expressed as 

   
dy

dx
�  cos(x)   
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 Thus, to fi nd the derivative analytically in MATLAB ®  we use the code   

dydx_analytical=cos(x)

 To approximate the derivative for the fi rst nine values in the  x  array (which has 
a total of 10 values)   

dydx_approx=diff(y)./diff(x)

 It isn’t possible to fi nd an approximation for the derivative at the last point in 
the  x  array using this technique, so we use   NaN   (not a number) as a place holder. 
Notice that in order to make the code more general we’ve defi ned the last element 
number using the   length   function, which in this case returns a value of 10.   

dydx_approx(length(x))=NaN;

 To fi nd the percentage error between this approximation and the analytical 
value we’ll use the following equation: 

   % error �
1actual_value � approximation2

actual_value
� 100   

 which corresponds to the following code.   

error_percentage = (dydx_analytical – dydx_approx)./dydx_
analytical*100;

 Finally, to create an output table so we can evaluate the results, the following 
code can be used.   

table =[x; dydx_analytical;dydx_approx;error_percentage]
disp('Forward Difference Approximation of the derivative of 
sin(x)')
disp(' x dy/dx dy/dx %error')
disp(' cos(x) forward approx.')
fprintf('%8.4f\t%8.4f\t%8.4f\t%8.4f\n',table)

 The resulting table is informative. There are signifi cant errors in the approxi-
mation as the analytical result approaches 0, but the absolute error is fairly small.      

 Forward Difference Approximation of the Derivative of Sin( x )

 x  dy/dx  dy/dx  %error 

    cos(x)    forward 
approximation  

  (actual – est)/
actual *100  

  0.0000    1.0000    0.9949    0.5069  
  0.1745    0.9848    0.9647    2.0418  
  0.3491    0.9397    0.9052    3.6751  
  0.5236    0.8660    0.8181    5.5325  
  0.6981    0.7660    0.7062    7.8109  
  0.8727    0.6428    0.5728    10.8806  
  1.0472    0.5000    0.4221    15.5836  
  1.2217    0.3420    0.2585    24.4224  
  1.3963    0.1736    0.0870    49.8727  
  1.5708    0.0000    NaN    NaN  
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 Notice that there is no approximation of the derivative for the last value of  x , so 
(in the code) a value of   NaN   (not a number) was added. We repeated the calcula-
tions with 20 values and plotted the results for both 10 values and 20 values in 
 Figure   13.28   .  

 Clearly, we can do a better job of approximating the derivative by specifying 
more values of  x  (effectively making the points closer together). 

 The backwards difference is very similar. Instead of assigning the approxima-
tion of the derivative to the fi rst value in a range, it is assigned to the last value. 

   a dy

dx
b

i
�

yi � yi�1

xi � xi�1
   

 To solve this problem in MATLAB ® , we can use the   diff   function again. 
Similarly to the fi rst example, a value of   NaN   was added to the   dydx_approx   
matrix, but this time it is the fi rst value, not the last.   

%% Backward difference
x=linspace(0,pi/2,10);
y=sin(x);
dydx_analytical=cos(x);
dydx_approxb=diff(y)./diff(x);
dydx_approxb=[NaN,dydx_approxb];
error_percentageb = (dydx_analytical - dydx_approxb)./dydx_
analytical*100;

Calculation of the Derivative of sin(x)
Using the Forward Difference Technique
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 Figure 13.28 
 A comparison of the 
derivative approximation 
of sin( x ), based on the 
number of points used.       
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table =[x; dydx_analytical;dydx_approxb;error_percentageb]
disp('Backward Difference Approximation of the derivative of 
sin(x)')
disp(' x dy/dx dy/dx %error')
disp(' cos(x) backward approximation')
fprintf('%8.4f\t%8.4f\t%8.4f\t%8.4f\n',table)

 The resulting table is      

 Backward Difference Approximation of the Derivative of Sin(x) 

 x  dy/dx  dy/dx  %error 

    cos(x)    backward 
approximation  

  (actual – est)/actual *100  

  0.0000    1.0000    NaN    NaN  
  0.1745    0.9848    0.9949    �1.0279  
  0.3491    0.9397    0.9647    �2.6613  
  0.5236    0.8660    0.9052    �4.5186  
  0.6981    0.7660    0.8181    �6.7970  
  0.8727    0.6428    0.7062    �9.8667  
  1.0472    0.5000    0.5728    �14.5697  
  1.2217    0.3420    0.4221    �23.4085  
  1.3963    0.1736    0.2585    �48.8588  
  1.5708    0.0000    0.0870     �142155539756746180.0000  

 The absolute value of the error resulting from a forward difference technique 
versus a backward difference technique is very similar. (The large error for the fi nal 
table entry in the backward difference table is due to the division by 0.) We can get 
closer by using a central difference technique, that looks both forward and back-
ward, and therefore is centered on the actual point of interest. The approximation 
is therefore 

   a dy

dx
b

i
�

yi�1 � yi�1

xi�1 � xi�1
   

 One downside of using this technique is that it won’t work for either the fi rst or 
last value in the array. 

 MATLAB ®  includes a function,   gradient  , which approximates the derivative 
using a forward difference technique for the fi rst point in an array, the backward 
difference for the last point in an array, and a centered difference for the remain-
der of the points. It requires two inputs, the  y  and  x  array   

g = gradient(y,x)

 and returns the derivative approximation. If you don’t enter an  x  array, the pro-
gram assumes the points are evenly spaced with a step size of 1. The results for all 
three approaches are shown in  Figure   13.29.     

 The   gradient   function can also be used to approximate partial derivatives 
when used with two-dimensional arrays. Refer to the MATLAB ®  documentation for 
examples. 
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   1.    Consider the following equation: 

   y � x3 � 2x2 � x � 3   

  Defi ne an  x  vector from    � 5    to    � 5,    and use it together with the   diff   
function to approximate the derivative of  y  with respect to  x , using the forward 
difference approach found analytically, the derivative is 

   
dy

dx
� y� � 3x2 � 4x � 1   

  Evaluate this function, using your previously defi ned  x  vector. How do your 
results differ?   

   2.    Repeat Exercise 1 for the following functions and their derivatives:        
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 Figure 13.29 
 A superior approximation 
of the derivative is 
obtained using the 
centered difference 
approach, implemented in 
the   gradient   function.       

  PRACTICE EXERCISES 13.4 

 Function  Derivative 

    y � sin1x2    
    
dy
dx

� cos1x2    
    y � x5 � 1        

dy
dx

� 5x4    

    y � 5xex        
dy
dx

� 5ex � 5xex    
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   3.    Use the   gradient   function to fi nd the value of the derivatives in the previous 
problems.   

   4.    Plot your results and compare the two approaches. Recall that the forward 
difference approach will provide one fewer values than the length of the  x  array. 
Be sure to pad the result array with a fi nal value of   NaN   to make plotting easier.      

  13.5   NUMERICAL INTEGRATION 

 An integral is often thought of as the area under a curve. Consider again our sam-
ple data, plotted in  Figure   13.30   . The area under the curve can be found by divid-
ing the area into rectangles and then summing the contributions from all the 
rectangles:  

   A � a
n�1

i�1

1xi�1 � xi2 1yi�1 � yi2 >2   

 The MATLAB ®  commands to calculate this area are   

avg_y = y(1:5)+diff(y)/2;
sum(diff(x).*avg_y)

 This is called the trapezoid rule, since the rectangles have the same area as a trap-
ezoid drawn between adjacent elements, as shown in  Figure   13.31   . MATLAB ®  includes 
a built-in function,   trapz  , which gives the same result, and which uses the syntax   

trapz(x,y)

 We can approximate the area under a curve defi ned by a function instead of 
data by creating a set of ordered  x–y  pairs. Better approximations are found as we 
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 The area under a curve 
can be approximated with 
the trapezoid rule.       

These areas are equal

 Figure 13.31 
 The area of a trapezoid 
can be modeled with a 
rectangle.       
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increase the number of elements in our  x  and  y  vectors. For example, to fi nd the 
area under the function 

   y � f1x2 � x2   

 from 0 to 1, we would defi ne a vector of 11  x -values and calculate the corresponding 
 y -values:   

x = 0:0.1:1;
y = x.^2;

 The calculated values are plotted in  Figure   13.32    and are used to fi nd the area 
under the curve:       

trapz(x,y)

 This result gives us an approximation of the area under the function:   

ans =
0.3350

 The preceding answer corresponds to an approximation of the integral from 
   x � 0    to    x � 1,    or 

   L
1

0
x2 dx   

 MATLAB ®  includes two built-in functions,   quad   and   quadl  , which will calculate 
the integral of a function without requiring the user to specify how the rectangles 
shown in  Figure   13.32    are defi ned. The two functions differ in the numerical tech-
nique used. Functions with singularities may be solved with one approach or the other, 
depending on the situation. The   quad   function uses adaptive Simpson quadrature:      

quad('x.^2',0,1)
ans =

0.3333
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 The integral of a function 
can be estimated with the 
trapezoid rule.       

 KEY IDEA 
 Use  trapz  for ordered 
pairs of data. Use  quad  or 
 quadl  for functions 
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 The   quadl   function uses adaptive Lobatto quadrature:   

quadl('x.^2',0,1)
ans =

0.3333

  HINT    
 The   quadl   function ends with the letter “l,” not the number “1.” It may be 
hard to tell the difference, depending on the font you are using. 
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 Figure 13.33 
 The integral of a function between two points can be thought of as the area under the curve. These graphs were 
created using   fplot   with a function handle representing a third-order polynomial.       

 Both functions require the user to enter a function in the fi rst fi eld. This func-
tion can be called out explicitly as a character string, as shown, or can be defi ned in 
an M-fi le or as an anonymous function. The last two fi elds in the function defi ne 
the limits of integration, in this case from 0 to 1. Both techniques aim at returning 
results within an error of    1 � 10�6.    

 Here’s another example, using a function handle and an anonymous function, 
instead of defi ning the function inside single quotes. First we’ll defi ne an anony-
mous function for a third-order polynomial.   

fun_handle = @(x) -x.^3+20*x.^2 -5

 Now let’s plot the function, to see how it behaves. The easiest approach is to use 
  fplot  , since it also accepts a function handle:   

fplot(fun_handle,[-5,25])

 The resulting plot is shown in  Figure   13.33a   . The integral of this function  

   L
25

�5
-x3 � 20x2 � 5   

 is the area under the curve, shown in  Figure   13.33b   .  
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 Finally, to evaluate the integral we’ll use the   quad   function, with the function 
handle as input:   

quad(fun_handle,0,25)
ans =

6.3854e+003

 You can fi nd out more about how these techniques work by consulting a numer-
ical methods textbook, such as John H. Mathews and Kurtis D. Fink,  Numerical 
Methods Using MATLAB , 4th ed. (Upper Saddle River, NJ: Pearson, 2004). 

 Function  Integral 

    y � sin1x2    
    L

b

a
sin1x2 dx � cos1x2 �ba � cos1b2 � cos1a2    

    y � x5 � 1    
    L

b

a
1x5 � 12dx � a x6

6
� xb ` b

a
� ab6 � a6

6
� 1b � a2 b     

    y � 5x*ex    
    L

b

a
15ex2dx � 1-5ex � 5xex2 �ba �     

      1 � 51eb � ea2 � 51beb � aea22    

  PRACTICE EXERCISES 13.5 

   1.    Consider the following equation: 

   y � x3 � 2x2 � x � 3   

   (a)   Use the   trapz   function to estimate the integral of  y  with respect to  x , 
evaluated from �1 to 1. Use 11 values of  x , and calculate the correspond-
ing values of  y  as input to the  trapz  function.  

  (b)   Use the   quad   and   quadl   functions to fi nd the integral of  y  with respect to 
 x , evaluated from    -1    to 1.  

  (c)   Compare your results with the values found by using the symbolic toolbox 
function   int   and the following analytical solution (remember that the 
  quad   and   quadl   functions take input expressed with array operators such 
as  .*  or  .^ , but that the   int   function takes a symbolic representation that 
does not use these operators): 

   L
b

a
1x3 � 2x2 � x � 32 dx �    

   a x4

4
�

2x3

3
�

x2

2
� 3xb ` b

a
�    

   
1
4
1b4 � a42 �

2
3
1b3 � a32 �

1
2
1b2 � a22 � 31b � a2       

   2.    Repeat Exercise 1 for the following functions:         
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  CALCULATING MOVING BOUNDARY WORK 
 In this example we’ll use MATLAB ® ’s numeric integration techniques—both the 
  quad   function and the   quadl   function—to fi nd the work produced in a piston– 
cylinder device by solving the equation 

   W �LPdV    

 based on the assumption that 

   PV � nRT    

 where 

      P � pressure,    kPa,  
     V � volume, m3,     
     n � number    of moles, kmol,  
     R � universal    gas constant,    8.314 kPa m3>kmol K,    and  
     T � temperature,    K.    

 We also assume that (1) the piston contains 1 mol of gas at 300 K and (2) the 
temperature stays constant during the process. 

   1.   State the Problem 
  Find the work produced by the piston–cylinder device shown in  Figure   13.34   . 

  2.   Describe the Input and Output 

     Input  
    T � 300 K   
    n � 1 kmol   
    R � 8.314 kJ>kmol K   

    
V1 � 1 m3

V2 � 5 m3    } limits of integration

    Output    Work done by the piston–cylinder device    

  3.   Develop a Hand Example 
  Solving the ideal gas law 

   PV � nRT    

  EXAMPLE 13.6

V  1 m3

V  5 m3

 Figure 13.34 
 A piston–cylinder 
device.       
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 or 

   P � nRT>V    

 for  P  and performing the integration gives 

   W � L
nRT

V
dV � nRT L

dV
V

� nRT lnaV2

V1
b    

 Substituting in the values, we fi nd that 

   W � 1 kmol �  8.314 kJ >kmol K �  300 K �  lnaV2

V1
b    

 Since the integration limits are    V2 � 5 m3    and    V1 � 1 m3,    the work becomes 

W � 4014 kJ

 Because the work is positive, it is produced by (and not on) the system.  
  4.   Develop a MATLAB ®  Solution   

%Example 13.6
%Calculating boundary work, using MATLAB®'s quadrature
%functions
clear, clc

%Define constants
n = 1; % number of moles of gas
R = 8.314; % universal gas constant
T = 300; % Temperature, in K

%Define an anonymous function for P
P = @(V) n*R*T./V;

% Use quad to evaluate the integral
quad(P,1,5)
%Use quadl to evaluate the integral
quadl(P,1,5)

which returns the following results in the command window
ans =

4.0143e+003
ans =

4.0143e+003

 Notice that in this solution we defi ned an anonymous function for   P  , and used 
the function handle as input to the numerical integration functions . We could 
just as easily have defi ned the function by using a character string inside the 
  quad   and   quadl   functions. However, in that case we would have had to replace 
the variables with numerical values:   

quad('1*8.314*300./V',1,5)
ans =

4.0143e+003

 The function could also have been defi ned in an M-fi le.  
  5.   Test the Solution 

 We compare the results with our hand solution. The results are the same. It also helps 
to obtain a solution from the symbolic toolbox. Why do we need both kinds of 
MATLAB ®  solution? Because some problems cannot be solved with MATLAB ® ’s sym-
bolic tools, and others (those with singularities) are ill suited to a numerical approach.    
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  13.6   SOLVING DIFFERENTIAL EQUATIONS NUMERICALLY 

 MATLAB ®  includes a number of functions that solve ordinary differential equa-
tions of the form 

   
dy

dt
� f1t, y2   

 numerically. In order to solve higher-order differential equations (and systems of 
differential equations) they must be reformulated into a system of fi rst-order expres-
sions. This section outlines the major features of the ordinary differential equation 
solver functions. For more information, consult the   help   feature. 

 Not every differential equation can be solved by the same technique, so 
MATLAB ®  includes a wide variety of differential equation solvers ( Table   13.6   ). 
However, all of these solvers have the same format. This makes it easy to try differ-
ent techniques by just changing the function name.  

 Each solver requires the following three inputs as a minimum: 

   •   A function handle to a function that describes the fi rst-order differential equa-
tion or system of differential equations in terms of  t  and  y   

  •   The time span of interest  
  •   An initial condition for each equation in the system   

 The solvers all return an array of  t-  and  y -values:      

[t,y] = odesolver(function_handle,[initial_time, final_time], 
 [initial_cond_array])

 If you don’t specify the resulting arrays   [t,y]  , the functions create a plot of the 
results. 

  13.6.1   Function Handle Input 

 As we’ve discussed before, a function handle is a “nickname” for a function. It can refer 
to either a standard MATLAB ®  function, stored as an M-fi le, or an anonymous MATLAB ®  
function. Recall that the differential equations we’re discussing are of the form 

   
dy

dt
� f1t, y2   

 so the function handle is equivalent to d y/ d t . 
 Here’s an example of an anonymous function for a single simple differential 

equation:   

dydt = @(t,y) 2*t corresponds to
dy

dt
� 2t

 Although this particular function doesn’t use a value of  y  in the result (2 t ),  y  still 
needs to be part of the input. 

 If you want to specify a system of equations, it is probably easier to defi ne a 
 function M-fi le. The output of the function must be a column vector of fi rst-derivative 
values, as in   

function dy=twofuns(t,y)
dy(1) = y(2);
dy(2) = -y(1);
dy=[dy(1); dy(2)];

 KEY IDEA 
 MATLAB ®  includes a large 
family of differential 
equation solvers 
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 Table 13.6   MATLAB ® ’s Differential Equation Solvers 

 Ordinary Differential 
Equation Solver 
Function 

 Type of Problems 
Likely to be Solved 
with This Technique 

 Numerical 
Solution 
Method  Comments 

  ode45   nonstiff differential 
equations 

 Runge–Kutta  Best choice for a 
fi rst-guess technique if 
you do not know much 
about the function. 

       Uses an explicit Runge–
Kutta (4, 5) formula 
called the Dormand–
Prince pair. 

  ode23   nonstiff differential 
equations 

 Runge–Kutta  This technique uses an 
explicit Runge–Kutta 
(2, 3) pair of Bogacki 
and Shampine. If the 
function is “mildly 
stiff,” this maybe a 
better approach than 
  ode45  . 

  ode113   nonstiff differential 
equations 

 Adams  Unlike   ode45   and 
ode23  , which are 
single-step solvers, this 
technique is a 
multistep solver. 

  ode15s   stiff differential equation 
and differential 
algebraic equations 

 NDFs (BDFs)  Uses numerical 
differentiation formulas 
(NDFs) or backward 
differentiation formulas 
(BDFs). It is diffi cult to 
predict which 
technique will work 
best on a stiff 
differential equation. 

  ode23s   stiff differential 
equations 

 Rosenbrock  Modifi ed second-order 
Rosenbock 
formulation. 

  ode23t   moderately stiff 
differential equations 
and differential 
algebraic equations 

 trapezoid rule  Useful if you need a 
solution without 
numerical damping. 

  ode23tb   stiff differential 
equations 

 TR–BDF2  This solver uses an 
implicit Runge–Kutta 
formula with the 
trapezoid rule (TR) 
and a second-order 
backward differen-
tiation formula (BDF2). 

  ode15i   fully implicit differential 
equations 

 BDF  This solver uses a 
backward difference 
formula (BDF) to solve 
implicit differential 
equations of the form 
   f1y, y�, t2 � 0.    
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 This function represents the system 

    
dy

dt
� x    

    
dx
dt

� -y   

 which could also be expressed in a more compact notation as 

    y�1 � y2    

    y�2 � -y1   

 where the prime indicates the derivative with respect to time, and the functions 
with respect to time are    y1, y2,    and so on. In this notation, the second derivative is 
equal to    y�    and the third derivative is    y��:    

   y� �
dy

dt
, y� �

d 2y

dt2 , y�� �
d3y

dt3    

  13.6.2   Solving the Problem 

 Both the time span of interest and the initial conditions for each equation are 
entered as vectors into the solver equations, along with the function handle. To 
demonstrate, let’s solve the equation 

   
dy

dt
� 2   t

 We created an anonymous function for this ordinary differential equation in 
the previous section and called it   dydt  . We’ll evaluate  y  from    -1    to 1 and specify 
the initial condition as 

   y1-12 � 1   

 If you don’t know how your equation or system of equations behaves, your fi rst 
try should be   ode45  :   

[t,y] = ode45(dydt,[-1,1],1)

 This command returns an array of   t  -values and a corresponding array of   y  -values. 
You can either plot these yourself or allow the solver function to plot them if you 
don’t specify the output array:   

ode45(dydt,[-1,1],1)

 The results are shown in  Figure   13.35    and are consistent with the analytical 
solution, which is  

   y � t2   

 Note that the fi rst derivative of this function is 2 t  and that    y � 1    when    t � -1.    
 When the input function or system of functions is stored in an M-fi le, the syntax 

is slightly different. The handle for an existing M-fi le is defi ned as   @m_file_name  . 
To solve the system of equations described in   twofun   (from the previous section) 
we use the command   

ode45(@twofun,[-1,1],[1,1])
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 We could also assign the M-fi le a function handle to the M-fi le such as   

some_fun = @twofun

 and use it as input to the differential equation solver   

ode45(some_fun,[-1,1],[1,1])

 The time span of interest is from    -1    to 1, and the initial conditions are both 1. 
Notice that there is one initial condition for each equation in the system. The 
results are shown in  Figure   13.36   .   

  13.6.3   Solving Higher-Order Differential Equations 

 The ode series of functions (such as   ode45   or   ode23  ) is used to solve either a sin-
gle fi rst-order differential equation, or a system of fi rst-order differential equations. 
But what if you need to solve a higher-order problem? Fortunately a higher-order 
differential equation can be expressed as a series of equations by making some sim-
ple substitutions. Consider the following equation: 

   
d2y

dt2
�

dy

dt
� y � t    

1 0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Solution of dy/dt  2 * t

time

y

 Figure 13.35 
 This fi gure was generated 
automatically by the ode45   
function. The title and 
labels were added in the 
usual way.       
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time
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an
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 Figure 13.36 
 This system of equations 
was solved with   ode45  . 
The title, labels, and legend 
were added in the usual 
way.       
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 We can reformulate it into a system of equations by introducing a new variable, 
z. Let 

   z �
dy

dt
   

 It’s then easy to see that 

   
dz
dt

�
d2y

dt2
   

 Substituting into the original equation we get 

   
dz
dt

�
dy

dt
� y � t,   

 which is a fi rst-order differential equation. Effectively we’ve replaced 

   
d2y

dt2
�

dy

dt
� y � t    

 with the following two equations, which have been rearranged to solve for the fi rst 
derivative of our two dependent variables,  y  and  z  

   
dy

dt
� z   

 and 

   
dz
dt

� y � t �
dy

dt
   

 Now all we need to do is create an M-fi le function to use in one of the ode solv-
ers. The function should have two inputs, which are typically called  t  and  y . The 
variable  t  is the independent variable, and the variable  y  is an array of dependent 
variables. In this example  y (1) corresponds to the  y  used in the hand formulation, 
and  y (2) corresponds to  z . The function containing the system of equations should 
look like this:   

function dydt = twoeq(t,y)
dydt(1) = y(2);
dydt(2) = y(1) + t - dydt(1);
dydt = dydt'

 Notice that the function output has been formulated as a column vector, as 
required by the ode solvers. Also recall that the function name is arbitrary. We could 
have called it anything, but   twoeq   is descriptive. 

 Once the system of equations is defi ned in a function M-fi le it is available to use 
as input to an ode solver. For example, if the range of time is defi ned as �1 to �1 
and the initial conditions are defi ned as  y  � 0 and  z  � 0 (which is the same as  y  � 0 
and d y /d t  � 0), then the command becomes   

ode45(@twoeq,[-1,1],[0,0])

 which gives the results shown in  Figure   13.37   . A problem where the starting values 
are known is called an initial value problem.   
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  13.6.4   Boundary Value Problems 

 Reconsider the function from the previous section, which describes a system of two 
ordinary differential equations. What would happen if we didn’t know the initial 
value of d y /d t , but instead knew the value of  y  at both  t  � �1 and  t  � 1? This is 
called a boundary value problem, and can be solved using the   bvp4c   function. 
Similarly to the ode solvers, the   bvp4c   function requires three inputs: 

   •   A function handle to the system of ode’s to be solved.  
  •   A function handle to a function that solves for the residual values of the 

 function.  
  •   A set of guesses for the initial conditions.   

 The fi rst function handle is exactly the same as we used for the ode solver set of 
functions. It should contain the equations for the derivatives of interest and the 
results must be a column vector. 

 To solve the problem a guess is made for the initial value of all the derivatives, 
then the program checks to see how it did by comparing the calculated boundary 
values with the actual values. For example, if: 

  at  t  � �1,  y  � 0 and  

    at  t  � 1,  y  � 3  

 the program would solve the system of equations based upon an initial guess of d y /d t , 
and would then check to see how close the result is at  t  � �1 (i.e., it would check to 
see if  y  = 3). This is accomplished using a boundary condition function where the 
equations are arranged so that if the correct boundary condition is calculated, the 
function values are zero. In the case of our example,   

function residual=bc(y_initial, y_final)
residual(1) = y_initial(1) + 0;

A System of Two ODE’s
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 Figure 13.37 
 A higher-order differential 
equation is solved by 
creating a system of 
equations that represents 
the same information. A 
second-order ODE requires 
two equations, resulting in 
two lines represented in the 
graphical output, one for  y , 
and one for d y /d t.        
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residual(2) = y_final (1) - 3;
residual = residual';

 If this function is executed for values of y_initial � 0 and y_fi nal � 3, the result 
will be a column of zeros. Any other result means that the program has calculated 
the wrong values for   y_initial   and   y_final  , and the guesses for the initial con-
ditions must be updated according to the function’s algorithm, which is a fi nite 
difference strategy. 

 The last input to the   bvp4c   function is a mesh of guesses for the problem solution, 
which are used as the starting point in the solution. MATLAB ®  provides a helper func-
tion,   bvpinit  , to help create this mesh, which is stored as a structure array. It requires 
two inputs; an array of values corresponding to the independent variable (in this case  t ) 
and initial guesses for each of the variables defi ned in the ode system of equations. In 
our case there are two equations, so we’ll need a guess for  y  and d y /d t . The mesh need 
not be particularly fi ne, and the initial guesses need not be very good. For example:   

initial_guess = bvpinit(-1:.5:1, [0, -1])

 specifi es fi ve  t  values from �1 to 1 (�1, �0.5, 0, 0.5, 1) and initial guesses of  y  � 0 
and d y d t  � �1 at all values of  t . 

 Once the function describing the system of ode’s, the function defi ning the 
residuals and the initial guesses created with   bvpinit   have been created, the 
  bvp4c   function can be executed.   

bvp4c(@twoeq, @bc, initial_guess)

 which returns   

ans =
x: [1x9 double]
y: [2x9 double]
yp: [2x9 double] 

  solver: 'bvp4c'

 The result is a structure array, where  x  is the value of the independent variable 
(denoted as  t  in this problem) and where an array of  y  values corresponds to the 
solutions to the system of ode’s. In this case,  y  and d y /d t . 

 To access the array of  x  values simply use the structure syntax,   ans.x  . If we had 
chosen to assign a name such as   solution   to our result instead of defaulting to 
  ans  , the structure would be called   solution  , and the  x  values would be stored in 
  solution.x  . The values of most interest are the  y  values, which can also be 
accessed using structure syntax, such as   solution.y  . To plot the results in a man-
ner similar to that displayed by the odesolvers use the code   

plot(ans.x,ans.y, '-o')

 or, if the results were named   solution     

plot(solution.x, solution.y, '-o'),

 which gives the results shown in  Figure   13.38   . The annotations (titles, legends, etc.) 
were added in the usual way.    

  13.6.5   Partial Differential Equations 

 MATLAB ®  also includes a limited partial differential equation solver,   pdepe  . For 
more information, consult the MATLAB ®  help function.     
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 Tables of data are useful for summarizing technical information. However, if you 
need a value that is not included in the table, you must approximate that value by 
using some sort of interpolation technique. MATLAB ®  includes such a technique, 
called   interp1  . This function requires three inputs: a set of  x -values, a correspond-
ing set of  y -values, and a set of  x -values for which you would like to  estimate   y -values. 
The function defaults to a linear interpolation technique, which assumes that you 
can approximate these intermediate  y -values as a linear function of  x  that is, 

y � f1x2 � ax � b

 A different linear function is found for each set of two data points, ensuring 
that the line approximating the data always passes through the tabulated points. 

 The   interp1   function can also model the data by using higher-order approxi-
mations, the most common of which is the cubic spline. The approximation tech-
nique is specifi ed as a character string in a fourth optional fi eld of the   interp1   
function. If it’s not specifi ed, the function defaults to linear interpolation. An exam-
ple of the syntax is   

new_y = interp1(tabulated_x, tabulated_y, new_x, 'spline')

 In addition to the   interp1   function, MATLAB ®  includes a two-dimensional 
interpolation function called   interp2  , a three-dimensional interpolation function 
called   interp3  , and a multidimensional interpolation function called   interpn  . 

 Curve-fi tting routines are similar to interpolation techniques. However, instead 
of connecting data points, they look for an equation that models the data as accu-
rately as possible. Once you have an equation, you can calculate the corresponding 

 Figure 13.38 
 A boundary value problem 
solved using   bvp4c.         

    SUMMARY 
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values of  y . The curve that is modeled does not necessarily pass through the meas-
ured data points. MATLAB ® ’s curve-fi tting function is called   polyfit   and models 
the data as a polynomial by means of a least-squares regression technique. The 
function returns the coeffi cients of the polynomial equation of the form 

y � a0x
n � a1x

n�1 � a2x
n�2 � ... � an�1x � an

 These coefficients can be used to create the appropriate expression in 
MATLAB ® , or they can be used as the input to the   polyval   function to calculate 
values of  y  at any value of  x . For example, the following statements fi nd the coeffi -
cients of a second-order polynomial to fi t the input  x–y  data and then calculate new 
values of  y , using the polynomial determined in the fi rst statement:   

coef = polyfit(x,y,2)
y_first_order_fit = polyval(coef,x)

 These two lines of code could be shortened to one line by nesting functions:   

y_first_order_fit = polyval(polyfit(x,y,1),x)

 MATLAB ®  also includes an interactive curve-fi tting capability that allows the 
user to model data not only with polynomials, but with more complicated mathe-
matical functions. The basic curve-fi tting tools can be accessed from the   Tools   
menu in the fi gure window. More extensive tools are available in the curve-fi tting 
toolbox, which is accessed by typing   

cftool

 in the command window. 
 Numerical techniques are used widely in engineering to approximate both 

derivatives and integrals. Derivatives and integrals can also be found with the sym-
bolic toolbox. 

 The MATLAB ®    diff   function fi nds the difference between values in adjacent 
elements of a vector. By using the   diff   function with vectors of  x - and  y -values, we 
can approximate the derivative with the command   

slope = diff(y)./diff(x)

 The more closely spaced the  x  and  y  data are, the closer will be the approxima-
tion of the derivative. 

 The   gradient   function uses a forward difference approach to approxi-
mate the derivative at the fi rst point in an array. It uses a backward difference 
approach for the fi nal value in the array, and a central difference approach for 
the remainder of the points. In general, the central difference approach gives a 
more accurate approximation of the derivative than either of the other two 
techniques. 

 Integration of ordered pairs of data is accomplished using the trapezoidal 
rule, with the   trapz   function. This approach can also be used with functions, by 
creating a set of ordered pairs based on a set of  x  values and the corresponding  y  
values. 

 Integration of functions is accomplished more directly with one of two quadra-
ture functions:   quad   or   quadl  . These functions require the user to input both a 
function and its limits of integration. The function can be represented as a charac-
ter string, such as   

'x.^2-1'
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 as an anonymous function, such as   

my_function = @(x) x.^2-1

 or as an M-fi le function, such as   

function output = my_m_file(x)
output = x.^2-1;

 Any of the three techniques for defi ning the function can be used as input, 
along with the integration limits—for example,   

quad('x.^2-1',1,2)

 Both   quad   and   quadl   attempt to return an answer accurate to within    1 � 10�6.    
The   quad   and   quadl   functions differ only in the technique they use to estimate 
the integral. The   quad   function uses an adaptive Simpson quadrature technique, 
and the   quadl   function uses an adaptive Lobatto quadrature technique. 

 MATLAB ®  includes a series of solver functions for fi rst-order ordinary differen-
tial equations and systems of equations. All of the solver functions use the common 
format   

[t,y] = odesolver(function_handle,[initial_time, final_time], 
[initial_cond_array])

 A good fi rst try is usually the   ode45   solver function, which uses a Runge–Kutta 
technique. Other solver functions have been formulated for stiff differential equa-
tions and implicit formulations. 

 The ode solver functions require that the user know the initial conditions for 
the problem. If, instead, boundary conditions are known at other than the starting 
conditions, the   bvp4   function should be used. 

  MATLAB® SUMMARY 

 The following MATLAB ®  summary lists and briefl y describes all the commands and 
functions that were defi ned in this chapter:   

 Commands and Functions 

  bvp4c   boundary value problem solver for ordinary differential equations 
  cftool   opens the curve-fi tting graphical user interface 
  census   a built-in data set 
  diff   computes the differences between adjacent values in an array if the 

input is an array; fi nds the symbolic derivative if the input is a 
symbolic expression 

  gradient   fi nds the derivative numerically using a combination of forward, 
backward and central difference techniques 

  int   fi nds the symbolic integral 
  interp1   approximates intermediate data, using either the default linear 

interpolation technique or a specifi ed higher-order approach 
  interp2   two-dimensional interpolation function 
  interp3   three-dimensional interpolation function 
  interpn   multidimensional interpolation function 
  ode45   ordinary differential equation solver 
  ode23   ordinary differential equation solver 
  ode113   ordinary differential equation solver 
  ode15s   ordinary differential equation solver 
  ode23s   ordinary differential equation solver 

(continued )



536 Chapter 13 Numerical Techniques

 Commands and Functions 

  ode23t   ordinary differential equation solver 
  ode23tb   ordinary differential equation solver 
  ode15i   ordinary differential equation solver 
  polyfit   computes the coeffi cients of a least-squares polynomial 
  polyval   evaluates a polynomial at a specifi ed value of  x  
  quad   computes the integral under a curve (Simpson) 
  quad1   computes the integral under a curve (Lobatto) 
  trapz   approximates the integral based on ordered pairs of data 

 approximation 
 backward difference 
 boundary value problem 
 central difference 
 cubic equation 
 cubic spline 
 derivative 
 differentiation 

 extrapolation 
 forward difference 
 graphical user interface 
 (GUI) 
 interpolation 
 initial value problems 
 least squares 
 linear interpolation 

 linear regression 
 Lobatto quadrature 
 quadratic equation 
 quadrature 
 Simpson quadrature 
 trapezoidal rule   

         KEY TERMS 

  Interpolation  

   13.1    Consider a gas in a piston–cylinder device in which the temperature is held 
constant. As the volume of the device was changed, the pressure was meas-
ured. The volume and pressure values are reported in the following table:   

 Volume,    m    3  Pressure, kPa, 
when    I � 300 K    

 1  2494 

 2  1247 

 3  831 

 4  623 

 5  499 

 6  416 

   (a)    Use linear interpolation to estimate the pressure when the volume is    3.8 m3.     
  (b)    Use cubic spline interpolation to estimate the pressure when the vol-

ume is    3.8 m3.     
  (c)    Use linear interpolation to estimate the volume if the pressure is meas-

ured to be 1000 kPa.  
  (d)    Use cubic spline interpolation to estimate the volume if the pressure is 

measured to be 1000 kPa.     

  PROBLEMS 



   13.2    Using the data from Problem 13.1 and linear interpolation to create an 
expanded volume–pressure table with volume measurements every    0.2 m3.    
Plot the calculated values on the same graph with the measured data. Show 
the measured data with circles and no line and the calculated values with a 
solid line.   

   13.3    Repeat Problem 13.2, using cubic spline interpolation.   
   13.4    The experiment described in Problem 13.1 was repeated at a higher tem-

perature and the data recorded in the following table:   

 Volume,        m3  Pressure, kPa, at 300 K  Pressure, kPa, at 500 K 

 1  2494  4157 

 2  1247  2078 

 3   831  1386 

 4   623  1039 

 5   499     831 

 6   416    693 

 Use these data to answer the following questions: 

   (a)   Approximate the pressure when the volume is    5.2 m3    for both tempera-
tures (300 K and 500 K). ( Hint : Make a pressure array that contains 
both sets of data; your volume array will need to be    6 � 1,    and your 
pressure array will need to be    6 � 2.   ) Use linear interpolation for your 
calculations.  

  (b)   Repeat your calculations, using cubic spline interpolation.     

   13.5    Use the data in Problem 13.4 to solve the following problems: 

   (a)   Create a new column of pressure values at    T � 400 K,    using linear 
 interpolation.  

  (b)   Create an expanded volume–pressure table with volume measurements 
every    0.2 m3,    with columns corresponding to    T � 300 K, T � 400 K,    
and    T � 500 K.        

   13.6    Use the   interp2   function and the data from Problem 13.4 to approximate 
a pressure value when the volume is    5.2 m3    and the temperature is 425 K.   

  Curve Fitting  

   13.7    Fit the data from Problem 13.1 with fi rst-, second-, third-, and fourth-order 
polynomials, using the   polyfit   function: 

   •   Plot your results on the same graph.  
  •   Plot the actual data as a circle with no line.  
  •   Calculate the values to plot from your polynomial regression results at 

intervals of    0.2 m3.     
  •   Do not show the calculated values on the plot, but do connect the points 

with solid lines.  
  •   Which model seems to do the best job?     

   13.8    The relationship between pressure and volume is not usually modeled by a 
polynomial. Rather, they are inversely related to each other by the ideal gas law, 

   P �
nRT

V
   

Problems 537



538 Chapter 13 Numerical Techniques

   We can plot this relationship as a straight line if we plot  P  on the  y -axis and 
1/ V  on the  x -axis. The slope then becomes the value of  nRT . We can use the 
  polyfit   function to fi nd this slope if we input  P  and 1/ V  to the function:   

polyfit(1./V, P,1)  

   (a)    Assuming that the value of  n  is 1 mol and the value of  R  is 8.314 kPa/kmol 
K , show that the temperature used in the experiment is indeed 300 K .  

  (b)   Create a plot with 1/ V  on the  x -axis and  P  on the  y -axis.     

   13.9    Resistance and current are inversely proportional to each other in electrical 
circuits: 

   I �
V
R

   

  Consider the following data collected from an electrical circuit to which an 
unknown constant voltage has been applied ( Figure   P13.9   ):   

 Resistance, ohms  Measured Current, amps 

  10  11.11 

  15   8.04 

  25   6.03 

  40   2.77 

  65   1.97 

 100   1.51 

   (a)   Plot resistance ( R ) on the  x -axis and measured current ( I  ) on the  y -axis.  
  (b)   Create another plot with 1/ R  on the  x -axis and  I  on the  y -axis.  
  (c)    Use   polyfit   to calculate the coeffi cients of the straight line shown in 

your plot in part (b). The slope of your line corresponds to the applied 
voltage.  

  (d)    Use   polyval   to fi nd calculated values of current ( I  ) based on the resis-
tors used. Plot your results in a new fi gure, along with the measured data.     

   13.10    Many physical processes can be modeled by an exponential equation. For 
example, chemical reaction rates depend on a reaction-rate constant that is 
a function of temperature and activation energy: 

   k � k0e
�Q >RT    

 In this equation, 

      R � universal    gas constant, 8.314 kJ/kmol K,  

     Q � activation    energy, in kJ/kmol,  

     T � temperature,    in K, and  

     k0 � constant    whose units depend on characteristics of the reaction.    
        One possibility is    s�1.      

  One approach to fi nding the values of    k0    and  Q  from experimental data is to 
plot the natural logarithm of  k  on the  y -axis and 1/ T  on the  x -axis. This should 
result in a straight line with slope    -Q >R    and intercept    ln1k02   —that is, 

   ln1k2 � ln1k02 �
Q

R
a 1

T
b    

Resistor

I
V

 Figure P13.9 
 An electrical circuit.       



 since the equation now has the form 

   y � ax � b   

 with    y � ln1k2, x � 1>T, a � -Q>R    and    b � ln1k2.    
 Now consider the following data:   

  T , K   k ,    s�1    

  200     1.46 � 10�7    

  400  0.0012 

  600  0.0244 

  800  0.1099 

 1000  0.2710 

   (a)   Plot the data with 1/ T  on the  x -axis and ln( k ) on the  y -axis.  
  (b)    Use the   polyfit   function to fi nd the slope of your graph,    -Q >R,    and 

the intercept,    ln1k02.     
  (c)   Calculate the value of  Q .  
  (d)   Calculate the value of    k0.        

   13.11    Electrical power is often modeled as 

   P � I 2 R   

 where 

       P � power,    in watts,  

      I � current,    in amperes, and  

      R � resistance,    in ohms.   

   (a)    Consider the following data and fi nd the value of the resistor in the 
 circuit by modeling the data as a second-order polynomial with the 
  polyfit   function:   

 Power, W  Current, A 

   50,000  100 

  200,000  200 

  450,000  300 

  800,000  400 

 1,250,000  500 

  (b)    Plot the data and use the curve-fi tting tools found in the fi gure window 
to determine the value of  R  by modeling the data as a second-order 
polynomial.     

   13.12    Using a polynomial to model a function can be very useful, but it is always 
dangerous to extrapolate beyond your data. We can demonstrate this pitfall 
by modeling a sine wave as a third-order polynomial. 

   (a)    Defi ne   x = -1:0.1:1 
  (b)   Calculate y = sin(x) 
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  (c)     Use the   polyfit   function to determine the coeffi cients of a third-
order polynomial to model these data.  

  (d)    Use the   polyval   function to calculate new values of  y  (  modeled_y  ) 
based on your polynomial, for your  x  vector from    -1    to 1.  

  (e)    Plot both sets of values on the same graph. How good is the fi t?  
  (f)    Create a new  x  vector,   new_x = -4:0.1:4.    
  (g)    Calculate   new_y values by fi nding   sin(new_x)  .  
  (h)    Extrapolate   new_modeled_y   values by using   polyfit  , the coeffi cient 

vector you found in part (c) to model  x  and  y  between    -1    and 1, and 
the   new_y   values.  

  (i)     Plot both new sets of values on the same graph. How good is the fi t out-
side of the region from    -1    to 1?     

  Approximating Derivatives  

   13.13    Consider the following equation: 

   y � 12x3 � 5x2 � 3   

   (a)    Defi ne an  x  vector from    -5    to    +5,    and use it together with the   diff   
function to approximate the derivative of  y  with respect to  x .  

  (b)   Found analytically, the derivative of  y  with respect to  x  is 

dy

dx
� y� � 36x2 � 10x

 Evaluate this function, using your previously defi ned  x  vector. How do your 
results differ?     

   13.14    One very common use of derivatives is to determine velocities. Consider 
the following data, taken during a car trip from Salt Lake City to 
Denver:   

 Time, hours  Distance, miles 

 0    0 

 1   60 

 2  110 

 3  170 

 4  220 

 5  270 

 6  330 

 7  390 

 8  460 

   (a)   Find the average velocity in mph during each hour of the trip.  
  (b)    Plot these velocities on a bar graph. Edit the graph so that each bar cov-

ers 100% of the distance between entries.     



   13.15    Consider the following data, taken during a car trip from Salt Lake City to 
Los Angeles:   

 Time, hours  Distance, miles 

 0    0 

 1.0   75 

 2.2  145 

 2.9  225 

 4.0  300 

 5.2  380 

 6.0  430 

 6.9  510 

 8.0  580 

 8.7  635 

 9.7  700 

  10  720 

   (a)   Find the average velocity in mph during each segment of the trip.  
  (b)   Plot these velocities against the start time for each segment.  
  (c)    Use the   find   command to determine whether any of the average 

velocities exceeded the speed limit of 75 mph.  
  (d)   Is the overall average above the speed limit?     

   13.16    Consider the following data from a three-stage model rocket launch:   

 Time, seconds  Altitude, meters 

 0  0 

  1.00  107.37 

  2.00  210.00 

  3.00  307.63 

  4.00  400.00 

  5.00  484.60 

  6.00  550.00 

  7.00  583.97 

  8.00  580.00 

  9.00  549.53 

 10.00  570.00 

 11.00  699.18 

 12.00  850.00 

 13.00  927.51 

 14.00  950.00 

 15.00  954.51 

 16.00  940.00 
(continued )
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 Time, seconds  Altitude, meters 

 17.00  910.68 

 18.00  930.00 

 19.00  1041.52 

 20.00  1150.00 

 21.00  1158.24 

 22.00  1100.00 

 23.00  1041.76 

 24.00  1050.00 

   (a)   Create a plot with time on the  x -axis and altitude on the  y -axis.  
  (b)    Use the   diff   function to determine the velocity during each time 

interval, and plot the velocity against the starting time for each interval.  
  (c)    Use the   diff   function again to determine the acceleration for each 

time interval, and plot the acceleration against the starting time for 
each interval.  

  (d)    Estimate the staging times (the time when a burnt-out stage is discarded 
and the next stage ignites) by examining the plots you’ve created.     

  Numerical Integration  

   13.17    Consider the following equation: 

   y � 5x3 � 2x2 � 3   

  Use the   quad   and   quadl   functions to fi nd the integral with respect to  x , 
evaluated from    -1    to 1. Compare your results with the values found with 
the use of the symbolic toolbox function,   int  , and the following analytical 
solution (remember that the   quad   and   quadl   functions take input 
expressed with array operators such as  .*  or  .^ , but the   int   function takes a 
symbolic representation that does not use these operators): 

   L
b

a
15x3 � 2x2 � 32 dx �    

   a5x4

4
�

2x3

3
� 3xb ` b

a
�    

   
5
4
1b4 � a42 �

2
3
1b3 � a32 � 31b � a2     

   13.18    The equation 

   CP � a � bT � cT 2 � dT 3   

  is an empirical polynomial that describes the behavior of the heat capacity 
   CP     as a function of temperature in kelvins. The change in enthalpy (a 
measure of energy) as a gas is heated from    T1    to    T2    is the integral of this 
equation with respect to  T : 

   �h � L
T2

T1

CP dT    



  Find the change in enthalpy of oxygen gas as it is heated from 300 to 1000 K, 
using the MATLAB ®  quadrature functions. The values of  a ,  b ,  c , and  d  for 
oxygen are as follows: 

    a � 25.48

 b � 1.520 � 10�2

 c � -0.7155 � 10�5

 d � 1.312 � 10�9      

   13.19    In some sample problems in this chapter, we explored the equations that 
describe moving boundary work produced by a piston–cylinder device. A 
similar equation describes the work produced as a gas or a liquid fl ows 
through a pump, turbine, or compressor ( Figure   P13.19   ). 
  In this case, there is no moving boundary, but there is shaft work, given by 

   W
#
produced � -L

outlet

inlet
V
#
dP    

  This equation can be integrated if we can fi nd a relationship between    V 
.

    
and  P . For ideal gases, that relationship is 

   V
#
�

#n RT
P

   

 If the process is isothermal, the equation for work becomes 

   W
#

� -n
#
RTL

outlet

inlet

dP
P

   

 where 

            #n � molar    fl ow rate, in kmol/s  

             R � universal    gas constant, 8.314 kJ/kmol K  

             T � temperature,    in K  

              P � pressure,    in kPa  

            W
#

� power,    in kW.   

 Find the power produced in an isothermal gas turbine if 

                                   #n � 0.1 kmol/s

    R � universal gas constant, 8.314 kJ/kmol K

   T � 400 K

 Pinlet � 500 kPa

 Poutlet � 100 kPa.     

  Differential Equations  

   13.20    Solve the following differential equation for values of  t  between 0 and 4, 
with the initial condition of  y  = 1 when  t  = 0, 

   
dy

dt
� sin1t2 � 1   

Gas
Turbine

 Figure P13.19 
 A gas turbine used to 
produce power.       
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   (a)   Analytically or using MATLAB ® ’s symbolic capabilities.  
  (b)   Using the   ode45   function.  
  (c)   Plot your results for both approaches.     

   13.21    Solve the following differential equation for values of  t  between 0 and 1, 
with the initial condition of  y  � 0 when  t  � 0. 

   
dy

dt
� t2 � y     

   13.22    Blasius showed in 1908 that the solution to the incompressible fl ow fi eld in 
a laminar boundary layer on a fl at plate is given by the solution of the fol-
lowing third-order ordinary nonlinear differential equation 

   2
d3f

dh3 � f 
d2f

dh2 � 0   

  Rewrite this equation into a system of three fi rst-order equations, using the 
following substitutions: 

    h1(h) � f    

    h2(h) �
df

dh
   

    h3(h) �
d2f

dh2   

 Solve using the   ode45   function with the following initial conditions: 

    h1(0) � 0    

    h2(0) � 0    

    h3(0) � 0.332         
for h � 0 to 1



14  

INTRODUCTION 

 Some of the basic graphs commonly used in engineering are the workhorse  x–y  
plot, polar plots, and surface plots, as well as some graphing techniques more 
commonly used in business applications, such as pie charts, bar graphs, and histo-
grams. MATLAB ®  gives us signifi cant control over the appearance of these plots 
and lets us manipulate images (such as digital photographs) and create three-
dimensional representations (besides surface plots) of both data and models of 
physical processes.   

     14.1   IMAGES 

 Let us start our exploration of some of MATLAB ® ’s more advanced graphics capabili-
ties by examining how images are handled with the   image   and   imagesc   functions. 
Because MATLAB ®  is already a matrix-manipulation program, it makes sense that 
images are stored as matrices. 

 After reading this chapter, you 
should be able to: 
•     Understand how 

MATLAB ®  handles the 
three different types of 
image fi les  

•     Assign a handle to plots 
and adjust properties, 
using handle graphics  

•     Create an animation by 
either of the two 
MATLAB ®  techniques  

•     Adjust lighting parameters, 
camera locations, and 
transparency values  

•     Use visualization 
 techniques for both scalar 
and vector information in 
three dimensions.     

     Objectives 

 Advanced 
Graphics 

  C H A P T E R
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 We can create a three-dimensional surface plot of the   peaks   function by typing   

surf(peaks)

 We can manipulate the fi gure we have created ( Figure   14.1   ) by using the interac-
tive fi gure-manipulation tools, so that we are looking down from the top ( Figure   14.2   ). 

   An easier way to accomplish the same thing is to use the pseudo color plot:   

pcolor(peaks)

10

Sample Function - Peaks

z-
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y-axis x-axis
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0
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 Figure 14.1 
 The   peaks   function is built 
into MATLAB ®  for use in 
demonstrating graphics 
capabilities. The title and 
axis labels were added in 
the usual way.       

 Figure 14.2 
 A view of the surface plot 
of the   peaks   function 
looking down the  z -axis.       
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 We can also remove the grid lines, which are plotted automatically, by specify-
ing the shading option:   

shading flat 

 The colors in  Figures   14.1    to    14.3    correspond to the values of  z . The large posi-
tive values of  z  are red (if you are looking at the results on the screen and not in this 
book, which, of course, is black and white), and the large negative values are blue. 
The value of  z  found in the fi rst  z  matrix element,  z (1, 1), is represented in the 
lower left-hand corner of the graph (see  Figure   14.3   , right). 

  Although this strategy for representing data makes sense because of the coordi-
nate system we typically use in graphing, it does not make sense for representing 
images such as photographs. When images are stored in matrices, we usually repre-
sent the data starting in the upper left-hand corner of the image and working across 
and down ( Figure   14.4   , left). In MATLAB ® , two functions used to display images—
  image   and   imagesc  —use this format. The scaled image function (  imagesc  ) uses 
the entire colormap to represent the data, just like the pseudo color plot function 
(  pcolor  ). The results, obtained with 

  imagesc(peaks)

 are shown at the right in  Figure   14.4   . 
 Notice that the image is fl ipped in comparison to the pseudo color plot. Of 

course, in many graphics applications, it doesn’t matter how the data are 
 represented, as long as we understand the convention used. However, a photo-
graph would be upside down in a vertical mirror image—clearly not an accepta-
ble representation. 

z(1,1) z(1,2) z(1,3) … z(1,n)

z(2,1) z(2,2) z(2,3) … z(2,n)

z(3,1) z(3,2) z(3,3) … z(3,n)

z(m,1) z(m,2) z(m,3) … z(m,n)

… … … … …

… … … … …

… … … … …

x-axis

y-
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 Figure 14.3 
 A pseudo color plot (left) is the same thing as the view looking straight down at a surface plot. Pseudo color plots organize the 
data on the basis of the right-hand rule, starting at the (0, 0) position on the graph (right).       
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  14.1.1   Image Types 

 MATLAB ®  recognizes three different techniques for storing and representing 
images:   

   Intensity (or gray scale) images  

  Indexed images  

  RGB (or true color) images   

   Intensity Images 
 We used an intensity image to create the representation of the peaks function 
( Figure   14.4   ) with the scaled image function (  imagesc  ). In this approach, the 
colors in the image are determined by a colormap. The values stored in the image 
matrix are scaled, and the values are correlated with a known map. (The   jet 
colormap   is the default.) This approach works well when the parameter being 
displayed does not correlate with an actual color. For example, the   peaks   function 
is often compared to a mountain and valley range—but what elevation is the color 
red? It’s an arbitrary choice based partially on aesthetics, but colormaps can also be 
used to enhance features of interest in the image. 

 Consider this example: X-ray images traditionally were produced by exposing 
photographic fi lm to X-ray radiation. Today many X-rays are processed as digital 
images and stored in a data fi le—no fi lm is involved. We can manipulate that fi le how-
ever we want, because the intensity of X-ray radiation does not correspond to a particu-
lar color. 

z(m,1) z(m,2) z(m,3) … z(m,n)

… … … ……

… … … … …

z(1,1) z(1,2) z(1,3) … z(1,n)

… … … … …

… … … … …

… … … … …

x-axis

y-
ax

is

x-axis

y-
ax

is

Scaled Image Plot - Peaks
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 Figure 14.4 
T he   peaks   function rendered with the   imagesc   function. Left: images are usually represented starting in the upper left-hand 
corner and working across and down, the way we read a book. Right: the   pcolor   plot and the   imagesc   plot are vertical 
mirror images of each other.       

KEY IDEA
 Two functions are used to 
display images,   imagesc   
and   image   
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 MATLAB ®  includes a sample fi le that is a digital X-ray photograph of a spine, 
suitable for display with the use of the scaled image function. First you’ll need to 
load the fi le:   

load spine 

 The loaded fi le includes a number of matrices (see the workspace window); the 
intensity matrix is named  X . Thus,   

imagesc(X)

 produces an image whose colors are determined by the current   colormap  , which 
defaults to   jet  . A representation that looks more like a traditional X-ray is returned 
if we use the   bone   colormap:   

colormap(bone)

 This image is shown in  Figure   14.5   . 
  The spine fi le also includes a custom colormap, which happens to correspond 

to the   bone   colormap. This array is called   map  . Custom colormaps are not neces-
sary to display intensity images, and   

colormap(map)

 results in the same image we created earlier. 
 Although it is convenient to think of image data as a matrix, such data are not 

necessarily stored that way in the standard graphics formats. MATLAB ®  includes a 
function,   imfinfo  , that will read standard graphics fi les and determine what type 
of data are contained in the fi le. Consider the fi le mimas.jpg, which was down-
loaded off the Internet from a NASA website ( http://saturn.jpl.nasa.gov ). The 
command   

imfinfo('mimas.jpg')

100 200 300 400
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150

200

250

300

350

 Figure 14.5 
 Digital X-ray displayed with 
the use of the   imagesc   
function and the   bone   
colormap.       

http://saturn.jpl.nasa.gov
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 returns the following information (be sure to list the fi le name in single quotes—
that is, as a string; also, notice that the image is   'gray scale' —another term for 
an intensity image):

ans = 

Filename: 'mimas.jpg' 

FileModDate: '06-Aug-2005 08:52:18' 

FileSize: 23459 

Format: 'jpg' 

FormatVersion: " 

Width: 500 

Height: 525 

BitDepth: 8 

ColorType: 'gray scale' 

FormatSignature: " 

NumberOfSamples: 1 

CodingMethod: 'Huffman' 

CodingProcess: 'Sequential' 

Comment: {'Created with The GIMP'} 

 In order to create a MATLAB ®  matrix from this fi le, we use the image read 
function   imread   and assign the results to a variable name, such as X  :   

X = imread('mimas.jpg'); 

 We can then plot the image with the   imagesc   function and   gray   colormap:   

imagesc(X)

colormap(gray)

 The results are shown in  Figure   14.6   a. 

    Indexed Image Function 
 When color is important, one technique for creating an image is called an  indexed 
image . Instead of being a list of intensity values, the matrix is a list of colors. The 
image is created much like a paint-by-number painting. Each element contains a 
number that corresponds to a color. The colors are listed in a separate matrix called 
a colormap, which is an    n �  3    matrix that defi nes  n  different colors by identifying 
the red, green, and blue components of each color. A custom colormap can be cre-
ated for each image, or a built-in colormap could be used. 

 Consider the built-in sample image of a mandrill, obtained with   

load mandrill 

 The fi le includes an indexed matrix named   X   and a colormap named   map  . 
(Check the workspace window to confi rm that these fi les have been loaded; the 
names are commonly used for images saved from a MATLAB ®  program.) The 
  image   function is used to display indexed images:   

image(X)

colormap(map)

 KEY IDEA 
 The color scheme for an 
image is controlled by the 
colormap 
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 MATLAB ®  images adjust to fi ll the fi gure window, so the image may appear 
warped. We can force the correct aspect to be displayed by using the   axis   
 command:   

axis image 

 The results are shown in  Figure   14.7   . 
  The   image   and   imagesc   functions are similar, yet they can give very different 

results. The image of Mimas in  Figure   14.6   b was produced by the   image   function 
instead of the more appropriate   imagesc   function. The   gray   colormap does not 
correspond to the colors stored in the intensity image; the result is the washed-out 
image and lack of contrast. It is important to recognize what kind of fi le you are dis-
playing, so that you can make the optimum choice of how to represent the image. 

(a) Imagesc with Gray Map
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 Figure 14.6 
 (a) Image of mimas, a moon of saturn, displayed by means of the scaled image function,   imagesc  , and a   gray   
colormap. (b) Image displayed with the indexed image function,   image, and a   gray   colormap       .
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 Figure 14.7 
 Left: Mandrill image before 
the custom colormap is 
applied. Right: mandrill 
image with the custom 
colormap.       
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 Files stored in the GIF graphics format are often stored as indexed images. This 
may not be apparent when you use the   imfinfo   function to determine the fi le 
parameters. For example, the image in  Figure   14.8    is part of the clip art included 
with Microsoft Word. The image was copied into the current folder, and   imfinfo   
was used to determine the fi le type:   

imfinfo('drawing.gif')

ans = 

1x4 struct array with fields: 

Filename

FileModDate

FileSize

Format etc.

  The results don’t tell us much, but if you double-click on the fi le name in the 
current folder, the Import Wizard ( Figure   14.9   ) launches and suggests that we cre-
ate two matrices:   cdata   and   colormap  . The   cdata   matrix is an indexed image 
matrix, and   colormap   is the corresponding   colormap  . Actually, the suggested 
name   colormap   is rather strange, because if we use it, it will supersede the   color-
map   function. You’ll need to rename this matrix to something different, such as 
map  , by clicking on the variable name in the import wizard before you actually com-
plete the import process. After importing, you can view the image with the follow-
ing commands.    

image(cdata)

colormap(map)

axis image 

axis off 

 Figure 14.8 
 Clip art stored in the GIF 
fi le format.       

 Figure 14.9 
 The import wizard is used 
to create an indexed image 
matrix and colormap from 
a GIF fi le.       

   HINT    

 A number of sample images are built into MATLAB ®  and stored as indexed 
images. You can access these fi les by typing   

load <imagename>
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  True Color (RGB) Images 
 The third technique for storing image data is in a three-dimensional matrix, 
   m � n � 3.    Recall that a three-dimensional matrix consists of rows, columns, and 
pages. True color image fi les consist of three pages, one for each color intensity, 
red, green, or blue, as shown in  Figure   14.10   .   

   Consider a fi le called   airplanes.jpg. You can copy this or a similar fi le 
(a colored .jpg image) into your current folder to experiment with true color 
images. We can use the   imfinfo   function to determine how the airplanes fi le 
stores the image:   

imfinfo('airplanes.jpg')

ans = 

Filename: 'airplanes.jpg' 

FileModDate: '12-Sep-2005 17:51:48' 

FileSize: 206397 

Format: 'jpg' 

 Some of the available images are   

flujet

durer

detail

mandrill

clown

spine

cape

earth

gatlin

 Each of these image fi les creates a matrix of index values called   X   and a color-
map called   map  . For example, to see the image of the earth, type   

load earth 

image(X)

colormap(map)

 You’ll also need to adjust the aspect ratio of the display and remove the axis 
with the commands   

axis image 

axis off 

blue

rows

columns

pages

green

red

 RGB 
 The primary colors of light 
are red, green, and blue 

 Figure 14.10 
 True color images use a 
multidimensional array to 
represent the color of each 
element.       
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FormatVersion: " 

Width: 1800 

Height: 1200 

BitDepth: 24 

ColorType: 'truecolor' 

FormatSignature: " 

NumberOfSamples: 3 

CodingMethod: 'Huffman' 

CodingProcess: 'Sequential' 

Comment: {} 

 Notice that the color type is   ‘truecolor’   and that the number of samples is 3, 
indicating a page for each color intensity. 

 We can load the image with the   imread   function and display it with the   image
function:   

X = imread('airplanes.jpg'); 

image(X)

axis image 

axis off 

 Notice in the workspace window that   X   is a    1200 � 1800 � 3    matrix—one page 
for each color. We don’t need to load a colormap, because the color-intensity infor-
mation is included in the matrix ( Figure   14.11   ). 

Figure 14.11
True color image of 
airplanes. All of the color 
information is stored in a 
three-dimensional matrix. 
(Picture used with 
permission of Dr. G. Jimmy 
Chen, Salt Lake Community 
College, Department of 
Computer Science.)

EXAMPLE 14.1
  MANDELBROT AND JULIA SETS 
 Benoit Mandelbrot ( Figure   14.12   ) is largely responsible for the current interest in 
fractal geometry. His work built upon concepts developed by the French mathemat-
ician Gaston Julia in his 1919 paper  Mémoire sur l’iteration des fonctions rationelles.  
Advances in Julia’s work had to wait for the development of the computer and com-
puter graphics in particular. In the 1970s, Mandelbrot, then at IBM, revisited and 
expanded upon Julia’s work and actually developed some of the fi rst computer 
graphics programs to display the complicated and beautiful fractal patterns that 
today bear his name. Mandelbrot’s work was recently described in a song by 
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Jonathan Coulton. You can listen to it at  http://www.jonathancoulton.com/song-
details/Mandelbrot%20Set . 

  The Mandelbrot image is created by considering each point in the complex 
plane,    x � yi.    We set    z102 � x � yi      and then iterate according to the following 
strategy: 

    z(0) � x � yi    

    z112 � z1022 � z102    

    z122 � z1122 � z102    

    z132 � z1222 � z102    

    z1n2 � z1n � 122 � z102   
 The series seems either to converge or to head off toward infinity. The 

Mandelbrot set is composed of the points that converge. The beautiful pictures you 
have probably seen were created by counting how many iterations were necessary 
for the  z -value at a particular point to exceed some threshold value, often the square 
root of 5. We assume, though we can’t prove, that if that threshold is reached, the 
series will continue to diverge and eventually approach infi nity. 

   1.   State the Problem 
  Write a MATLAB ®  program to display the Mandelbrot set.  
  2.   Describe the Input and Output 

    Input     We know that the Mandelbrot set lies somewhere in the complex plane 
and that 

   -1.5 … x … 1.0   

   -1.5 … y … 1.5   

 We also know that we can describe each point in the complex plane as 

   z � x � yi      

  3.   Develop a Hand Example 
  Let’s work the fi rst few iterations for a point we hope converges, such as

     (x � -0.5, y � 0):    

    z(0) � -0.5 � 0i    

    z112 � z1022 � z102 � 1-0.522 � 0.5 � 0.25 � 0.5 � -0.25    

    z122 � z1122 � z102 � 1-0.2522 � 0.5 � 0.0625 � 0.5 � -0.4375    

    z132 � z1222 � z102 � 1-0.437522 � 0.5 � 0.1914 � 0.5 � -0.3086   

    z142 � z1322 � z102 � 1-0.308622 � 0.5 � 0.0952 � 0.5 � -0.4048   

  It appears that this sequence is converging to a value around       (As an exercise, 
you could create a MATLAB ®  program to calculate the fi rst 20 terms of the 
series and plot them.)  

  4.   Develop a MATLAB ®  Solution   

%Example 14.1 Mandelbrot Image 

clear, clc 

 Figure 14.12 
 Benoit Mandelbrot.       

Jonathan Coulton. You can listen to it at  http://www.jonathancoulton.com/song-
details/Mandelbrot%20Set .

The Mandelbrot image is created by considering each point in the complex 
plane, x � yi.    We set z102 � x � yi  and then iterate according to the following 
strategy:

z(0) � x � yi

z112 � z1022 � z102
z122 � z1122 � z102
z132 � z1222 � z102
z1n2 � z1n � 122 � z102

The series seems either to converge or to head off toward infinity. The 
Mandelbrot set is composed of the points that converge. The beautiful pictures you 
have probably seen were created by counting how many iterations were necessary 
for the z -value at a particular point to exceed some threshold value, often the square zz
root of 5. We assume, though we can’t prove, that if that threshold is reached, the 
series will continue to diverge and eventually approach infi nity. 

1. State the Problem
Write a MATLAB ® program to display the Mandelbrot set.  

2.   Describe the Input and Output 

Input     We know that the Mandelbrot set lies somewhere in the complex planet
and that 

-1.5 … x … 1.0

-1.5 … y … 1.5

 We also know that we can describe each point in the complex plane as

z � x � yi

3.   Develop a Hand Example 
  Let’s work the fi rst few iterations for a point we hope converges, such as

(x � -0.5, y � 0):

z(0) � -0.5 � 0i

z112 � z1022 � z102 � 1-0.522 � 0.5 � 0.25 � 0.5 � -0.25

z122 � z1122 � z102 � 1-0.2522 � 0.5 � 0.0625 � 0.5 � -0.4375

z132 � z1222 � z102 � 1-0.437522 � 0.5 � 0.1914 � 0.5 � -0.3086

z142 � z1322 � z102 � 1-0.308622 � 0.5 � 0.0952 � 0.5 � -0.4048

It appears that this sequence is converging to a value around       (As an exercise, 
you could create a MATLAB®  program to calculate the fi rst 20 terms of the 
series and plot them.) 

4.   Develop a MATLAB® Solution

%Example 14.1 Mandelbrot Image

clear, clc

 Figure 14.12
 Benoit Mandelbrot.

(continued)

http://www.jonathancoulton.com/songdetails/Mandelbrot%20Set
http://www.jonathancoulton.com/songdetails/Mandelbrot%20Set
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iterations = 80; 

grid_size = 500; 

[x,y] = meshgrid(linspace(-1.5,1.0,grid_size),linspace

 (-1.5,1.5,grid_size)); 

c = x+i*y; 

z = zeros(size(x));            % set the initial matrix to 0 

map = zeros(size(x));          % create a map of all grid 

                               % points equal to 0 

for k = 1:iterations 

z = z.^2 +c; 

a = find(abs(z)>sqrt(5));      %Determine which elements have 

                               %exceeded sqrt(5) 

map(a) = k; 

end

figure(1)

image(map)                  %Create an image 

colormap(jet)

  The image produced is shown in  Figure   14.13   . 
5.   Test the Solution 
  We know that all the elements in the solid colored region of the image (dark 

blue—if you are looking at the image on a computer screen) will be below the 
square root of 5. An alternative way to examine the results is to create an image 
based on those values instead of the number of iterations needed to exceed the 
threshold. We’ll need to multiply each value by a common multiple in order to 
achieve any color variation. (Otherwise the values are too close to each other.) 
The MATLAB ®  code is as follows:   

figure(2)

multiplier = 100; 

map = abs(z)*multiplier; 

image(map)
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 Figure 14.13 
 Mandelbrot image. The 
fi gure was created by 
determining how many 
iterations were required 
for the calculated 
element values to 
exceed the square 
root of 5.       
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  The results are shown in  Figure   14.14   . 
  Now that we’ve created an image of the entire Mandelbrot set, it would be 

interesting to look more closely at some of the structures at the boundary. By 
adding the following lines of code to the program, we can repeatedly zoom in 
on any point in the image:   

cont = 1; 

while(cont==1)

figure(1)

disp('Now let's zoom in') 

disp('Move the cursor to the upper left-hand corner of the 

 area you want to expand') 

[y1,x1] = ginput(1); 

disp('Move to the lower right-hand corner of the area you 

 want to expand') 

[y2,x2] = ginput(1); 

xx1 = x(round(x1),round(y1)); 

yy1 = y(round(x1),round(y1)); 

xx2 = x(round(x2),round(y2)); 

yy2 = y(round(x2),round(y2)); 

%%

[x,y] = meshgrid(linspace(xx1,xx2,grid_size),linspace(yy1, 

 yy2,grid_size)); 

c = x+i*y; 

z = zeros(size(x)); 

map = zeros(size(x)); 

for k = 1:iterations 

  z = z.^2 +c; 

  a = find(abs(z)>sqrt(5)); 

map(a) = k; 

end

image(map)

colormap(jet)
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 Figure 14.14 
 An image based on the 
Mandelbrot set, 
showing how the 
members of the set 
vary. The really 
interesting structure is at 
the boundary of the set.       

(continued)
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again = menu('Do you want to zoom in again? ','Yes','No'); 

switch again 

   case 1 

     cont = 1; 

   case 2 

     cont = 0; 

end

end

  Figure   14.15    shows some of the images created by recalculating with smaller 
and smaller areas. 

 You can experiment with using both the   image   function and the   imagesc
function and observe how the pictures differ. Try some different colormaps as well.   
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 Figure 14.15 
 Images created by zooming in on the Mandelbrot set from a MATLAB ®  program.       

      14.1.2   Reading and Writing Image Files 

 We introduced functions for reading image fi les as we explored the three tech-
niques for storing image information. MATLAB ®  also includes functions to write 
user-created images in any of a variety of formats. In this section, we’ll explore these 
reading and writing functions in more detail. 
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  Reading Image Information 
 Probably the easiest way to read image information into MATLAB ®  is to take advan-
tage of the interactive Import Wizard. In the current folder window, simply double-
click the fi le name of the image to be imported. MATLAB ®  will suggest appropriate 
variable names and will make the matrices available to preview in the edit window 
( Figure   14.9   ). 

 The problem with interactively importing any data is that you can’t include the 
instructions in a MATLAB ®  program—for that, we need to use one of the import 
functions. For most of the standard image formats, such as .jpg or .tif, the   imread   
function described in the preceding section is the appropriate technique. On the 
other hand, if the fi le is a   .mat   or a .dat   fi le, the easiest way to import the data is 
to use the   load   function:   

load <filename> 

 For .mat   fi les, you don’t even need to include the   .mat   extension. However, 
you will need to include the extension for a .dat   fi le:   

load <filename.dat> 

 This is the technique we used to load the built-in image fi les described earlier. 
For example,   

load cape 

 imports the image matrix and colormap into the current folder, and the commands   

image(X)

colormap(map)

axis image 

axis off 

 can then be used to create the picture, shown in  Figure   14.16   . 

    Storing Image Information 
 You can save an image you’ve created in MATLAB ®  the same way you save any 
 fi gure. Select 

File: Save As ...

 Figure 14.16 
 Image created by loading 
a built-in fi le.       
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 and choose the fi le type and the location where you’d like to save the image. For 
example, to save the image of the Mandelbrot set created in  Example   14.1    and 
shown in  Figure   14.13   , you might want to specify an enhanced metafi le (  .emf  ), as 
shown in  Figure   14.17   . 

  You could also save the fi le by using the   imwrite   function. This function accepts 
a number of different inputs, depending on the type of data you would like to store. 

 For example, if you have an intensity array (gray scale) or a true-color array 
(RGB), the   imwrite   function expects input of the form   

imwrite(arrayname,‘filename.format’)

 where 
    arrayname  is the name of the MATLAB ®  array in which the data are stored,  
   fi lename  is the name you want to use to store the data, and  
   format  is the fi le extension, such as jpg or tif.   

 Thus, to store an RGB image in a .jpg fi le named fl owers, the command would be   

imwrite(X,‘flowers.jpg’)

 (Consult the   help   fi les for a list of graphics formats supported by MATLAB ® .) 
 If you have an indexed image (an image with a custom colormap), you’ll need 

to store both the array and the colormap:   

imwrite(arrayname, colormap_name,‘filename.format’) 

 In the case of the Mandelbrot set, we would need to save the array and the 
colormap used to select the colors in the image:   

imwrite(map,jet,‘my_mandelbrot.jpg’)

 Figure 14.17 
 This image of a Mandelbrot 
set is being saved as an 
enhanced metafi le.       
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  14.2   HANDLE GRAPHICS 

 A  handle  is a nickname given to an object in MATLAB ® . A complete description 
of the graphics system used in MATLAB ®  is complicated and beyond the scope 
of this text. (For more details, refer to the MATLAB ®    help   tutorial.) However, 
we’ll give a brief introduction to handle graphics and then illustrate some of its 
uses.   

  MATLAB ®  uses a hierarchical system for creating graphs ( Figure   14.18   ). The 
basic plotting object is the fi gure. The fi gure can contain a number of different 
objects, including a set of axes. Think of the axes as being layered on top of the 
fi gure window. The axes also can contain a number of different objects, including a 
plot such as the one shown in  Figure   14.19   . Again, think of the plot being layered 
on top of the axes. 

   When you use a   plot   function, either from the command window or from an 
M-fi le program, MATLAB ®  automatically creates a fi gure and an appropriate axis, 
and then draws the graph on the axis. MATLAB ®  uses default values for many of the 
plotted object’s properties. For example, the fi rst line drawn is always blue, unless 
the user specifi cally changes it. 

 Handle 
 A nickname 

Figure

AxesUser Interfaces Annotation Axes

Core Objects Group ObjectsPlot Objects

Figure Axis Plot

 Figure 14.19 
 Anatomy of a graph. Left: Figure windows are used for lots of things, including graphical user 
interfaces and plots. In order to create a plot you need a fi gure window. Center: Before you can 
draw a graph in this fi gure window, you’ll need a set of axes to draw on. Right: Once you know 
where the axes are and what the axis properties are (such as the spacing), you can draw the 
graph.       

 Figure 14.18 
 MATLAB ®  uses a 
hierarchical system for 
organizing plotting 
information, as shown in 
this representation from 
Matlab ® ’s help menu.       
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  14.2.1   Plot Handles 

 Assigning a plot a name (called a handle) allows us to easily ask MATLAB ®  to list 
the plotted object’s properties. For example, let’s create the simple plot shown in 
 Figure   14.19    and assign a handle to it:   

x = 1:10; 

y = x.*1.5; 

h = plot(x,y) 

 The variable   h   is the handle for the plot. (We could have chosen any variable 
name.) Now we can use the   get   function to ask MATLAB ®  for the plot properties:   

get(h)

 The function returns a whole list of properties representing the line that was 
drawn in the axes, which were positioned in the fi gure window:   

Color: [0 0 1] 

EraseMode: 'normal' 

LineStyle: '-' 

LineWidth: 0.5000 

Marker: 'none' 

MarkerSize: 6 

MarkerEdgeColor: 'auto' 

MarkerFaceColor: 'none' 

XData: [1 2 3 4 5 6 7 8 9 10] 

YData: [1.5000 3 4.5000 6 7.5000 9 10.5000 12 13.5000 15] 

ZData: [1x0 double] 

.

.

.

 Notice that the color property is listed as [0 0 1]. Colors are described as inten-
sities of each of the primary colors of light: red, green, and blue. The array [0 0 1] 
tells us that there is no red, no green, and 100% blue. If you are looking at this 
graph in MATLAB ® , you should notice that the plotted line is blue. The plot handle 
refers to the line drawn on the axis, which is different from the axis or from the 
fi gure window.  

  14.2.2   Figure Handles 

 We can also specify a handle name for the   fi gure window  . Since we drew this graph 
in the fi gure window named fi gure 1, the command would be   

f_handle = figure(1) 

 Using the   get   command returns similar results:   

get(f_handle)

Alphamap = [ (1 by 64) double array] 

BackingStore = on 

CloseRequestFcn = closereq 
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Color = [0.8 0.8 0.8] 

Colormap = [ (64 by 3) double array] 

CurrentAxes = [150.026] 

CurrentCharacter = 

CurrentObject = [] 

CurrentPoint = [240 245] 

DockControls = on 

DoubleBuffer = on 

FileName = [ (1 by 96) char array] 

.

.

.

 Notice that the properties are different for a fi gure window compared to the 
plotted line. For example, notice the color (which is the window background color) 
is [0.8, 0.8, 0.8], which specifi es equal intensities of red, green, and blue—which 
results in a light gray background. You can change the background color using   

set(f_handle,‘Color’,[0.4,0.4,0.4])

 which results in a darker gray background. 
 If we haven’t specifi ed a handle name, we can ask MATLAB ®  to determine the 

current fi gure with the   gcf   (get current fi gure) command,   

get(gcf)

 which returns the fi gure properties. Thus, using   gcf   and the   set   command we 
could have changed the background color with the following command.   

set(gcf,‘Color’,[0.4,0.4,0.4])

  14.2.3   Axis Handles 

 Just as we can assign a handle to the fi gure window and the plot itself, we can assign 
a handle to the axis by means of the   gca   (get current axis) function:   

h_axis = gca; 

 Using this handle with the   get   command allows us to view the axis properties:   

get(h_axis)

ActivePositionProperty = outerposition 

ALim = [0.1 10] 

ALimMode = auto 

AmbientLightColor = [1 1 1] 

Box = off 

CameraPosition = [-1625.28 -2179.06 34.641] 

CameraPositionMode = auto 

CameraTarget = [201 201 0] 

.

.

.
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  14.2.4   Annotation Axes 

 Besides the three components described in earlier sections, another transparent 
layer is added to the plot. This layer is used to insert annotation objects, such as 
lines, legends, and text boxes into the fi gure.  

  14.2.5   Using Handles to Manipulate Graphics 

 So what can we do with all this information? We can use the   set   function to change 
the object’s properties. The   set   function requires the object handle in the fi rst 
input fi eld and then alternating strings specifying a property name, followed by a 
new value. For example,   

set(h,‘color’,‘red’)

 tells MATLAB ®  to go to the plot we named   h   (not the fi gure, but the actual drawing 
of the line) and change the color to red. If we want to change some of the fi gure 
properties, we can do it the same way, using either the fi gure handle name or the 
  gcf   function. For example, to change the name of fi gure 1, use the command   

set(f_handle,‘name’, ‘My Graph’) 

or

set(gcf,‘name’, ‘My Graph’) 

 You can accomplish the same thing interactively by selecting   View   from the 
fi gure menu bar, and choosing the property editor:   

View: Property Editor 

 You can access all the properties if you choose property inspector from the prop-
erty editor pop-up window ( Figure   14.20   ). Exploring the property inspector window 
is a great way to fi nd out which properties are available for each graphics object. 

 Figure 14.20 
 Interactive property editing.       
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     14.3   ANIMATION 

 There are two techniques for creating an animation in MATLAB ® : 

•      Redrawing and erasing  
•     Creating a movie   

 We use handle graphics in each case to create the animation. 

  14.3.1   Redrawing and Erasing 

 To create an animation by redrawing and erasing, you should fi rst create a plot and 
then adjust the properties of the graph each time through a loop. Consider the fol-
lowing example: We can defi ne a set of parabolas with the following equation: 

   y � kx2 � 2   

 Each value of  k  defi nes a different parabola. We could represent the data with 
a three-dimensional plot; however, another approach would be to create an anima-
tion in which we draw a series of graphs, each with a different value of  k . The code 
to create that animation is:   

clear,clc,clf

x = -10:0.01:10;    % Define the x-values 

k = -1;             % Set an initial value of k 

y = k*x.^2-2;       % Calculate the first set of y-values 

h = plot(x,y);      % Create the figure and assign 

% a handle to the graph 

grid on 

%set(h,‘EraseMode’,‘xor’)  % The animation runs faster if 

                           % you activate this line 

axis([-10,10,-100,100])    % Specify the axes 

while k<1                  % Start a loop 

    k = k + 0.01;          % Increment k 

    y = k*x.^2-2;          % Recalculate y 

    set(h,‘XData’,x,‘YData’,y) % Reassign the x and y 

                               % values used in the graph 

    drawnow             % Redraw the graph now – don’t wait 

                        % until the program finishes running 

end

 In this example, we used handle graphics to redraw just the graph each time 
through the loop, instead of creating a new fi gure window each time. Also, we used 
the   XData   and   YData   objects from the plot. These objects assign the data points 
to be plotted. Using the   set   function allows us to specify new   x-   and y- values and 
to create a different graph every time the   drawnow   function is called. A selection 
of the frames created by the program and used in the animation is shown in 
 Figure   14.21   . 

  In the program, notice the line   

%set(h,‘EraseMode’,‘xor’)
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 If you activate this line by removing the comment operator   (%)  , the program does 
not erase the entire graph each time the graph is redrawn. Only pixels that change 
color are changed. This makes the animation run faster—a characteristic that is impor-
tant when the plot is more complicated than the simple parabola used in this example. 

 Refer to the   help   tutorial for a sample animation modeling Brownian motion.  

  14.3.2   Movies 

 Animating the motion of a line is not computationally intensive, and it’s easy to get 
nice, smooth movement. Consider this code that produces a more complicated sur-
face plot animation:   

clear,clc

x = 0:pi/100:4*pi; 

y = x; 

[X,Y] = meshgrid(x,y); 

z = 3*sin(X)+ cos(Y); 

h = surf(z); 

axis tight 

set(gca,‘nextplot’,‘replacechildren’);

%Tells the program to replace the surface each time, 

%but not the axis 

shading interp 

colormap(jet)

for k = 0:pi/100:2*pi 

  z = (sin(X) + cos(Y)).*sin(k); 
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 Figure 14.21 
 Animation works by 
redrawing the graph 
multiple times.       
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  set(h,‘Zdata’,z) 

  drawnow 

end

 A sample frame from this animation is shown in  Figure   14.22   . 
  If you have a fast computer, the animation may still be smooth. However, on a 

slower computer, you may see jerky motion and pauses while the program creates 
each new plot. To avoid this problem, you can create a program that captures each 
“frame” and then, once all the calculations are done, plays the frames as a movie.   

clear,clc

x = 0:pi/100:4*pi; 

y = x; 

[X,Y] = meshgrid(x,y); 

z = 3*sin(X)+ cos(Y); 

h = surf(z); 

axis tight 

set(gca,‘nextplot’,‘replacechildren’);

shading interp 

colormap(jet)

m = 1; 

for k = 0:pi/100:2*pi 

z = (sin(X) + cos(Y)).*sin(k); 

set(h,‘Zdata’,z)

M(m) = getframe;   %Creates and saves each frame 

%of the movie 

m = m+1; 

end

movie(M,2)         %Plays the movie twice 

  When you run this program, you will actually see the movie three times: once as 
it is created, and the two times specifi ed in the movie function. (In earlier versions 
of MATLAB ®  7. the movie would have played one additional time as the animation 
was loaded.) One advantage of this approach is that you can play the movie again 
without redoing the calculations, since the information is stored (in our example) 
in the array named   M  . Notice in the workspace window ( Figure   14.23   ) that   M   is a 
moderately large structure array    (~90 MB).    
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 Figure 14.22 
 The animation of this fi gure 
moves up and down and 
looks like waves in a pond.       

 KEY IDEA 
 Movies record an 
animation for later 
playback 
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Figure 14.23
Movies are saved in a 
structure array, such as the 
M array shown in this 
fi gure.

EXAMPLE 14.2
    A MANDELBROT MOVIE 
 The calculations required to create a Mandelbrot image require signifi cant com-
puter resources and can take several minutes. If we want to zoom in on a point in a 
Mandelbrot image, a logical choice is to do the calculations and create a movie, 
which we can view later. In this example, we start with the MATLAB ®  M-fi le pro-
gram fi rst described in  Example   14.1    and create a 100-frame movie. 

   1.   State the Problem 
  Create a movie by zooming in on a Mandelbrot set.  
  2.   Describe the Input and Output 

    Input       The complete Mandelbrot image described in  Example   14.1     

   Output    A 100-frame movie    

  3.   Develop a Hand Example 
  A hand example doesn’t make sense for this problem, but what we can do is 

create a program with a small number of iterations and elements to test our 
solution and then use it to create a more detailed sequence that is more com-
putationally intensive. Here is the fi rst program:   

%Example 14.2 Mandelbrot Image 

% The first part of this program is the same as Example 14.1 

clear, clc 

iterations = 20;      % Limit the number of iterations in 

                      % this first pass 

grid_size = 50;       % Use a small grid to make the 

                      % program run faster 

X = linspace(-1.5,1.0,grid_size); 

Y = linspace(-1.5,1.5,grid_size); 

[x,y] = meshgrid(X,Y); 

c = x+i*y; 

z = zeros(size(x)); 

map = zeros(size(x)); 
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for k = 1:iterations 

  z = z.^2 +c; 

a = find(abs(z)>sqrt(5)); 

  map(a) = k; 

end

figure(1)

h = imagesc(map) 

%% New code section 

N(1) = getframe;           %Get the first frame of the movie 

disp('Now let’s zoom in') 

disp('Move the cursor to a point where you"d like to zoom') 

[y1,x1] = ginput(1)            %Select the point to zoom in on 

xx1 = x(round(x1),round(y1)) 

yy1 = y(round(x1),round(y1)) 

%%

for k = 2:100 %Calculate and display the new images 

  k         %Send the iteration number to the command window 

[x,y] = meshgrid(linspace(xx1-1/1.1^k,xx1+1/1.1^k,grid_size),

 . ..linspace(yy1-1/1.1^k,yy1+1/1.1^k,grid_size));

c = x+i*y; 

z = zeros(size(x)); 

map = zeros(size(x)); 

for j = 1:iterations 

  z = z.^2 +c; 

  a = find(abs(z)>sqrt(5)); 

  map(a) = j; 

end

set(h,‘CData’,map)       % Retrieve the image data from the 

                         % variable map 

colormap(jet)

N(k) = getframe;         % Capture the current frame 

end

movie(N,2)               % Play the movie twice 

  This version of the program runs quickly and returns low-resolution images 
( Figure   14.24   ) which demonstrate that the program works. 

4.   Develop a MATLAB ®  Solution 
  The fi nal version of the program is created by changing just two lines of code:   

iterations = 80;    % Increase the number of iterations 

grid_size = 500;    % Use a large grid to see more detail 

  This “full-up” version of the program took approximately 2 minutes to run on a 
3.0-GHz AMD dual- core processor with 2.0 GB of RAM. Selected frames are 
shown in  Figure   14.25   . Of course, the time it takes on your computer will be 
more or less, depending on your system resources. One cycle of the movie cre-
ated by the program plays in about 10 seconds. 

(continued)
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5.   Test the Solution 
  Try the program several times, and observe the images created when you zoom 

in to different portions of the Mandelbrot set. You can experiment with increas-
ing the number of iterations used to create the image and with the colormap.      
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 Figure 14.24 
 Low-resolution 
Mandelbrot image used 
to test the animation 
program.       

 Figure 14.25 
 This series of 
Mandelbrot images is a 
selection of the frames 
captured to create a 
movie with the program 
in this example. Each 
movie will be different, 
since it zooms in on a 
different point of the 
image.       
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  14.4   OTHER VISUALIZATION TECHNIQUES 

  14.4.1   Transparency 

 When we render surfaces in MATLAB ® , we use an opaque coloring scheme. This 
approach is great for many surfaces, but can obscure details in others. Take, for 
example, this series of commands that creates two spheres, one inside the other:   

clear,clc,clf % Clear the command window and current 

                     % figure window 

n = 20;              % Define the surface of a sphere, 

                     % using spherical coordinates 

Theta = linspace(-pi,pi,n); 

Phi = linspace(-pi/2,pi/2,n); 

[theta,phi] = meshgrid(Theta,Phi); 

X = cos(phi).*cos(theta);      % Translate into the xyz 

% coordinate system 

Y = cos(phi).*sin(theta); 

Z = sin(phi); 

surf(X,Y,Z)     %Create a surface plot of a sphere of radius 1 

axis square 

axis([-2,2,-2,2,-2,2])       %Specify the axis size 

hold on 

pause                    %Pause the program 

surf(2*X,2*Y,2*Z)            %Add a second sphere of radius 2 

pause                        %Pause the program 

alpha(0.5)                   %Set the transparency level 

 The interior sphere is hidden by the outer sphere until we issue the transpar-
ency command,   

alpha(0.5)

 which sets the transparency level. A value of 1 corresponds to opaque and 0 to com-
pletely transparent. The results are shown in  Figure   14.26   . Transparency can be 
added to surfaces, images, and patch objects. 

  The command   alpha(0.5)   sets the transparency for all objects plotted on the 
axis. We can use handle graphics to specify the transparency for specifi c graphical 
objects. For example, fi rst clear the fi gure window, but NOT the workspace window.   
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 Figure 14.26 
 Adding transparency to 
a surface plot makes it 
possible to see hidden 
details.       
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 Assign a handle to each of the surface plots   

h1 = surf(X,Y,Z); 

hold on 

h2=surf(2*X, 2*Y,2*Z); 

 To change the transparency of the outer sphere   

set(h2,‘Facealpha’,0.3)

  14.4.2   Hidden Lines 

 When mesh plots are created, any part of the surface that is obscured is not drawn. 
Usually, this makes the plot easier to interpret. The two spheres shown in  Figure   14.27    
were created with the use of the   X-  ,   Y-  , and   Z- coordinates calculated in the preceding 
section. Here are the MATLAB ®  commands:   

figure(3)

subplot(1,2,1)

mesh(X,Y,Z)

axis square 

subplot(1,2,2)

mesh(X,Y,Z)

axis square 

hidden off 

 The default value for the   hidden command is   on  , which results in mesh plots in which 
the obscured lines are automatically hidden, as shown at the left in  Figure   14.27   . 
Issuing the hidden off   command gives the results at the right in  Figure   14.27   . 

    14.4.3   Lighting 

      MATLABV includes extensive techniques for manipulating the lighting used to rep-
resent surface plots. The position of the virtual light can be changed and even be 
manipulated during animations. The fi gure toolbar includes icons that allow you to 
adjust the lighting interactively, so that you can get just the effect you want. However, 
most graphs really need the lighting only turned on or off, which is accomplished 
with the   camlight   function. (The default is off.)  Figure   14.28    shows the results 
achieved when the   camlight   is turned onto a simple sphere. The code to use is 

  Sphere

camlight

1
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1 1

 KEY IDEA 
 The camlight allows you to 
adjust the fi gure lighting 

 Figure 14.27 
 Left: Mesh plots do not 
show mesh lines that would 
be obscured by a solid 
fi gure. Right: The   hidden   
off   command forces the 
program to draw the 
hidden lines.       
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 The default position for the camlight is up and to the right of the “camera.” 
The choices include the following:   

camlight right up and to the right of the 

camera (the default) 

camlight left up and to the left of the camera 

camlight headlight              positioned on the camera 

camlight(azimuth,elevation) lets you determine the position 

of the light 

camlight('infinite') models a light source located at 

infinity (such as the sun) 

  14.5   INTRODUCTION TO VOLUME VISUALIZATION 

 MATLAB ®  includes a number of visualization techniques that allow us to analyze 
data collected in three dimensions, such as wind speeds measured at a number of 
locations and elevations. It also lets us visualize the results of calculations performed 
with three variables, such as    y � f1x, y, z2.    These visualization techniques fall into 
two categories: 

•      Volume visualization of scalar data (where the data collected or calculated is a 
single value at each point such as temperature).  

•     Volume visualization of vector data (where the data collected or calculated is a 
vector, such as velocity).   

  14.5.1   Volume Visualization of Scalar Data 

 In order to work with scalar data in three dimensions, we need four three-dimen-
sional arrays: 

•      X data, a three-dimensional array containing the  x -coordinate of each grid point.  
•     Y data, a three-dimensional array containing the  y -coordinate of each grid point.  
•     Z data, a three-dimensional array containing the  z -coordinate of each grid point.  
•     Scalar values associated with each grid point—for example, a temperature or 

pressure.   
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 Figure 14.28 
 (a) The default lighting 
is diffuse. (b) When the 
  camlight   command is 
issued, a spotlight is 
modeled, located at the 
camera position.       
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 The  x ,  y , and  z  arrays are often created with the   meshgrid   function. For exam-
ple, we might have   

x = 1:3; 

y = [2,4,6,8]; 

z = [10, 20]; 

[X,Y,Z] = meshgrid(x,y,z); 

 The calculations produce three arrays that are    4 � 3 � 2    and defi ne the loca-
tion of every grid point. The fourth array required is the same size and contains the 
measured data or the calculated values. MATLAB ®  includes several built-in data 
fi les that contain this type of data—for example, 

•      MRI data (stored in a fi le called MRI)  
•     Flow fi eld data (calculated from an M-fi le)   

 The   help   function contains numerous examples of visualization approaches 
that use these data. The plots shown in  Figure   14.29    are a   contour slice   of the 
MRI data and an   isosurface   of the fl ow data, both created by following the 
examples in the   help   tutorial. 

  To fi nd these examples, go to the help menu table of contents. Under the 
MATLAB ®  heading, fi nd 3-D Visualization and then Volume Visualization tech-
niques. When the two fi gures shown were created in MATLAB ®  7.5 for this book, it 
was necessary to clear the fi gure (  clf  ) each time before rendering the images—a 
detail not noted in the tutorial. When the   clf   command was not used, the plots 
behaved as if the   hold on   command were activated. This is an idiosyncrasy that 
may be corrected in later versions.  

  14.5.2   Volume Visualization of Vector Data 

 In order to display vector data, you need six three-dimensional arrays: 

•      Three arrays to defi ne the  x ,  y , and  z  locations of each grid point.  
•     Three arrays to defi ne the vector data  u ,  v , and  w.    
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 Figure 14.29 
 MATLAB ®  includes 
visualization techniques 
used with three-dimensional 
data. Left: Contour slice of 
MRI data, using the sample 
data fi le Included with 
MATLAB ® . Right: Isosurface 
of fl ow data, using the 
sample M-File included 
with MATLAB ®.        
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 A sample set of vector volume data, called   wind  , is included in MATLAB ®  as a 
data fi le. The command   

load wind 

 sends six three-dimensional arrays to the workspace. Visualizing this type of data 
can be accomplished with a number of different techniques, such as 

•      cone plots  
•     streamlines  
•     curl plots   

 Alternatively, the vector data can be processed into scalar data, and the techniques 
used in the previous section can be used. For example, velocities are not just speeds; 
they are speeds plus directional information. Thus, velocities are vector data, with 
components (called  u ,  v , and  w , respectively) in the  x ,  y , and  z  directions. We could 
convert velocities to speed by using the formula   

speed = sqrt(u.^2 + v.^2 + w.^2) 

 The speed data could be represented as one or more contour slices or as 
isosurfaces (among other techniques). The left-hand image of  Figure   14.30    is 
the   contourslice   plot of the speed at the eighth-elevation ( z ) data set, pro-
duced by 

  contourslice(x,y,z,speed,[ ],[ ], 8) 

 and the right-hand image is a set of contour slices. The graph was interac-
tively adjusted so that you could see all four slices.   

contourslice(x,y,z,speed,[ ],[ ],[1, 5, 10, 15]) 

 A cone plot of the same data is probably more revealing. Follow the example 
used in the   coneplot   function description in the   help   tutorial to create the cone 
plot shown in  Figure   14.31   . 

 Velocity 
 A speed plus directional 
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 Figure 14.30 
 Contour slices of the 
wind-speed data included 
with the MATLAB ®  
program.       
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 Figure 14.31 
 Cone plot of the wind-
velocity data included with 
the MATLAB ®  program.       

         SUMMARY 

 MATLAB ®  recognizes three different techniques for storing and representing 
images: 

   Intensity (or gray scale) images  
  Indexed images  
  RGB (or true color) images   

 The   imagesc   function is used to display   intensity images   that are some-
times called gray scale images.   Indexed images   are displayed with the   image   
function and require a colormap to determine the appropriate coloring of the 
image. A custom colormap can be created for each image, or a built-in colormap 
can be used.   RGB(true color)   images are also displayed with the   image   func-
tion but do not require a colormap, since the color information is included in the 
image fi le. 

 If you don’t know what kind of image data you are dealing with, the   imfinfo   
function can be used to analyze the fi le. Once you know what kind of fi le you have, 
the   imread   function can load an image fi le into MATLAB ® , or you can use the 
software’s interactive data controls. The   load   command can load a   .dat   or a   .mat   
fi le. To save an image in one of the standard image formats, use the   imwrite   func-
tion or the interactive data controls. You can also save the image data as   .dat   or 
  .mat   fi les, using the   save   command. 
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 A handle is a nickname given to an object in MATLAB ® . The graphics displayed 
by MATLAB ®  include several different objects, all of which can be given a handle. 
The fundamental graphics object is the fi gure. Layered on top of the fi gure is the 
axis object, and layered on top of that is the actual plot object. Each of these objects 
includes properties that can be determined with the   get   function or changed with 
the   set   function. If you don’t know the appropriate handle name, the function 
  gcf   (get current fi gure) returns the current fi gure handle and   gca   (get current 
axis) returns the current axis handle. The  set  function is used to change the prop-
erties of a MATLAB ®  object. For example, to change the color of a plot (the line 
you drew) named   h  , use   

set(h,'color','red')

 Animation in MATLAB ®  is handled with one of two techniques: redrawing and 
erasing, or creating a movie. Usually, redrawing and erasing is easier for animations 
which represent data that can be quickly computed and are not visually complicated. 
For tasks that take signifi cant computing power, it is generally easier to capture indi-
vidual frames and then combine them into a movie to be viewed at a later time. 

 Complex surfaces are often diffi cult to visualize, especially since there may be 
surfaces underneath other surfaces. It is possible to render these hidden surfaces 
with a specifi ed transparency, which allows us to see the obscured details. This is 
accomplished with the   alpha   function. The input to this function can vary between 
0 and 1, ranging from completely transparent to opaque. 

 To make surfaces easier to interpret, by default hidden lines are not drawn. 
The   hidden off command forces the program to draw these lines. 

 Although MATLAB ®  includes an extensive lighting-manipulation capability, it 
is usually suffi cient to turn the direct-lighting function on or off. By default, the 
lighting is diffuse, but it can be changed to direct with the   camlight   function. 

 Volume-visualization techniques allow us to display three-dimensional data a 
number of different ways. Volume data fall into two categories: scalar and vector 
data. Scalar data involve properties such as temperature or pressure, and vector 
data include properties such as velocities or forces. The MATLAB ®    help   function 
contains numerous examples of visualization techniques. 

  MATLAB ®  SUMMARY 

 The following MATLAB ®  summary lists and briefl y describes all of the special char-
acters, commands, and functions that were defi ned in this chapter.   

 Commands and Functions 

  alpha   sets the transparency of the current plot object 

  axis   controls the properties of the fi gure axis 

  bone   colormap that makes an image look like an X-ray 

  cape   sample MATLAB ®  image fi le of a cape 

  camlight   turns the camera light on 
(continued )



578 Chapter 14 Advanced Graphics

 Commands and Functions 

  clown   sample MATLAB ®  image fi le of a clown 

  colormap   defi nes which colormap should be used by graphing functions 

  coneplot   creates a plot with markers indicating the direction of input vectors 

  contourslice   creates a contour plot from a slice of data 

  detail   sample MATLAB ®  image fi le of a section of a Dürer wood carving 

  drawnow   forces MATLAB ®  to draw a plot immediately 

  durer   sample MATLAB ®  image fi le of a Dürer wood carving 

  earth   sample MATLAB ®  image fi le of the earth 

  fl ujet   sample MATLAB ®  image fi le showing fl uid behavior 

  gatlin   sample MATLAB ®  image fi le of a photograph 

  gca   get current axis handle 

  gcf   get current fi gure handle 

  get   returns the properties of a specifi ed object 

  getframe   gets the current fi gure and saves it as a movie frame in a structure array 

  gray   colormap used for gray scale images 

  hidden off   forces MATLAB ®  to display obscured grid lines 

  image   creates a two-dimensional image 

  imagesc   creates a two-dimensional image by scaling the data 

  imfi nfo   reads a standard graphics fi le and determines what type of data it contains 

  imread   reads a graphics fi le 

  imwrite   writes a graphics fi le 

  isosurface   creates surface-connecting volume data, all of the same magnitude 

  mandrill   sample MATLAB ®  image fi le of a mandrill 

  movie   plays a movie stored as a MATLAB ®  structure array 

  mri   sample MRI data set 

  pcolor   pseudo color plot (similar to a contour plot) 

  peaks   creates a sample plot 

  set   establishes the properties assigned to a specifi ed object 

  shading   determines the shading technique used in surface plots and pseudo color plots 

  spine   sample MATLAB ®  image fi le of a spine X-ray 

  wind   sample MATLAB ®  data fi le of wind-velocity information 

 handle 
 image plot 
 indexed image 
 intensity image 

 object 
 RGB (true color) 
 scalar data 
 surface plot 

 vector data 
 volume visualization

  

       KEY TERMS 
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  PROBLEMS 

   14.1    On the Internet, fi nd an example of an intensity image, an indexed image, 
and an RGB image. Import these images into MATLAB ® , and display them 
as MATLAB ®  fi gures.   

   14.2    A quadratic Julia set has the form: 

   z1n � 12 � z1n22 � c   

   The special case where    c � -0.123 � 0.745i    is called Douday’s rabbit fractal. 
Follow  Example   14.1   , and create an image using this value of  c . For the 
Mandelbrot image, we started with all  z -values equal to 0. You’ll need to 
start with    z � x � yi.    Let both  x  and  y  vary from    -1.5    to 1.5.   

   14.3    A quadratic Julia set has the form 

   z1n � 12 � z1n22 � c   

   The special case where    c � -0.391 � 0.587i    is called the Siegel disk fractal. 
Follow  Example   14.1    and create an image using this value of  c . For the 
Mandelbrot image, we started with all  z -values equal to 0. You’ll need to 
start with    z � x � yi.    Let both  x  and  y  vary from    -1.5    to 1.5.   

   14.4    A quadratic Julia set has the form 

   z1n � 12 � z1n22 � c   

   The special case where    c � -0.75    is called the San Marco fractal. Follow 
 Example   14.1    and create an image using this value of  c . For the Mandelbrot 
image, we started with all  z -values equal to 0. You’ll need to start with 
   z � x � yi.    Let both  x  and  y  vary from    -1.5    to 1.5.   

   14.5    Create a plot of the function 

   y � sin1x2  for x from -2p to �2p   

   Assign the plot a handle, and use the   set   function to change the following 
properties (if you aren’t sure what the object name is for a given property, 
use the   get   function to see a list of available property names): 

   (a)   Line color from blue to green  
  (b)   Line style to dashed  
  (c)   Line width to 2     

   14.6    Assign a handle to the fi gure created in Problem 14.5, and use the  set  
function to change the following properties (if you aren’t sure what the 
object name is for a given property, use the   get   function to see a list of 
available property names): 

   (a)   Figure background color to red  
  (b)   Figure name to “A Sine Function”     

   14.7    Assign a handle to the axes created in Problem 14.5, and use the  set  func-
tion to change the following properties (if you aren’t sure what the object 
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name is for a given property, use the   get   function to see a list of available 
property names): 

   (a)   Background color to blue  
  (b)    x -axis scale to log     

   14.8    Repeat the three previous problems, changing the properties by means of 
the interactive property inspector. Experiment with other properties and 
observe the results on your graphs.   

   14.9    Create an animation of the function 

   y � sin(x � a) for 
x ranging from -2p to �2p
a ranging from 0 to 8p

   

   •   Use a step size for  x  that results in a smooth graph.  
  •   Let  a  be the animation variable. (Draw a new picture for each value of  a .)  
  •   Use a step size for  a  that creates a smooth animation. A smaller step size 

will make the animation seem to move more slowly.     
   14.10    Create a movie of the function described in the preceding problem.   
   14.11    Create an animation of the following: 

   Let  x  vary from    -2p    to    �2p     
  Let    y � sin1x2     
  Let    z � sin1x � a2 cos1y � a2     
  Let  a  be the animation variable.   

   Remember that you’ll need to mesh  x  and  y  to create two-dimensional 
matrices; use the resulting arrays to fi nd  z .   

   14.12    Create a movie of the function described in the preceding problem.   
   14.13    Create a program that allows you to zoom in on the “rabbit fractal” described 

in Problem 14.2, and create a movie of the results (see  Example   14.2   ).   
   14.14    Use a surface plot to plot the   peaks   function. Issue the   hold on   command 

and plot a sphere that encases the entire plot. Adjust the transparency so 
that you can see the detail in the interior of the sphere.   

   14.15    Plot the   peaks   function and then issue the   camlight   command. 
Experiment with placing the   camlight   in different locations, and observe 
the effect on your plot.   

   14.16    Create a stacked contour plot of the MRI data, showing the fi rst, eighth, 
and twelfth layer of the data.   

   14.17    An MRI visualization example is shown in the   help   tutorial. Copy and paste 
the commands into an M-fi le and run the example. Be sure to add the   clf   
command before drawing each new plot.      
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     INTRODUCTION 

 Most computer programs in use today make use of a graphical user interface (GUI) 
and in fact MATLAB ® ’s desktop environment is a graphical user interface. Any time 
you can click an icon to execute an action, you are using a GUI (pronounced “gooey”). 
Creating your own GUI’s is easy in MATLAB ® , especially if you use the GUIDE inter-
face, but it does require that you understand some programming basics—all of which 
you have been introduced to in  MATLAB   ®  for Engineers . Before starting this section it 
would be wise to review the concepts of: 

   •   Structure arrays  
  •   Subfunctions  
  •   Handle graphics   

 The m-fi le created by the GUIDE program uses a structure array to pass informa-
tion between sections of the program; each of these sections is a subfunction, and 
components of the GUI are stored as properties of a graphics object, using handle 
graphics. 

 Generally, the fi rst step in creating a GUI should be to carefully plan what the 
GUI should do and how it should look. A little planning will help you avoid a lot of 
frustration. However, in this chapter, we’ll develop GUIs piecewise, so that we can 

 After reading this chapter, you 
should be able to: 
•     Understand how to use the 

GUIDE layout editor  

•     Understand how to modify 
function callbacks  

•     Be able to create graphical 
user interfaces

     Objectives 

 Creating 
Graphical User 
Interfaces 

  C H A P T E R
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focus on how the program works. Be sure to try these commands out as you read 
through this chapter.   

        15.1   A SIMPLE GUI WITH ONE USER INTERACTION 

  15.1.1   Creating the Layout 

 To get started, select the guide icon from the toolbar, as shown in  Figure   15.1   , or 
type guide at the command line. The GUIDE Quick Start window will open, as 
shown in  Figure   15.2   . To start a new project, simply select the Blank GUI template, 
located in the list on the left-hand side of the window. 

   Once you select Blank GUI, a new fi gure window—called the GUIDE layout 
editor—will open, which should look similar to the one shown in  Figure   15.3   . You 
can resize it to a shape that is comfortable to work with by selecting the lower left-
hand corner of the grid. If you’d like a GUI that is bigger than the fi gure window, 
just resize the fi gure window fi rst. 

  To create a layout of buttons, textboxes, and graphics windows, use the icons 
on the left-hand side of the window in the “component palette.” The default display 
for these icons is compact, but not particularly informative for new users. To change 
the palette of tools to a list of the item names select 

  File ➞ Preferences ➞ GUIDE  
  then check “Show names in component palette,”  

 as shown in  Figure   15.4   . This results in a more “user friendly” list of the available 
options ( Figure   15.5   ).   

    Let’s get started with a very simple GUI that allows us to enter the number of 
sides on a polygon, and which then plots the polygon in polar coordinates. We’ll 

 KEY IDEA 
 GUIDE makes creating 
GUI’s easy 

 Figure 15.1 
 Select the GUIDE icon from 
the MATLAB ®  toolbar, or 
type guide at the command 
line to start the program.       

 KEY IDEA 
 The component palette lists 
the available choices for 
use in the layout editor 
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 Figure 15.2 
 Use the GUIDE Quick Start 
window to get started 
building a graphical user 
interface. Select Blank GUI 
to start a new project.       

 Figure 15.3 
 The GUIDE layout editor is 
used to design your GUI.       

need three components in the GUI: axes, a static text box, and an edit textbox. 
You can pick them up from the component palette and arrange them as shown 
in  Figure   15.6   . 

  To modify these design elements once you have them arranged to your liking, 
use the Property Inspector. First, select the static text window, right click, and select 
the Property Inspector ( Figures   15.7    and    15.8   ). You can also access the Property 
Inspector from the menu bar by selecting 

    View ➞ Property Inspector  
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 Figure 15.4 
 Change the component 
palette display to a list of 
item names in the 
preference window.       

 Figure 15.5 
 The component palette in 
the GUIDE layout editor 
can be reconfi gured to 
show the possible actions 
in more detail than is 
possible with a simple icon.       

 The Property Inspector lists a wide range of properties for the selected object 
in the GUIDE window. You can change the font of the message displayed, change 
the color of the text box etc. The most important property for us is the String 
Property. Change it from 

  Static Text  

 to 

  Enter the number of sides  
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 Figure 15.6 
 The icons from the 
component palette are used 
to position and resize the 
design elements in the 
GUIDE window.       

 Figure 15.7 
 To access the property 
inspector, select an object 
from the GUIDE window, 
right click, and select the 
property inspector. You 
may access the same 
content from the menu bar 
by selecting View ➞ 
Property Inspector.       

 Use the same process to modify the properties of the “edit text” box. For our 
purposes simply delete the default text. 

 Now you can save and run the GUIDE window by selecting the Save and Run 
icon from the window toolbar (the green triangular button). You’ll be prompted to 
enter a project name, such as  polygon_gui.fig . When the fi le runs notice that 
the name of the GUIDE window changes, and an m-fi le is created with the appro-
priate code to create a fi gure window with which the user can interact. The m-fi le is 
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Change the field from
“Static Text”

to read
“Enter the number of sides”

 Figure 15.8 
 Property Inspector for the 
Static Textbox allows you to 
change properties, such as 
the message in the box 
(string property), the color 
of the background 
(Backgroundcolor), or the 
font size (FontSize).       

 KEY IDEA 
 The GUI m-fi le is composed 
of multiple subfunctions 

 KEY IDEA 
 GUIDE creates an m-fi le, 
that is modifi ed to add 
functionality to the GUI 

displayed in the MATLAB ®  edit window, and has the same name as the fi gure 
 window—in this case polygon_gui.m ( Figure   15.9   ).   

   At this point all we have is a fi gure window with an axis, a message in the static 
text box, and an empty input window. The next step is to add code to the m-fi le to 
actually make the GUI do something.  

  15.1.2   Adding Code to the M-File 

 Just opening up the m-fi le and trying to interpret the code is confusing. The m-fi le 
is organized as a function, with multiple subfunctions. Some of the subfunctions 
create the graphics in the  polygon_gui.fig  window, but others are reserved for 
adding the code that will cause an action when a user interacts with the GUI. To 
see a list of the functions in the  polygon_gui.m  fi le, select the Show Functions 
icon on the toolbar ( Figure   15.10   ). The only functions a user should modify are 
labeled as:   

     •   gui_name_OpeningFcn  
  •   graphics_object_name_Callback   
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 In the polygon_gui fi le this corresponds to: 

   •   polygon_gui_OpeningFcn  
  •   edit1_Callback   

  Callbacks 
 In more complicated graphical user interfaces, there will be a Callback function for 
each of the graphics objects on the layout, which allow the user to interact with the 
GUI. Clicking on the function of interest will take you to the corresponding section 
of code. 

Save and
run icon

 Figure 15.9 
 Once the GUIDE window is 
activated an m-fi le is 
created along with a fi gure 
window through which the 
user will interact with the 
program.       

 Figure 15.10 
 Selecting the Show 
Functions icon opens a list 
of all the subfunctions in 
the fi le. Navigate to a 
section of code by selecting 
the subfunction name from 
the list.       
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 An alternative approach to fi nding the appropriate subfunction to modify is to 
use the layout editor. Right click on the graphics object (in this case the edit text-
box), select View Callbacks, then select Callback ( Figure   15.11   ). This will move the 
cursor in the m-fi le to the edit1_Callback subfunction, shown here. 

  function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB®

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a 

double

 Notice that most of the code is composed of comments. The fi rst line identifi es 
the subfunction as   edit1_Callback  , with three inputs. The fi rst,   hObject, is a 
graphics handle that links the subfunction to the corresponding edit textbox. The 
  eventdata   argument is a placeholder that the Mathworks has included for use in 
later versions of the software. Finally, the   handles   argument is a structure array 
that is used to pass information between subfunctions. All callback subfunctions will 
have a similar structure.   

  Specifi c to a callback linked to an edit textbox are the hints listed as comments. 
Information typed into the textbox is interpreted using handle graphics. Recall 
how we modifi ed the textbox so that it was blank by deleting the contents of the 
string property in the Property Inspector. When a user types in a textbox, the con-
tents are stored as the string property. To retrieve the information and use it in our 
m-fi le, we need to “get” it using the   get   function.   

get(hObject, 'String')

 This instructs MATLAB® to retrieve the string property from the graphics 
object that was passed to the function as   hObject  —in this case the edit1 textbox. 
Information in the string property is stored as a character array, so if we want to use 
it as a numeric value it is necessary to change the array type to double. This can be 
accomplished either with the   str2num   function or the   str2double   function. 
With this in mind, add the following code to the edit1_callback subfunction.   

 Figure 15.11 
 Right-click on the edit 
textbox to locate the 
corresponding m-fi le 
subfunction.       

 KEY IDEA 
 Structure arrays are used to 
pass information between 
functions 

 KEY IDEA 
 Numbers entered as a 
string property are stored 
as character arrays, and 
must be converted to a 
numeric format before they 
can be used. 
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sides = str2double(get(hObject,'String'))

 Now we can add additional code to draw the polygon using the polar plotting 
function and to annotate the graph.   

theta = 0:2*pi/sides:2*pi;
r = ones(1,length(theta));
polar(theta,r)
title('A polygon')

 To run your graphical user interface, select the Save and Run icon from the 
m-fi le window or from the Guide layout editor. A fi gure window appears, similar to 
 Figure   15.12a   . To run the GUI, type a value into the edit window, such as 3 and hit 
enter. This causes the edit1_callback function to execute and draw a polygon using 
the polar plot function ( Figure   15.12b   ). 

  The opening function is the only other subfunction to be modifi ed in this fi le. 
It executes when the GUI fi rst runs, and can be used to control how the fi gure win-
dow appears before the user starts adding data. Notice that the opening version of 
polygon_gui displays a rectangular axis. In order to display an axis system consistent 
with a polar plot, we can modify the  polygon_gui_OpenFcn , by adding code to cre-
ate a blank polar plot.   

function polygon_gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB®
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to polygon_gui (see VARARGIN)
polar(0,1)
title('A polygon')
% Choose default command line output for polygon_gui
handles.output = hObject; % Not necessary for this example

 Now, when  polygon_gui.m  is executed the original fi gure window includes 
the polar plot axis system ( Figure   15.13   ). 

(a) (b)

 Figure 15.12 
 (a) Opening appearance 
of the GUI, (b) appearance 
once content is added to 
the edit textbox.       
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      15.2   A GRAPHICAL USER INTERFACE WITH MULTIPLE USER 

INTERACTIONS— READY_AIM_FIRE  

 It’s easy to create a more complicated GUI with more places for the user to enter 
data and with a variety of actions. Consider a GUI that plots the trajectory of a pro-
jectile launched from a cannon. The trajectory depends on both the launch angle, 
 u,  and the initial velocity,  V  0  of the projectile. The equations representing the hori-
zontal and the vertical distances traveled are as follows: 

    h � tV0cos(u)

 v � tV0sin(u)-1>2gt2   

 where 

    t    is the time in seconds  

   V  0  is the initial velocity in m/s  

   u   is the launch angle in radians  

   g   is the acceleration due to gravity, 9.81 m/s 2    

 To create a GUI that plots the trajectory, we’ll need the following components 
in the layout: 

   Axes for the graph  

  Edit textbox for the angle input  

  Edit textbox for the initial velocity input  

  Push button to “fi re” the canon  

  Static textbox to label the angle textbox  

  Static textbox to label the velocity textbox  

  Panel to group the textboxes together (not necessary, but nice)   

 By selecting the appropriate items from the component palette, it is easy to cre-
ate the layout shown in  Figure   15.14   . The contents of the static textboxes and the 
edit textboxes were modifi ed using the property editor string property, as was the 
push button. Both types of textboxes were dragged onto a panel. The panel name 
was changed, not in the string property, but in the title property. 

 Figure 15.13 
 To modify the opening 
appearance of the GUI, 
add code to the 
OpeningFcn subfunction.       
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Change to
launch_angle

 Figure 15.14 
 The GUIDE layout editor 
makes it easy to create 
more complicated GUI’s. 
This layout represents a 
basic plotting program for 
a projectile trajectory 
program.       

 Figure 15.15 
 Changing the tag property 
in the Property Inspector 
changes the name of the 
callback functions 
associated with the object, 
making it easier for the 
programmer to navigate to 
the associated m-fi le.       

  Once a GUI has multiple components, it becomes tricky to fi nd the correspond-
ing callbacks in the m-fi le based on the default names. For example, the two edit 
textboxes shown in  Figure   15.14    default to edit1 and edit2—names that aren’t very 
descriptive. To change the name from the default, use the tag property, which can 
be accessed from the property editor. For example,  Figure   15.15    shows the property 
editor for the edit textbox corresponding to the launch angle. The tag has been 
changed from edit1 to launch_angle. Similarly, the tag for the initial velocity edit 
textbox was changed from edit2 to launch_velocity, and the tag for the push button 
was changed to fi re_pushbutton. The contents of the layout editor were then saved 
and named ready_aim_fi re, by selecting the Save and Run button. Recall that two 
fi les are created, a fi g fi le containing the GUI and an m-fi le containing the code.   

   Adding code to this GUI program is not quite as straightforward as the fi rst 
example. We’ll need to read in the data entered into the edit textboxes in the call-
back functions, give the data a name, and then pass it on to the fi re_pushbutton 
callback function to create the plot. Here are the steps to take. 

 First fi nd the launch_angle_Callback subfunction, either by selecting the Show 
Functions icon in the m-fi le toolbar or by right clicking the launch angle edit text-
box and navigating to the launch_angle callback. Add the following code:   

handles.theta=str2double(get(hObject,'String'));
guidata(hObject, handles);
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 In order to pass information to other functions, we need to save the information 
from the edit textbox into the handles structure array. We’ll store this particular 
information in the theta portion of the structure. Then, we need to update the rest 
of the program so that other functions can use the information. 

 Similarly the  launch_velocity  callback is modifi ed by adding the following 
code:   

handles.vel=str2double(get(hObject,'String'));
guidata(hObject, handles);

 The graph is actually drawn when the fi re push button is selected, so that’s 
where the plotting code must go.   

time=0:0.001:100;
h=time*handles.vel*cosd(handles.theta);
v=time*handles.vel*sind(handles.theta)-1/2*9.81*time.^2;
pos=find(v>=0);
horizontal=h(pos);
vertical=v(pos);
comet(horizontal,vertical);

 Notice that an array called   time   was created with a small step size. This becomes 
important in the plotting step. Then the horizontal and the vertical distances 
traveled were calculated. The vertical distance will become negative, which doesn’t 
make any physical sense, so the   find   function was used to fi nd all the index num-
bers in the  v  array that are positive. Two new variables,   horizontal   and 
   vertical  , were defi ned using that information, and then plotted using the comet   
function. The   comet   function draws out the trajectory of the projectile. You can 
change the apparent speed by manipulating how many points are plotted—which 
was done by controlling the number of time values. 

 To run the program, select the Save and Run icon, which will open the GUI. 
The result of one set of input values is shown in  Figure   15.16   . 

 Figure 15.16 
 This GUI accepts multiple 
inputs, which are then used 
when the “Fire” push 
button is selected.       



15.3 An Improved Ready_Aim_Fire Program 593

    15.3   AN IMPROVED  READY_AIM_FIRE PROGRAM 

 After you’ve run the  Ready_Aim_Fire  program a number of times, you will prob-
ably want to make some modifi cations. For example, each time the GUI runs, the 
plot resizes to completely fi ll the window. It makes it hard to tell what the result is of 
changing each of the parameters. We can modify the opening function to create an 
axis that never changes to alleviate this problem. While we are at it we’ll also add a 
target, so that we can practice fi ring our “cannon” with a particular goal in mind. 

 Navigate to the opening function and add the following code:   

plot(275,0,'s','Markersize',10,'MarkerFaceColor','r')
text(275,50,'target')
axis([0,1000,0,500])
hold on

 The fi rst line creates a plot of a single point, at  x  = 275 and  y  = 0. The data is 
shown as a square, and the size and color are adjusted so that it is easy to see. The 
second line adds a label to the target. The  axis  function forces the plot to cover 
 x -axis values from 0 to 1000, and  y -axis values from 0 to 500. Finally the   hold on   
command forces additional plots to draw on the same graph, without erasing any of 
the existing lines.  Figure   15.17a    shows the opening screen, and  Figure   15.7b    shows 
the screen after three attempts to adjust the input parameters and hit the target. 

  One problem with this version of the  ready_aim_fire  GUI is that you have 
to completely close it to start over and clear the screen. We can remedy this by add-
ing an additional push button to reset the plot. You’ll need to: 

   •   Return to the GUIDE layout editor and add an additional push button.  
  •   Use the Property Inspector string property to label the push button “Reset.”  
  •   Use the Property Inspector tag property to change the name of the push button 

and its associated functions to “ reset_pushbutton .”  
  •   Use the Save and Run icon to save your changes and to update the  ready_
aim_fire  m-fi le.  

  •   Navigate to the  reset_pushbutton_Callback subfunction  and add the 
appropriate code.     

hold off
plot(275,0,'s','Markersize',10,'MarkerFaceColor','r')
text(275,50,'target')
axis([0,1000,0,500])
hold on

(a) (b)

 Figure 15.17 
 (a) The “ ready_aim_
fire” GUI opening 
screen, (b) the “ ready_
aim_fire” GUI after three 
“shots.”       
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 This code simply turns off the hold function and then repeats the instructions 
from the opening function. While modifying the code, we can also add a title and 
axis labels to both the opening function and the  reset_pushbutton  callback.   

title('Projectile Trajectory')
xlabel('Horizontal Distance, m')
ylabel('Vertical Distance, m')

  HINT    
 When you start to modify an existing program, close the GUI fi gure window 
(not the GUIDE layout editor window). Once you are done making changes 
in the m-fi le, select the Save and Run icon from the m-fi le editor tool bar. 
This will reinitialize the GUI fi gure window. If you just leave the GUI open, all 
the changes may not be incorporated.   

  15.4   A MUCH BETTER  READY_AIM_FIRE  PROGRAM 

 By now you probably want to be able to control the target position, and perhaps 
display an explosion if you hit the target. Let’s start with moving the target, by add-
ing a slider bar to the GUI in the GUIDE layout editor. To make the GUI neater, 
you’ll need to move the other controls to the side, as shown in  Figure   15.18   . Also 
add a static textbox to label the slider. From the slider property inspector, change 
the value of the Max property to 1000 to correspond with the scale on our graph. 
Also change the value of the Value property to 275, so that the slider starts off at the 
original target position ( Figure   15.19   ). 

     •   Navigate to the slider callback, and notice that the “Hints” suggest how to 
retrieve the location of the slider. You won’t need to retrieve Max and Min.  

 Figure 15.18 
 The revised layout for the 
“ Ready_Aim_Fire ” GUI.       
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  •   Use the location of the slider bar to plot the target.     

handles.location = get(hObject,'Value')
hold off
plot(handles.location,0,'s','Markersize',10,'Markerfacecolor', 'r')
axis([0,1000,0,1000])
title('Trajectory')
xlabel('Horizontal Distance')
ylabel('Vertical Distance')
text(handles.location-25,50,'Target')
hold on
guidata(hObject, handles);

 Notice that the location of the slider is stored as part of the handles structure 
array. In the fi nal line of the listed code, the handles structure for the entire pro-
gram is updated, so that the  handles.location  value can be used by other func-
tions. For example, if we don’t make anymore changes, every time the reset button 
is pushed the target will move back to the starting location. It probably makes more 
sense that it should remain at the same location as the slider. Modifying the reset_
pushbutton  callback accomplishes this goal.   

hold off
plot(handles.location,0,'s','Markersize',10,'MarkerFaceColor','r')
text(handles.location,50,'target')
axis([0,1000,0,500])
title('Projectile Trajectory')
xlabel('Horizontal Distance, m')
ylabel('Vertical Distance, m')
hold on

 Figure 15.19 
 The “Slider” Property 
inspector. The Max 
property and the Value 
property have been 
adjusted.       



596 Chapter 15 Creating Graphical User Interfaces

 Just for fun, we’d like to show an explosion in the plot window if we select a tra-
jectory that hits the target. The code should be added to the  fire_pushbutton 
callback.   

time=0:0.001:100;
h=time*handles.vel*cosd(handles.theta);
v=time*handles.vel*sind(handles.theta)-1/2*9.81*time.^2;
pos=find(v>=0);
horizontal=h(pos);
vertical=v(pos);
comet(horizontal,vertical);
land=pos(end);
goal=handles.location;
if (h(land)<goal+50 && h(land)>goal-50)
x=linspace(goal-100, goal+100, 5);
y=[0,80,100,80,0];                          %Code to create
z=linspace(goal-200,goal+200,9);            the "Explosion"
w=[0,40,90,120,130,120,90,40,0];
plot(x,y,'*r',z,w,'*r')
text(goal,400,'Kaboom!')
end

 The explosion is simply a number of stars plotted at the points defi ned by the  x , 
 y ,  z , and  w  arrays. Notice that the fire_pushbutton  callback uses the  handles.
location  parameter, which is created in the slider callback. If the slider is never 
moved, this parameter is never created. This means that the attempt to create the 
explosion will fail, unless  handles.location  is defi ned in the opening function   

handles.location = 275;

  Figure   15.20    shows the result when a user fi nally hits a target. 
  One last refi nement to the GUI is to add a textbox that congratulates you when 

you win. To do that, we need to add another static textbox in the GUIDE layout edi-
tor, as shown in  Figure   15.21   . 

 Figure 15.20 
 The “ ready_aim_fire” 
GUI displays a new image 
once the target is hit       .
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  Using the property inspector, we’ll need to change the string property to a 
blank. We’ll also need to check for the tag property value, and change it to some-
thing meaningful, such as textout. Don’t forget to save your changes in the GUIDE 
layout editor ( Figure   15.22   ). 

  When you run the GUI, the opening value in the textbox will be blank. To 
change it to a message when the user’s shot hits the target, add the following code 
to the   if   statement inside the   Fire_pushbutton_Callback  .   

set(handles.textout,'string', 'You Win !','fontsize',16)

 Notice that in addition to specifying the message, the font size has been adjusted 
from the default. You could have also made the adjustment from the property 
inspector. 

 The only thing left to do is make sure that when the reset button is pressed, the 
text box returns to a blank. This is accomplished in the   Reset_pushbutton_
Callback   with the following code:   

set(handles.textout,'string', ' ')

 The fi nal version of the GUI is shown in  Figure   15.23   , once the user has fi red 
the cannon and destroyed the target. 

  Appendix D lists the fi nal contents of the m-fi le, including the following func-
tions, which were modifi ed to create the  ready_aim_fire  GUI: 

   •   ready_aim_fi re_OpeningFcn  
  •   fi re_pushbutton_Callback  
  •   reset_pushbutton_Callback  
  •   launch_angle_Callback  
  •   launch_velocity_Callback  
  •   slider_Callback    

 Figure 15.21 
 A static textbox is used to 
create a space for a 
message from MATLAB ®        .
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Change the string
property to a blank

Change the tag property to a
meaningful name

 Figure 15.22 
 Change properties from the 
property inspector.       

  15.5   BUILT-IN GUI TEMPLATES 

 So far we have been working with the Blank GUI template within GUIDE. However, 
MATLAB ®  has included three other example GUI’s, which you can use as a starting 
point for new projects, or just as examples to help you understand how to design 
your own GUI’s. They include 

   •   GUI with UIcontrols  
  •   GUI with Axes and Menu  
  •   Modal Question Dialog   
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  15.5.1   GUI with UIcontrols 

 From the GUIDE Quick Start window ( Figure   15.24   ), select the GUI with UIcontrols 
template. A preview is shown in the Quick Start window to help you determine 
which of the built-in templates is appropriate for your needs. 

  The GUI with UIcontrols (user input controls) is a completely functional GUI, 
which performs and displays a mass calculation using either English or Metric (SI) 
units. The layout editing window is shown in  Figure   15.25   . 

  To see the corresponding m-fi le, select the Save and Run icon. This generates 
the appropriate MATLAB ®  code, which is displayed in the MATLAB ®  editor, and 
the GUI fi gure window shown in  Figure   15.26   . 

 Figure 15.24 
 The Quick Start GUIDE 
menu includes three 
example templates.       

 Figure 15.23 
 The fi nal  ready_aim_
fire  GUI.       
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 Figure 15.25 
 The GUIDE UIcontrols 
template contains a mass 
calculation GUI.       

 Figure 15.26 
 MATLAB ®  includes several 
example GUI’s, which can 
be used as the starting 
point for new projects.       

  This GUI is composed of the following: 

   •   A panel, that contains 
   ❍   Two edit textboxes  
  ❍   Seven static textboxes    

  •   A button group that contains 
   ❍   Two radio buttons  
  ❍   Two push buttons     

 The only graphics objects that are new to us in this GUI are the button group 
and the radio buttons. When radio buttons are added to a button group, only one 
radio button can be active at a time. If the radio buttons had instead been added to 
a panel, they could all be active, all be inactive, or could be any combination of 
 settings.  
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  15.5.2   GUI with Axes and Menu 

 The GUI with Axes and Menu template illustrates how to use a popup menu (also 
called a dropdown menu) (see  Figure   15.27   ). MATLAB ®  also includes a video dem-
onstration that includes the use of several graphics objects, such as the popup 
menu, pushbuttons, and axes, which can be accessed from the help feature, and is 
listed under demos. 

 Figure 15.27 
 The GUI with Axes and 
Menu template.       

 Figure 15.28 
 The controlsuite GUI 
includes examples of all the 
graphics objects available 
for use in GUIDE.       
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    15.5.3   Modal Question Box 

 A modal question is one which requires a response from the user before continu-
ing. For example, when you save a word processing document and ask the com-
puter to overwrite an existing fi le, most programs ask you if you really want to do 
this. The modal question template demonstrates how to accomplish this in a GUI.  

  15.5.4   Other Examples 

 In addition to the example templates built into the layout editor, the MATLAB ®  
help feature includes numerous examples that focus on single graphics objects, 
such as the check box or toggle buttons. It also includes a single GUI that includes 
all 15 graphics objects available from GUIDE. To access these resources, go to the 
Help feature and search on controlsuite ( Figure   15.28   ). 

 The GUIDE layout editor makes it easy to create graphical user interfaces in 
MATLAB ® . It does, however, require that you have a basic understanding of sub-
functions, handle graphics, and structure arrays. Graphics objects are positioned on 
the editor, their properties modifi ed with the property inspector, and a function 
m-fi le created automatically. Instructions are added to the m-fi le in order to activate 
the various graphical components. 

 GUIDE also includes three sample templates, which can be used as the starting 
point for more complicated GUI’s. In addition, the MATLAB ®  help feature offers a 
demonstration video and examples of GUI’s showcasing each of the graphical 
objects available.  

         SUMMARY 

 function callback 
 graphical objects 
 GUI 

 GUIDE 
 property inspector 
 structure array 

 subfunctions

  

  KEY TERMS 

   15.1    Using GUIDE, create a graphical user interface to add two numbers 
together. It should include the following: 
   •   Title, located in a static text box  
  •   Two edit textboxes, used to enter the numbers to be added  
  •   Static textboxes to hold the + and = symbols  
  •   A static textbox to display the result   
 Your GUI should look like  Figure   P15.1.    

  PROBLEMS 
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      15.2    Create a GUI similar to the one in the previous problem. It should accept 
two numbers as input, but should allow the user to choose from the follow-
ing operations by selecting a radio button. 
   •   Addition  
  •   Subtraction  
  •   Multiplication  
  •   Division     

   15.3    Create a GUI to simulate a cash register. It should accept the cost of an item 
and then display the running total. It should also display the total number 
of items purchased. Finally, it should accept the amount of money tendered 
by the user and display the change that should be returned to the customer.   

   15.4    Create a GUI that replicates the behavior of a simple four function calculator.   
   15.5    Create a GUI that accepts the name of an  x ,  y , and  z  array as input. (The 

arrays should have been previously calculated in MATLAB ® .) It should then 
allow the user to choose from the following graphing options: 
   •   Surface plot (surf)  
  •   Mesh plot (mesh)  
  •   Contour plot (contour)   
 and display the graph on a set of axes in the GUI.   

   15.6    Forces are often represented as vectors, defi ned by a magnitude, and the 
angle from the horizontal at which the force is applied. To add them together 
they are placed head to tail. The resultant force is the vector drawn from the 
starting point to the ending point. For example consider the forces shown in 
 Figure   P15.6   , and the resultant shown when they are added together. 

  Create a GUI that accepts both the magnitude and angle from the horizontal 
of three forces, then plots them end to end on a set of axes. It should also draw in 
the resultant, report the magnitude of the resultant and the angle from horizontal.   

   15.7    Repeat the previous problem in three dimensions.        

(a)

(b)

 Figure P15.1 
 A graphical user interface 
used to add two numbers 
together (a) before data is 
added and (b) after a 
calculation.       

F2

F1
	1

	2 	3

F3

Resultant

 Figure P15.6 
 To add forces together, they 
are placed head to tail. 
The resultant is the vector 
drawn from the starting 
point to the ending point.       
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INTRODUCTION 

 Simulink® is an interactive, graphics-based program that allows you to solve problems 
by creating  models  using a set of built-in “blocks.” It is part of the MATLAB ®  software 
suite, and requires MATLAB ®  to run. Simulink® is included with the student edition 
of the software, but is not part of the standard installation of the professional edition; 
this means that it may or may not be included on your version of MATLAB ® . LabView, 
produced by National Instruments, is Simulink®’s biggest competitor.   

     16.1   APPLICATIONS 

 Simulink® is designed to provide a convenient method for analyzing  dynamic sys-
tems , i.e., systems that change with time. In particular, it found early acceptance in 
the signal processing community, and is reminiscent of the approach used to pro-
gram  analog   computers . In fact, one way to think of Simulink® is as a virtual analog 
computer. Analog computers required the user to make actual physical connections 
between electrical components that acted as adders, multipliers, integrators, etc. 
Output from the computer was viewed on an oscilloscope. This is refl ected in both 

 After reading this chapter you 
should be able to: 
•     Understand how Simulink® 

uses blocks to represent 
common mathematical 
processes  

•     Create and run a simple 
Simulink® Model  

•     Import Simulink® results 
into MATLAB ®      

     Objectives 

 Simulink®—
A Brief 
Introduction 

  C H A P T E R
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the names of the blocks used in Simulink®, and in the icons used to represent 
various operations.  

 One shouldn’t jump to the conclusion that Simulink® is only useful for analyz-
ing electrical systems. Similar mathematical equations describe the behavior of 
dynamic mechanical systems, reactive chemical systems, and dynamic fl uid systems. 
In fact, it is common to introduce students to the behavior of electricity through 
analogy with pipe fl ow problems. 

 Simulink®’s strength is its ability to model dynamic systems—which are mod-
eled mathematically as  differential equations . Usually these systems change with time, 
but the independent variable could also be location. Differential equations can be 
solved numerically in MATLAB ®  by making use of functions such as   ode45  , which 
utilizes Runge–Kutta techniques. They can also be solved analytically using the sym-
bolic algebra toolbox, which utilizes the MuPad engine. Simulink® uses similar 
methods, but they are transparent to the user. Instead of programming equations 
directly, a visual model is created by collecting appropriate Simulink® blocks and 
connecting them together, using a graphical user interface.  

  16.2   GETTING STARTED 

 To start Simulink®, open MATLAB ®  and type   

simulink®

 into the command window. (Or select the Simulink® icon from the Shortcut tool-
bar as shown in  Figure   16.1   ). 

  The Simulink® Library Browser opens, showing the available libraries of blocks 
used to create a Simulink® model ( Figure   16.2   ). The browser is the location where 
you’ll select blocks and drag them into the model workspace. Spend a few minutes 
exploring the browser. To view the blocks available in each library, either select the 
library from the left-hand pane or double click on the icons in the right-hand pane. 
In particular, take a look at the Commonly Used Blocks library—the Source and 
Sink libraries and the Math Operations library. 

 Simulink®’s strength is in solving complex dynamic systems, but before we try 
to work on a complex system, it would be better to build some very simple static 

 Figure 16.1 
 Access Simulink® either 
from the command 
window, or by selecting the 
icon from the shortcut 
toolbar.       
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models to demonstrate the problem-solving process. To create a new model, select 
File ➞ New ➞ Model from the browser window. The model window opens on top 
of the library browser ( Figure   16.3   ). For convenience, resize the library browser 
window and the model window so that you can see both on the computer screen. 
You’ll also want to keep the MATLAB ®  desktop open, but resize it so that it also 
fi ts on your computer screen without overlapping the other windows. See, for 
example,  Figure   16.4   . 

    Our fi rst model will simply add two numbers. From either the Source library or 
the Commonly Used Blocks library, click and drag the constant block into the 
model window. Repeat the process, so that you have two copies of the constant 
block in the model, as shown in  Figure   16.5.    

  Now drag the sum block into the model. It is found both in the Commonly 
Used Blocks library and the Math Operations library. Notice that the sum block has 
two “ports.” You can draw connections between the constants and the sum block by 

Double-click on a
library name to see the
available blocks

Drag blocks into the
model window to solve
problems

 Figure 16.3 
 The model window is the 
workspace where 
Simulink® models are 
created and executed.       

 Figure 16.2 
 The Simulink® Library 
Browser contains numerous 
blocks that are used to 
create a Simulink® model.       
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 Figure 16.5 
 Two copies of the constant 
block were added to the 
model.       

 Figure 16.4 
 Simulink® uses multiple 
windows. Arrange them on 
your computer desktop so 
that you can easily drag 
blocks from the Simulink® 
Library Browser to the 
model window.       

clicking and dragging between the ports, as shown in  Figure   16.6   . You should notice 
that the cursor changes to a cross-hair as you connect the ports. The model we’ve 
created thus far just adds 1 + 1, and doesn’t display the answer. We’ll need to modify 
the constant blocks to specify a value different from the default, which in this case 
is 1. Double click on each constant block, and change the “constant value” fi eld, for 
example, to 5 in the top block and 6 in the bottom block. 

  To add a display option, look in the sink library. For this case, the display block 
is all we need, so drag it to the model and connect it to the output port of the sum 
block. The last thing we need to do before running the model is to adjust the simu-
lation time, from the box on the menu bar (see  Figure   16.7   ). Since nothing in this 
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 Figure 16.6 
 The constants are 
connected to the sum 
block. Change the values 
in the constant blocks by 
double clicking and 
modifying the “constant 
value” fi eld.       

Simulation time

Run the simulation

Result

(a)

(b)

 Figure 16.7 
 (a) The completed model. 
(b) Results are shown in the 
display block.       
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calculation will change with time, we can change the value to zero. Run the simula-
tion by selecting the run button on the toolbar (the black triangle) or by selecting 
Simulation ➞ Start from the menu bar. 

  Save this model in the usual way, by selecting File ➞ Save and adding an appro-
priate name. The fi les are stored with the extension, .mdl. 

 As the sum block serves both the addition and subtraction functions, you 
could use this same model to perform subtraction operations. Double click the 
sum block in the model and the block parameter window opens, as shown in 
 Figure   16.8.    

  The block description is located near the top of the window, and provides 
information on how to use the block—in this case the sum block. This description 
includes instructions to change the block into a “subtraction block” by changing 
the input from |++ to |+−. We could also adjust the block to add three inputs by 
changing the list of signs fi eld to the number 3. Adjust your model and run it sev-
eral more times as you explore the possibilities for the sum block. 

 Figure 16.8 
 The sum block can be used 
to perform subtraction 
operations, as well as for 
adding more than two 
input values.       

  HINT    
 Simulink® includes a “subtraction” block, but if you open its block parameter 
window you’ll notice the block title is “sum.” 

 The previous example was trivial. A slightly more complex model, with results 
that change with time, is described in  Example   16.1.     
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  EXAMPLE 16.1
  RANDOM NUMBERS 
 As we saw in  Example   3.5   , random numbers can be used to simulate the noise we 
hear on the radio as static. Although we could solve a similar problem in MATLAB ® , 
let’s use Simulink®. In this case, instead of a music fi le use a sine wave as the input 
to which we want to add the noise, using the following equation: 

   y � 5*sin(2t) � noise    

 The noise should be the result of a uniform random number generator, with a 
range of 0 to 1. 

   1.   State the Problem 
  Create a Simulink® model of the equation 

   y � 5*sin(2t) � noise    

  where the noise is based on a random number.  
  2.   Describe the Input and Output 

   Input   Use Simulink®’s built-in sine wave generator to provide the sine wave. 
   Use Simulink®’s built-in random number generator to simulate the 

noise.  

Output   View the results using the Simulink® Scope block.    

3.   Develop a Hand Example 
  In this case, since we are well versed in MATLAB ® , a MATLAB ®  solution will 

substitute for a hand example.   

t=0:0.1:10;
noise = rand(size(t));
y=5*sin(2*t)+noise;
plot(t,y)
title('A sine wave with noise added')
xlabel('time,s'), ylabel ('function value')

  which results in the plot shown in  Figure   16.9   . 
    4.   Develop a Simulink® Solution 
  Simulink® includes blocks for creating both sine waves, and for uniform ran-

dom number generators. You can fi nd both in the Source Library. You’ll also 
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A sine wave with noise added Figure 16.9 
 Adding noise to a sine 
wave can be 
accomplished using 
MATLAB ® , as well as 
Simulink®.       
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need to include an add block. Finally, add a scope (the name comes from the 
word “oscilloscope”) to view the plotted result. Your model should resemble 
the one shown in  Figure   16.10   . Notice that the time fi eld in the upper right 
corner of the model is set to 10 seconds, and that two additional scopes were 
added so that we can observe the behavior of the sine wave generator, the ran-
dom number generator, and the combined output. 
   The model specifi es only a sine wave, not the entire sine portion of the 
expression,    5*sin(2t)   . Open the Sine Wave block by double clicking on the icon 
inside the model. The Source Block Parameters window opens (as shown in 
 Figure   16.11   ), allowing us to specify the amplitude, the frequency and addi-
tional parameters as needed. By changing the amplitude to 5 and the frequency 
to 2, the block now represents the fi rst term in our equation. 
   Similarly, the random number generator parameter window can be modi-
fi ed to specify a minimum value of 0 and a maximum value of 1. Run the model 
by selecting the black start simulation triangle, or by selecting Simulation ➞
Start. To view the output, double click on each of the scopes. Scale the images 
by selecting the binocular icon as shown in  Figure   16.12   , which shows the 
results of the combined inputs. 

5.   Test the Solution 
  Compare the results to those found with the MATLAB ®  solution. We could also 

revise the model, so that the results are sent to MATLAB ®  by replacing the scope 
for the combined output with the simout block, as shown in  Figure   16.13   . The 
simout block is found in the sinks library. Before running the model, you’ll need 
to modify the block parameters (double click on the block to open the window). 
Change the Save format from Structure to Array. Re-execute the model, and 
observe that two new arrays have appeared in the MATLAB ®  workspace window, 
simout   and   tout  , both of which are 101x1 double precision arrays. The values 
in the arrays can now be used for plotting, or in other calculations. 

(continued)

 Figure 16.10 
 Simulink® model to add 
noise to a sine wave.       
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Binocular icon used to resize
the plotting window

 Figure 16.12 
 The scope output from 
the three oscilloscopes 
specifi ed in the 
Simulink® model.       

 Figure 16.13 
 The simout block sends 
simulation results to the 
MATLAB ®  workspace, 
where they can be used 
in other calculations as 
needed.       

(a) (b)

 Figure 16.11 
 (a) The Sine Wave 
parameter window. 
(b) The Uniform 
Random Number 
parameter window. The 
Source Block Parameter 
window for each 
Simulink® block allows 
the user to modify the 
default values of the 
input parameters. 
Access the parameter 
window by double 
clicking on the block in 
the model window.       
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       16.3   SOLVING DIFFERENTIAL EQUATIONS WITH SIMULINK® 

 Thus far the problems we’ve solved by creating models in Simulink® could have 
been solved more readily in MATLAB ® . Where Simulink® really excels is in solving 
differential equations. In general, a differential equation includes a dependent var-
iable, an independent variable, and the derivative of the dependent variable with 
respect to the independent variable. For example, 

   
dy

dt
� t 2 � y   

 is a differential equation. In this case  y  is the dependent variable,  t  is the independ-
ent variable, and d y /d t  is the derivative with respect to  t . In function notation, 

   
dy

dt
� f (t, y)   

 To fi nd  y , we could integrate 

   y �L
dy

dt
 dt �L f(t, y)dt    

 This equation has an infi nite number of solutions, unless the initial value of  y  is 
defi ned. For this problem we’ll set  y (0) = 0. 

 To solve this problem in Simulink®, create a model by dragging the appropriate 
blocks onto the model window, and connecting them as shown in  Figure   16.14   .

   The blocks include the following: 

   •   A clock, to generate times (Source library)  
  •   A math function block, modifi ed in the parameter window to square the block 

input (Math Operations library)  
  •   A sum block (Commonly Used Blocks library)  
  •   An integrator block (Continuous library)  
  •   A scope block (Sink library)   

 Adjust the integrator block in the parameter window so that the initial condi-
tion is 0. The scope output, after running the model, is shown in  Figure   16.15   . (You 
may need to click on the binocular icon to see the entire plot in the scope screen.) 

t

y
t2

t2+y

 Figure 16.14 
 Simulink® model to solve 
the differential equation 

   
dy
dt

� t 2 � y          .



614 Chapter 16 Simulink®—A Brief Introduction

 An alternative approach to this problem might be to use MATLAB ® ’s symbolic 
algebra capability to solve the same problem, as discussed in an earlier chapter. 
Because this is a simple differential equation, the   dsolve   function can be used.   

y = dsolve('Dy = t^2 + y','y(0) = 0')
ezplot(y,[0,10])

 The solution to the differential equation is shown analytically in the command 
window as   

y =
2*exp(t) – 2*t - t^2 – 2

 and the plot is shown in  Figure   16.15   b. 

(a) (b)

 Figure 16.15 
 A plot of the solution to the 
ordinary differential 
equation,    dy/dt � t2 � y   , 
with  y (0) = 0. (a) Plot 
created with Simulink®. 
(b) Plot created in 
MATLAB ®  using symbolic 
algebra.       

   EXAMPLE 16.2
  VELOCITY OF A FALLING OBJECT 
 Consider an object, falling toward the ground. A widely reported equation describ-
ing the resulting velocity is the differential equation: 

   
dv
dt

 � g �
c
m

 v2   

 where 

    g  is the acceleration due to gravity  

   v  is the velocity  

   m  is the mass  

   c  is the second-order drag coeffi cient   

 Solve this equation by fi nding velocity as a function of time, for the fi rst 15 seconds. 

   1.   State the Problem 
  Use Simulink® to fi nd the time versus velocity behavior of a falling object.  
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2.   Describe the Input and Output 

Input     g  = 9.81 m/s 2    
     m  = 70 kg     
     c  = 0.3 kg/m     
     v (0) = 0 m/s    

  Output   Plot of velocity versus time from 0 to 15 seconds    

  3.   Develop a Hand Example 
  Given that the initial velocity is 0, we would expect that the velocity would rap-

idly increase—but would eventually level off and reach a terminal value. We 
would expect a plot much like the sketch shown in  Figure   16.16   . 

    4.   Develop a Simulink® Solution 
  The Simulink® model is shown in  Figure   16.17    along with the resulting plot 

displayed on the scope. It is composed of 

   • Three constant blocks  
  • Both a divide and product block  
  • An add block  
  • An integrator block  
  • Math function block, set to square the output of the integrator block   

  As you build the model, you will notice that some of the blocks are reversed 
from their standard orientation. You can accomplish this by placing the block 
into the model, right clicking the icon, and selecting Format from the drop-
down menu. There are a number of choices that allow the user to select a con-
venient block orientation. In particular, notice that the math function block 
has been fl ipped to accommodate the data fl ow leaving the integrator block. 
Also notice that the time block has been set to 15 seconds. 
   If a simout block is used to replace the scope block, the output data is sent to 
MATLAB ® , where it could be used in other programs, or plotted in the usual manner.  

  5.   Test the Solution 
  Because we are well versed in MATLAB ® , we could also solve the problem using 

MATLAB ®  and the tools found in the symbolic algebra toolbox.   

clear,clc
y = dsolve('Dv = g-c/m*v^2','v(0) = 0')
y = subs(y,{'g','c','m'},{9.81,0.30,70})
ezplot(y,[0,15])
title('A falling object'), xlabel('time,s')
ylabel('velocity, m/s')

  The resulting plot is shown in  Figure   16.18   , and corresponds well to the scope 
output from the Simulink® model. 
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 Figure 16.16 
 Projected behavior of 
the velocity versus time 
curve, for a falling 
object.       

(continued)
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 Figure 16.17 
 Simulink® model to 
solve the falling object 
problem.       

 Figure 16.18 
 The velocity plot for a 
falling object. (a) Plot 
created using Simulink®. 
(b) Plot created using 
MATLAB ® ’s symbolic 
algebra tools. Notice 
that in both cases the 
velocity levels-off 
around 47 m/s.       
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Figure 16.17 
Simulink® model to 
solve the falling object 
problem.       

Figure 16.18 
The velocity plot for a 
falling object. (a) Plot 
created using Simulink®kk .
(b) Plot created using 
MATLAB ® ’s symbolic 
algebra tools. Notice 
that in both cases the 
velocity levels-off 
around 47 m/s. 

      EXAMPLE 16.3
  POSITION OF A FALLING OBJECT 
 In the previous example, we solved the following differential equation for velocity 
as a function of time. 

   
dv
dt

 � g �
c
m

 v2   

 However, velocity can also be described as a derivative; it is the rate of change of 
position with time. 

   v �
dx
dt
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 We could reformulate the velocity equation in terms of position as 

   
d2x
dt 2 � g �

c
m
adx

dt
b2

   

 Use Simulink® to create a plot showing how far the object has fallen, as a function 
of time. 

1.   State the Problem 
  Solve the second-order differential equation 

   
d2x
dt 2 � g �

c
m
adx

dt
b2

   

  for  x  as a function of  t .  
2.   Describe the Input and Output 

   Input 
g = 9.81 m/s2   

                  m = 70 kg   
                  c = 0.3 kg/m   
                  v(0) = 0   
                  x(0) = 0   
                  t = 0–15 seconds   

  Output   Create a plot, showing how x changes with time, using the Simulink®

Scope. Also send the results to MATLAB®.    

3.   Develop a Hand Example 
  As the object falls, it eventually reaches a terminal velocity, as shown in the pre-

vious example problem. At that point, x should be increasing at a steady rate. A 
sketch of the expected behavior is shown in  Figure   16.19   . 

4.   Develop a Simulink® Solution 
  The model created in the previous example can be expanded by adding an 

integration block, and by splitting the output into feeds leading to both the 
scope and the simout block (see  Figure   16.20   ). Be sure to adjust the simout 
block to report the data as an array. 

   The plot created in the scope is shown in  Figure   16.21   a.  
5.   Test the Solution 
  Once again we could use MATLAB ®  to solve this second-order differential 

equation using the symbolic algebra toolbox.   

x = dsolve('D2x = g-c/m*Dx^2','x(0) = 0','Dx(0) = 0')
x = subs(x,{'g','c','m'},{9.81,0.30,70})
ezplot(x,[0,15])
title('A falling object'), xlabel('time,s'), ylabel('position, m')

time, s
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, m

 Figure 16.19 
 Expected position of an 
object reaching terminal 
velocity.       

(continued)
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  The resulting plot ( Figure   16.21   b) matches the scope output, and thus verifi es 
our calculations. 
   By using both Simulink® and a symbolic algebra approach, we can develop 
confi dence in the Simulink® solutions. Not all problems can be solved symboli-
cally, so having both approaches available is important. This example was inspired 
by Steven Chapra’s use of a skydiver to illustrate techniques to solve differential 
equations, in ‘Numerical Methods for Engineers’, McGraw-Hill, 2010.        
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 Figure 16.21 
 The position of a falling 
object. (a) Results from 
the Simulink® Scope. 
(b) Results from 
MATLAB ®  using a 
symbolic algebra 
solution.       

 Simulink® is part of the MATLAB ®  family of programs. It uses a graphical user 
interface to facilitate the development of models that represent real systems. 
Simulink® is especially useful for modeling dynamic systems––those that can be 
mathematically described as differential equations. 

     SUMMARY 

position, x

velocity, dx/dtacceleration, d2x/dt2

 Figure 16.20 
 Simulink® model to 
solve the second-order 
differential equation, 
d2x
dt2

� g �
c
m
adx

dt
b2

          .
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 Command and Function   

 simulink ®  opens the Simulink® library browser 

 dynamic systems 
 analog computers 

 differential equations 
 model 

 block
  

      KEY TERMS 

   16.1    The sinc function is often used in electrical engineering applications. It is 
defi ned as 

   sinc(x) �
sin(x)

x
   

  Use Simulink® to model the behavior of the sinc function, from �20 to 20 
seconds. Display your results using Simulink®’s scope block. To adjust the 
simulation time, in the model window menu bar select Simulation ➞ 
Confi guration Parameters.   

   16.2    The equation of a circle can be represented parametrically as 

   x � sin(t)   

   y � cos(t)   

  where  t  varies from 0 to 2*pi. Create a Simulink® model to parametrically 
graph a circle using the  xy  graph block found in the sink library. To model 
cosine, you will need to modify the Sin block.   

   16.3.    The multiplexer block (Mux) accepts multiple inputs that can then be sent 
to a scope block to create a graph with multiple signal plots. Use two sine 
blocks to create a signal representing the sin( t ) and the cos( t ). Combine 
the signals with the Mux block (found in the Commonly Used Blocks 
library), and plot the results from 0 to 20 seconds, using a Scope block.   

   16.4    The derivative block fi nds the derivative (rate of change) of the incoming 
signal. Create a Simulink® model that fi nds the derivative of 

   y �
1
t
   

  and which plots both y and d y /d t  in the scope window, for times from 0 to 
10 seconds. You’ll need a Clock (time) block, the Math Function block, the 
Derivative block, and a Mux block, in addition to the Scope block.   

  PROBLEMS 

 Simulink® relies on a large library of blocks, which can be combined to solve a 
wide variety of problems. Its visual approach offers an alternative to building m-fi le 
programs using the numerical techniques described in earlier chapters. However, 
these same techniques (for example, ode45) are used by Simulink® when its mod-
els are executed. 

 The MATLAB ®  help function includes an extensive tutorial on using Simulink®, 
including many examples.   
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  Applications  

  16.5     The change in internal energy (kJ/kmol) of an ideal gas over a given tem-
perature range can be represented by the equation: 

   �u � L
T2

T1

1a � R � bT � cT 2 � dT 32dT    

 where  T  is the temperature in kelvin. 
 For nitrogen, the constant values are: 

    a  � 28.90   
    b  � �0.1571 � 10 �2    
    c  � 0.8081 � 10 �5    
    d  � �2.873 � 10 �9    
    R  � 8.31447 kJ/kmol K   

  Use Simulink® to plot the value of the change in internal energy (Δ u ) 
between 0 K and a temperature of 1000 K. (Use the time block to simulate 
the values of  T .) 
  Data Source: B.G. Kyle, Chemical and Process Thermodynamics (Englewood 
Cliffs, NJ: Prentice Hall, 1984).   

  16.6     Newton’s law of cooling tells us that the rate at which an object cools is 
 proportional to the difference in temperature between the object and the 
surroundings (Figure P16.6). In other words, 

   
dT
dt

� k(T � Tsurroundings)   

  where  k  is a proportionality constant. If for a cup of hot coffee, the 
surroundings temperature is 70°F, the constant is 0.5 min �1  and the initial 
temperature is 110°F, plot the temperature of the object as a function of 
time for 10 minutes.       

     16.7     The rate of a chemical reaction is related to the concentration of the reac-
tants. For example, a fi rst-order reaction would have the following relation-
ship between the rate of change of the reactant and the concentration of 
said reactant: 

   
d3A4

dt
� � k*3A4    

  A slightly more complicated reaction might be dependant upon the square 
of the reactant concentration: 

   
d3A4

dt
� � k*3A42   

  Model the change in concentration, [ A ], with time using Simulink® for 
both the fi rst- and second-order reaction problems. Assume  k  = 0.1 min �1  
for the fi rst-order reaction and  k  = 0.1 l/mol min for the second-order 
reaction. The initial concentration, [ A ], is 5 mol/l. Display the results using 
a Simulink® Scope block. (Choose an appropriate length of time for the 
simulation, based upon your intermediate results.)   

  16.8     Blasius showed in 1908 that the solution to the incompressible fl ow fi eld in 
a laminar boundary layer on a fl at plate is given by the solution of the fol-
lowing third-order ordinary nonlinear differential equation. 

   2
d3f

dh3 � f 
d2f

dh2 � 0   

 Figure P16.6 
 A cup of hot coffee cools 
according to Newton’s law 
of cooling.       
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 To solve this system for  f , fi rst solve for the highest order derivative. 

   
d3f

dh3 � -0.5 f 
d2f

dh2   

  Now use Simulink® to create a model. You’ll need three integration blocks 
plus a multiplier and a gain block (the gain block multiplies by a constant), 
in addition to a scope block to view the output. The initial conditions are: 

    
d2f(0)

dt2
� 0.332   

    
df(0)

dt
� 0    

    f(0) � 0      

  16.9     If a projectile such as a bullet or a rocket is fi red vertically, the only force 
acting on it is the force due to gravity. A force balance yields the equation: 

   
d2x
dt2

� -g a R21R � x22 b    

 where 
    x  is the vertical distance measured from the surface of the earth in meters  
   R  is the radius of the earth, 6.4 × 10 6  m  
   g  is the acceleration due to gravity, 9.81 m/s 2    

  Model this equation using Simulink®. Display a graph of the projectile 
height,  x , as a function of time. Assume that the initial height is 0, and the 
initial velocity is 100 m/s. ( dx / dt  = 100 at time = 0.)   

  16.10     The motion of a pendulum ( Figure   P16.10   ) can be modeled with an ordi-
nary second-order differential equation as: 

   
d2u

dt2
� -

g

L
 sin1u2   

 where 
    u  is the vertical angle  
   g  is the acceleration due to gravity, 9.81 m/s 2   
   L  is the length of the pendulum, 2 m   

  Model the behavior of the pendulum (i.e., the angle as a function of time) 
with Simulink®. Assume the initial angle,  u , is 30° (π/6 radian) and that the 
initial angular velocity is 0 (d u /d t  = 0). 

      16.11    Consider the simple RC series circuit shown in  Figure   P16.11   . 
   At time zero the switch is turned on, allowing to current to fl ow. Assuming 
that constant voltage is applied, the response of the circuit can be described 
by the differential equation: 

   R 
di
dt

�
i
C

� 0   

 which can be rearranged to 

   
di
dt

� -
1

R *C
 * i   

L
�

 Figure P16.10 
 The Motion of a pendulum 
is described by a second-
order differential equation.       
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   The behavior of this system depends upon the relative values of  L ,  C , and  R  
(the inductance, capacitance, and the resistance). When 

    R2 7
4L
C

    the system is “over-damped,” when

    R2 6
4L
C

    the system is “under-damped.” And when

    R2 �
4L
C

     the system is “critically damped.” 

  Use Simulink® to model the system response, assuming that  R  = 100,000 Ω 
and  C  = 1 × 10 −6  F. Select values of  L  to meet each of the damping conditions 
described above. Calculate the initial current value from Ohm’s law 

   V � iR   

 with a constant voltage value of 5 V applied to the system.      

  Use Simulink® to model the system response, assuming that  R  = 100,000 Ω 
and  C  = 1 × 10 −6  F. Calculate the initial current value from Ohm’s law 

   V � iR   

 with a constant voltage value of 5 V applied to the system.   

V

t�0

�

�

R

CL

i Figure P16.12 
 A simple RCL circuit can be 
described by a second-
order differential equation.       

V

t�0

�

�

R

C

i Figure P16.11 
 A simple RC series circuit.       

   16.12    The current,  i , fl owing through the circuit shown in  Figure   P16.12   , can be 
described by a second-order differential equation: 

   L 
d2i
dt2

�R 
di
dt

�
1
C

 i � 0   

 which can be rearranged to give 

   
d2i
dt2 � -

R
L

 
 di
 dt

�
1

L * C
 i   



A
APPENDIX

  Special Characters, 
Commands, and 
Functions 

 The tables presented in this appendix are grouped according to category, which 
roughly parallels the chapter organization.        

  Special Characters    Matrix Definition    Chapter  

  [ ]   forms matrices   Chapter   2    
  ( )   used in statements to group operations;   Chapter   2    
   used with a matrix name to identify specifi c elements    
  ,   separates subscripts or matrix elements   Chapter   2    
  ;   separates rows in a matrix defi nition;   Chapter   2    
   suppresses output when used in commands   
  :   used to generate matrices;   Chapter   2    

   indicates all rows or all columns   
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  Special 
Characters  

  Operators Used in MATLAB  ®   Calculations 
(Scalar and Array)  

  
Chapter  

  =   assignment operator: assigns a value to a   Chapter   2    
   memory location; not the same as an equality   

  %   indicates a comment in an M-fi le   Chapter   2    

 %%  creates a cell, used to organize code   Chapter   2    

  +   scalar and array addition   Chapter   2    

  -   scalar and array subtraction   Chapter   2    

  *   scalar multiplication and multiplication in   Chapter   2    
   matrix algebra   

  .*   array multiplication (dot multiply or dot star)   Chapter   2    

  /   scalar division and division in matrix algebra   Chapter   2    

  ./   array division (dot divide or dot slash)   Chapter   2    

  ̂    scalar exponentiation and matrix exponentiation   Chapter   2    
   in matrix algebra   

  .^   array exponentiation (dot power or dot carat)   Chapter   2    

  ...   ellipsis: continued on the next line   Chapter   4    

  []   empty matrix   Chapter   4    

  Commands    Formatting    Chapter  

  format +   sets format to plus and minus signs only   Chapter   2    

  format compact   sets format to compact form   Chapter   2    

  format long   sets format to 14 decimal places   Chapter   2    

  format long e   sets format to 14 exponential places   Chapter   2    

  format long eng   sets format to engineering notation with 14 decimal places   Chapter   2    

  format long g   allows MATLAB ®  to select the best format (either fi xed 
point or fl oating point), using 14 decimal digits 

  Chapter   2    

  format loose   sets format back to default, noncompact form   Chapter   2    

  format short   sets format back to default, 4 decimal places   Chapter   2    

  format short e   sets format to 4 exponential places   Chapter   2    

  format short eng   sets format to engineering notation with 4 decimal places   Chapter   2    

  format short g   allows MATLAB ®  to select the best format (either fi xed 
point or fl oating point), using 4 decimal digits 

  Chapter   2    

  format rat   sets format to rational (fractional) display   Chapter   2    
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  Commands    Basic Workspace Commands    Chapter  

  ans   default variable name for results of MATLAB ®  calculations   Chapter   2    

  clc   clears command screen   Chapter   2    

  clear   clears workspace   Chapter   2    

  diary   saves both commands issued in the workspace and the results 
to a fi le 

  Chapter   2    

  exit   terminates MATLAB ®    Chapter   2    

  help   invokes help utility   Chapter   2    

  load   loads matrices from a fi le   Chapter   2    

  quit   terminates MATLAB ®    Chapter   2    

  save   saves variables in a fi le   Chapter   2    

  who   lists variables in memory   Chapter   2    

  whos   lists variables and their sizes   Chapter   2    

  help   opens the help function   Chapter   3    

  helpwin   opens the windowed help function   Chapter   3    

  clock   returns the time   Chapter   3    

  date   returns the date   Chapter   3    

  intmax   returns the largest possible integer number used in MATLAB ®    Chapter   3    

  intmin   returns the smallest possible integer number used in MATLAB ®    Chapter   3    

  realmax   returns the largest possible fl oating-point number used in MATLAB ®    Chapter   3    

  realmin   returns the smallest possible fl oating-point number used in MATLAB ®    Chapter   3    

  ascii   indicates that data should be saved in a standard ASCII format   Chapter   2    

  pause   pauses the execution of a program until any key is hit   Chapter   5    

  Special 
Functions  

  Functions with Special Meaning That 
Do Not Require an Input  

  
Chapter  

  pi   numeric approximation of the value of    �      Chapter   2    

  eps   smallest difference recognized   Chapter   3    

  I   imaginary number   Chapter   3    

  Inf   Infi nity   Chapter   3    

j     imaginary number   Chapter   3    

  NaN   not a number   Chapter   3    
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  Functions    Elementary Math    Chapter  

  abs   computes the absolute value of a real number or the 
magnitude of a complex number 

  Chapter   3    

  erf   calculates the error function   Chapter   3    

  exp   computes the value of    ex      Chapter   3    

  factor   fi nds the prime factors   Chapter   3    

  factorial   calculates the factorial   Chapter   3    

  gcd   fi nds the greatest common denominator   Chapter   3    

  isprime   determines whether a value is prime   Chapter   3    

  isreal   determines whether a value is real or complex   Chapter   3    

  lcn   fi nds the least common denominator   Chapter   3    

  log   computes the natural logarithm, or log base    e(loge)      Chapter   3    

  log10   computes the common logarithm, or log base    10(log10)      Chapter   3    

  log2   computes the log base    2(log2)      Chapter   3    

  nthroot   fi nds the real  n th root of the input matrix   Chapter   3    

  primes   fi nds the prime numbers less than the input value   Chapter   3    

  prod   multiplies the values in an array   Chapter   3    

  rats   converts the input to a rational representation (i.e., a fraction)   Chapter   3    

  rem   calculates the remainder in a division problem   Chapter   3    

  sign   determines the sign (positive or negative)   Chapter   3    

  sqrt   calculates the square root of a number   Chapter   3    

  sum   sums the values in an array   Chapter   3    

  Functions    Trigonometry    Chapter  

  asin   computes the inverse sine (arcsine)   Chapter   3    

  asind   computes the inverse sine and reports the result in degrees   Chapter   3    

  cos   computes the cosine   Chapter   3    

  sin   computes the sine, using radians as input   Chapter   3    

  sind   computes the sine, using angles in degrees as input   Chapter   3    

  sinh   computes the hyperbolic sine   Chapter   3    

  tan   computes the tangent, using radians as input   Chapter   3    

 MATLAB ®  includes all of the trigonometric functions; only those specifi cally discussed in the text are included here. 

  Functions    Complex Numbers    Chapter  

  abs   computes the absolute value of a real number or the magnitude 
of a complex number 

  Chapter   3    

  angle   computes the angle when complex numbers are represented 
with polar coordinates 

  Chapter   3    

  complex   creates a complex number   Chapter   3    

  conj   creates the complex conjugate of a complex number   Chapter   3    

  imag   extracts the imaginary component of a complex number   Chapter   3    

  isreal   determines whether a value is real or complex   Chapter   3    

  real   extracts the real component of a complex number   Chapter   3    
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  Functions    Random Numbers    Chapter  

  rand   calculates evenly distributed random numbers   Chapter   3    

  randn   calculates normally distributed (Gaussian) random numbers   Chapter   3    

  Functions    Rounding    Chapter  

  ceil   rounds to the nearest integer toward positive infi nity   Chapter   3    

  fix   rounds to the nearest integer toward zero   Chapter   3    

  floor   rounds to the nearest integer toward minus infi nity   Chapter   3    

  round   rounds to the nearest integer   Chapter   3    

  Functions    Data Analysis    Chapter  

  cumprod   computes the cumulative product of the values in an array   Chapter   3    

  cumsum   computes the cumulative sum of the values in an array   Chapter   3    

  length   determines the largest dimension of an array   Chapter   3    

  max   fi nds the maximum value in an array and determines which 
element stores the maximum value 

  Chapter   3    

  mean   computes the average of the elements in an array   Chapter   3    

  median   fi nds the median of the elements in an array   Chapter   3    

  min   fi nds the minimum value in an array and determines which 
element stores the minimum value 

  Chapter   3    

  mode   fi nds the most common number in an array  Chapter3 

  nchoosek   fi nds the number of possible combinations when a subgroup 
of k values is chosen from a group of n values 

  Chapter   3    

  numel   determines the total number of elements in an array   Chapter   3    

  size   determines the number of rows and columns in an array   Chapter   3    

  sort   sorts the elements of a vector   Chapter   3    

  sortrows   sorts the rows of a vector on the basis of the values in the 
fi rst column 

  Chapter   3    

  prod   multiplies the values in an array   Chapter   3    

  sum   sums the values in an array   Chapter   3    

  std   determines the standard deviation   Chapter   3    

  var   computes the variance   Chapter   3    
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  Functions    Matrix Formulation, Manipulation, and Analysis    Chapter  

  meshgrid   maps vectors into a two-dimensional array   Chapters   4    and    5    

  diag   extracts the diagonal from a matrix   Chapter   4    

  fliplr   fl ips a matrix into its mirror image from left to right   Chapter   4    

  flipud   fl ips a matrix vertically   Chapter   4    

  linspace   linearly spaced vector function   Chapter   2    

  logspace   logarithmically spaced vector function   Chapter   2    

  cross   computes the cross product   Chapter   9    

  det   computes the determinant of a matrix   Chapter   9    

  dot   computes the dot product   Chapter   9    

  inv   computes the inverse of a matrix   Chapter   9    

  rref   uses the reduced row echelon format scheme for solving 
a series of linear equations 

  Chapter   9    

  Functions    Two-Dimensional Plots    Chapter  

  bar   generates a bar graph   Chapter   5    

  barh   generates a horizontal bar graph   Chapter   5    

  contour   generates a contour map of a three-dimensional surface   Chapter   5    

  comet   draws an  x – y  plot in a pseudo animation sequence   Chapter   5    

  fplot   creates an  x–y    plot on the basis of a function   Chapter   5    

  hist   generates a histogram   Chapter   5    

  loglog   generates an  x–y    plot with both axes scaled logarithmically   Chapter   5    

  pcolor   creates a pseudo color plot similar to a contour map   Chapter   5    

  pie   generates a pie chart   Chapter   5    

  plot   creates an  x–y  plot   Chapter   5    

  plotyy   creates a plot with two  y -axes   Chapter   5    

  polar   creates a polar plot   Chapter   5    

  semilogx   generates an  x–y    plot with the  x -axis scaled logarithmically   Chapter   5    

  semilogy   generates an  x–y    plot with the  y -axis scaled logarithmically   Chapter   5    

  Functions    Three-Dimensional Plots    Chapter  

  bar3   generates a three-dimensional bar graph   Chapter   5    

  bar3h   generates a horizontal three-dimensional bar graph   Chapter   5    

  comet3   draws a three-dimensional line plot in a pseudo animation sequence   Chapter   5    

  mesh   generates a mesh plot of a surface   Chapter   5    

  peaks   creates a sample three-dimensional matrix used to demonstrate 
graphing functions 

  Chapter   5    

  pie3   generates a three-dimensional pie chart   Chapter   5    

  plot3   generates a three-dimensional line plot   Chapter   5    

  sphere   sample function used to demonstrate graphing   Chapter   5    

  surf   generates a surface plot   Chapter   5    

  surfc   generates a combination surface and contour plot   Chapter   5    
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  Special Characters    Control of Plot Appearance    Chapter  

  Indicator    Line Type    

  -   Solid   Chapter   5    

  :   dotted   Chapter   5    

  -.   Dash-dot   Chapter   5    

  --   dashed   Chapter   5    

  Indicator    Point Type    

  .   point   Chapter   5    

  o   circle   Chapter   5    

  x   x-mark   Chapter   5    

  +   Plus   Chapter   5    

  *   Star   Chapter   5    

   s    square   Chapter   5    

   d    diamond   Chapter   5    

   

^

    triangle down   Chapter   5    

  ̂    triangle up   Chapter   5    

  <   triangle left   Chapter   5    

  >   triangle right   Chapter   5    

   p    pentagram   Chapter   5    

   h    hexagram   Chapter   5    

  Indicator    Color    

   b    blue   Chapter   5    

   g    green   Chapter   5    

   r    red   Chapter   5    

   c    cyan   Chapter   5    

   m    Magenta   Chapter   5    

   y    Yellow   Chapter   5    

   k    Black   Chapter   5    
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  Functions    Figure Control and Annotation    Chapter  

   axis    freezes the current axis scaling for subsequent plots   Chapter   5    
   or specifi es the axis dimensions   

axis equal    forces the same scale spacing for each axis   Chapter   5    

  colormap   color scheme used in surface plots   Chapter   5    

  figure   opens a new fi gure window   Chapter   5    

  gtext   Similar to text. The box is placed at a location determined 
interactively by the user by clicking in the fi gure window 

  Chapter   5    

  grid   adds a grid to the current plot only   Chapter   5    

  grid off   turns the grid off   Chapter   5    

  grid on   adds a grid to the current and all subsequent   Chapter   5    

   graphs in the current fi gure   

  hold off   instructs MATLAB ®  to erase fi gure contents before   Chapter   5    
   adding new information   

  hold on   instructs MATLAB ®  not to erase fi gure contents before   Chapter   5    
   adding new information   

  legend   adds a legend to a graph   Chapter   5    

  shading flat   shades a surface plot with one color per grid section   Chapter   5    

  shading interp   shades a surface plot by interpolation   Chapter   5    

  subplot   divides the graphics window up into sections   Chapter   5    
   available for plotting   

  text   adds a text box to a graph   Chapter   5    

  title   adds a title to a plot   Chapter   5    

  xlabel   adds a label to the  x -axis   Chapter   5    

  ylabel   adds a label to the  y -axis   Chapter   5    

  zlabel   adds a label to the  z -axis   Chapter   5    
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  Functions    Figure Color Schemes    Chapter  

  autumn   optional colormap used in surface plots   Chapter   5    

  bone   optional colormap used in surface plots   Chapter   5    

  colorcube   optional colormap used in surface plots   Chapter   5    

  cool   optional colormap used in surface plots   Chapter   5    

  copper   optional colormap used in surface plots   Chapter   5    

  flag   optional colormap used in surface plots   Chapter   5    

  hot   optional colormap used in surface plots   Chapter   5    

  hsv   optional colormap used in surface plots   Chapter   5    

  jet   default colormap used in surface plots   Chapter   5    

  pink   optional colormap used in surface plots   Chapter   5    

  prism   optional colormap used in surface plots   Chapter   5    

  spring   optional colormap used in surface plots   Chapter   5    

  summer   optional colormap used in surface plots   Chapter   5    

  white   optional colormap used in surface plots   Chapter   5    

  winter   optional colormap used in surface plots   Chapter   5    

  Functions and 
Special Characters  

  
Function Creation and Use  

  
Chapter  

  addpath   adds a directory to the MATLAB ®  search path   Chapter   6    

  function   identifi es an M-fi le as a function   Chapter   6    

  nargin   determines the number of input arguments   Chapter   6    
   in a function   

  nargout   determines the number of output arguments   Chapter   6    
   from a function   

  pathtool   opens the interactive path tool   Chapter   6    

  varargin   indicates that a variable number of arguments   Chapter   6    
   may be input to a function   

  @   identifi es a function handle, such as any   Chapter   6    
   of those used with anonymous functions   

  %   comment   Chapter   6    

  matlabFunction   converts a symbolic expression into a MATLAB ®  funciton   Chapter   13    
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  Special Characters    Format Control    Chapter  

  '   begins and ends a string   Chapter   7    

  %   placeholder used in the  fprintf  command   Chapter   7    

  %f   fi xed-point, or decimal, notation   Chapter   7    

  %d   decimal notation   Chapter   7    

  %e   exponential notation   Chapter   7    

  %g   either fi xed-point or exponential notation   Chapter   7    

  %s   string notation   Chapter   7    

  %%   cell divider   Chapter   7    

  \n   linefeed   Chapter   7    

  \r   carriage return (similar to linefeed)   Chapter   7    

  \t   tab   Chapter   7    

  \b   backspace   Chapter   7    

  Functions    Input/Output (I/O) Control    Chapter  

  disp   displays a string or a matrix in the command window   Chapter   7    

  fprintf   creates formatted output which can be sent to the command 
window or to a fi le 

  Chapter   7    

  ginput   allows the user to pick values from a graph   Chapter   7    

  input   allow the user to enter values   Chapter   7    

  pause   pauses the program   Chapter   7    

  sprintf   similar to  fprintf 
creates formatted output which is assigned to a variable 
name and stored as a character array 

  Chapter   7    

  uiimport   launches the Import Wizard   Chapter   7    

  wavread   reads wave fi les   Chapter   7    

  xlsimport   imports Excel data fi les   Chapter   7    

  xlswrite   exports data as an Excel fi le   Chapter   7    

  load   loads matrices from a fi le   Chapter   2    

  save   saves variables in a fi le   Chapter   2    

  celldisp   displays the contents of a cell array   Chapter   11    

  imfinfo   reads a standard graphics fi le and determines what   Chapter   14    

   type of data it contains   

  imread   reads a graphics fi le   Chapter   14    

  mwrite   writes a graphics fi le   Chapter   14    

  Functions    Comparison Operators    Chapter  

  <   less than   Chapter   8    

  <=   less than or equal to   Chapter   8    

  >   greater than   Chapter   8    

  >=   greater than or equal to   Chapter   8    

  ==   equal to   Chapter   8    

  ~=   not equal to   Chapter   8    
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  Special Characters    Logical Operators    Chapter  

  &   and   Chapter   8    

  |   or   Chapter   8    

  ~   not   Chapter   8    

xor  exclusive or   Chapter   8    

  Functions    Control Structures    Chapter  

  break   causes the execution of a loop to be terminated   Chapter   9    

  case   sorts responses   Chapter   8    

  continue   terminates the current pass through a loop, but proceeds   Chapter   9    
   to the next pass   

  else   defi nes the path if the result of an  if  statement is false   Chapter   8    

  elseif   defi nes the path if the result of an  if  statement is false,   Chapter   8    
   and specifi es a new logical test   

  end   identifi es the end of a control structure   Chapter   8    

  for   generates a loop structure   Chapter   9    

  if   checks a condition resulting in either true or false   Chapter   8    

  menu   creates a menu to use as an input vehicle   Chapter   8    

  otherwise   part of the case selection structure   Chapter   8    

  switch   part of the case selection structure   Chapter   8    

  while   generates a loop structure   Chapter   9    

  Functions    Logical Functions    Chapter  

  all   checks to see if a criterion is met by all the elements   Chapter   8    
   in an array   

  any   checks to see if a criterion is met by any of the elements   Chapter   8    
   in an array   

  find   determines which elements in a matrix meet the input criterion   Chapter   8    

  isprime   determines whether a value is prime   Chapter   3    

  isreal   determines whether a value is real or complex   Chapter   3    

  Functions    Timing    Chapter  

  clock   determines the current time on the CPU clock   Chapter   9    

  etime   fi nds elapsed time   Chapter   9    

  tic   starts a timing sequence   Chapter   9    

  toc   stops a timing sequence   Chapter   9    

  date   returns the date   Chapter   3    
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  Functions    Special Matrices    Chapter  

  eye   generates an identity matrix   Chapter   10    

  magic   creates a “magic” matrix   Chapter   10    

  ones   creates a matrix containing all ones   Chapter   10    

  pascal   creates a Pascal matrix   Chapter   10    

  zeros   creates a matrix containing all zeros   Chapter   10    

  gallery   contains example matrices   Chapter   10    

  Special Characters    Data Types    Chapter  

    {  }     cell array constructor   Chapters   11    and    12    

 ''  string data (character information)   Chapters   11    and    12    

   character array   Chapter   11    

   numeric array   Chapter   11    

   symbolic array   Chapter   11    

   logical array   Chapter   11    

   sparse array   Chapter   11    

   cell array   Chapter   11    

   structure array   Chapter   11    

  Functions    Data Type Manipulation    Chapter  

  celldisp   displays the contents of a cell array   Chapter   11    

  char   creates a padded character array   Chapter   11    

  double   changes an array to a double-precision array   Chapter   11    

  int16   16-bit signed integer   Chapter   11    

  int32   32-bit signed integer   Chapter   11    

  int64   64-bit signed integer   Chapter   11    

  int8   8-bit signed integer   Chapter   11    

  num2str   converts a numeric array to a character array   Chapter   11    

  single   changes an array to a single-precision array   Chapter   11    

  sparse   converts a full-format matrix to a sparse-format matrix   Chapter   11    

  str2num   converts a character array to a numeric array   Chapter   11    

  uint16   16-bit unsigned integer   Chapter   11    

  uint32   32-bit unsigned integer   Chapter   11    

  uint64   64-bit unsigned integer   Chapter   11    

  uint8   8-bit unsigned integer   Chapter   11    
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  Functions    Manipulation of Symbolic Expressions    Chapter  

  collect   collects like terms   Chapter   12    

  diff   fi nds the symbolic derivative of a symbolic expression   Chapter   12    

  dsolve   differential equation solver   Chapter   12    

  expand   expands an expression or equation   Chapter   12    

  factor   factors an expression or equation   Chapter   12    

  int   fi nds the symbolic integral of a symbolic expression   Chapter   12    

  matlabFunction   converts a symbolic expression into an anonymous 
MATLAB ®  function 

  Chapter   12    

  mupad   opens the MuPad workbook   Chapter   12    

  numden   extracts the numerator and denominator from an 
expression or an equation 

  Chapter   12    

  simple   tries and reports all the simplifi cation functions, 
and selects the shortest answer 

  Chapter   12    

  simplify   simplifi es using Mupad’s built-in simplifi cation rules   Chapter   12    

  solve   solves a symbolic expression or equation   Chapter   12    

  subs   substitutes into a symbolic expression or equation   Chapter   12    

  sym   creates a symbolic variable, expression, or equation   Chapter   12    

  syms   creates symbolic variables   Chapter   12    

  Functions    Symbolic Plotting    Chapter  

  ezcontour   creates a contour plot   Chapter   12    

  ezcontourf   creates a fi lled contour plot   Chapter   12    

  ezmesh   creates a mesh plot from a symbolic expression   Chapter   12    

  ezmeshc   plots both a mesh and contour plot created from 
a symbolic expression 

  Chapter   12    

  ezplot   creates an  x – y  plot of a symbolic expression   Chapter   12    

  ezplot3   creates a three-dimensional line plot   Chapter   12    

  ezpolar   creates a plot in polar coordinates   Chapter   12    

  ezsurf   creates a surface plot from a symbolic expression   Chapter   12    

  ezsurfc   plots both a mesh and contour plot created from 
a symbolic expression 

  Chapter   12    
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  Functions    Numerical Techniques    Chapter  

  bvp4c   boundary value problem solver for ordinary 
differential equations 

  Chapter   13    

  cftool   opens the curve-fi tting graphical user interface   Chapter   13    

  diff   computes the differences between adjacent values in an 
array if the input is an array; fi nds the symbolic derivative 
if the input is a symbolic expression 

  Chapter   13    

  fminbnd   a function that accepts a function handle or function defi nition 
as input and numerically fi nds the function minimum between 
two bounds – known as a “function-function” 

  Chapter   6    

  fzero   a function that accepts a function handle or function defi nition 
as input and fi nds the zero point nearest a specifi ed 
value – known as a “function-function” 

  Chapter   6    

  gradient   fi nds the derivative numerically using a combination of 
forward, backward, and central difference techniques 

  Chapter   13    

  interp1   Approximates intermediate data, using either the default linear 
interpolation technique or a specifi ed higher order approach 

  Chapter   13    

  interp2   two-dimensional interpolation function   Chapter   13    

  interp3   three-dimensional interpolation function   Chapter   13    

  interpn   multidimensional interpolation function   Chapter   13    

  ode45   ordinary differential equation solver   Chapter   13    

  ode23   ordinary differential equation solver   Chapter   13    

  ode113   ordinary differential equation solver   Chapter   13    

  ode15s   ordinary differential equation solver   Chapter   13    

  ode23s   ordinary differential equation solver   Chapter   13    

  ode23t   ordinary differential equation solver   Chapter   13    

  ode23tb   ordinary differential equation solver   Chapter   13    

  ode15i   ordinary differential equation solver   Chapter   13    

  polyfit   computes the coeffi cients of a least-squares polynomial   Chapter   13    

  polyval   evaluates a polynomial at a specifi ed value of  x    Chapter   13    

  quad   computes the integral under a curve (Simpson)   Chapter   13    

  quad1   computes the integral under a curve (Lobatto)   Chapter   13    
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  Functions    Sample Data Sets and Images    Chapter  

  cape   sample MATLAB ®  image fi le of a cape   Chapter   14    

  clown   sample MATLAB ®  image fi le of a clown   Chapter   14    

  detail   sample MATLAB ®  image fi le of a section of a Dürer wood carving   Chapter   14    

  durer   sample MATLAB ®  image fi le of a Dürer wood carving   Chapter   14    

  earth   sample MATLAB ®  image fi le of the earth   Chapter   14    

  flujet   sample MATLAB ®  image fi le showing fl uid behavior   Chapter   14    

  gatlin   sample MATLAB ®  image fi le of a photograph   Chapter   14    

  mandrill   sample MATLAB ®  image fi le of a mandrill   Chapter   14    

  mri   sample MRI data set   Chapter   14    

  peaks   creates a sample plot   Chapter   14    

  seamount   sample MATLAB ®  data fi le of a seamount   Chapter   5    

  spine   sample MATLAB ®  image fi le of a spine X-ray   Chapter   14    

  wind   sample MATLAB ®  data fi le of wind velocity information   Chapter   14    

  sphere   sample function used to demonstrate graphing   Chapter   5    

  census   a built-in data set used to demonstrate numerical techniques   Chapter   13    

  handel   a built-in data set used to demonstrate the sound function   Chapter   3    

  Functions    Advanced Visualization    Chapter  

  alpha   sets the transparency of the current plot object   Chapter   14    

  camlight   turns the camera light on   Chapter   14    

  coneplot   creates a plot with markers indicating the direction 
of input vectors 

  Chapter   14    

  contourslice   creates a contour plot from a slice of data   Chapter   14    

  drawnow   forces MATLAB ®  to draw a plot immediately   Chapter   14    

  gca   gets current axis handle   Chapter   14    

  gcf   gets current fi gure handle   Chapter   14    

  get   returns the properties of a specifi ed object   Chapter   14    

  getframe   gets the current fi gure and saves it as a movie frame 
in a structure array 

  Chapter   14    

  image   creates a two-dimensional image   Chapter   14    

  imagesc   creates a two-dimensional image by scaling the data   Chapter   14    

  imfinfo   reads a standard graphics fi le and determines what type 
of data it contains 

  Chapter   14    

  imread   reads a graphics fi le   Chapter   14    

  imwrite   writes a graphics fi le   Chapter   14    

  isosurface   creates surface connecting volume data of the same magnitude   Chapter   14    

  movie   plays a movie stored as a MATLAB ®  structure array   Chapter   14    

  set   establishes the properties assigned to a specifi ed object   Chapter   14    

  shading   determines the shading technique used in surface plots 
and pseudo color plots 

  Chapter   14    
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APPENDIX

   Scaling 
Techniques 

 Plotting data using different scaling techniques is a useful way to try to determine 
how  y -values change with  x . This approach is illustrated in the following sections. 

  LINEAR RELATIONSHIPS 

 If  x  and  y  are related by a linear relationship, a standard  x–y  plot will be a straight 
line. Thus, for 

   y � ax � b   

 an  x–y  plot is a straight line with slope  a  and  y -intercept  b   . 
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    LOGARITHMIC RELATIONSHIP 

 If  x  and  y  are related logarithmically 

   y � a log10(x) � b   

 a standard plot on an evenly spaced grid is curved. However, a plot scaled evenly on 
the  y -axis but logarithmically on the  x -axis is a straight line of slope  a . The  y -intercept 
doesn’t exist, since    log10(0)    is undefi ned. However when    x � 1,    the value of    log10(1)    
is zero and  y  is equal to  b .   
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    EXPONENTIAL RELATIONSHIP 

 When  x  and  y  are related by an exponential relationship such as 

   y � b * ax   

 a plot of    log10(y)    versus  x  gives a straight line because 

   log10(y) � log10(a) * x � log10(b)   

 In this case, the slope of the plot is    log10(a).      
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    POWER RELATIONSHIP 

 Finally, if  x  and  y  are related by a power relationship such as 

   y � bxa   

 a plot scaled logarithmically on both axes produces a straight line with a slope of  a . 
When  x  is equal to 1, the    log10(1)    is zero, and the value of    log10(y)    is    log10(b).    

   log10(y) � a * log10(x) � log10(b)           
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C  The Ready_Aim_
Fire GUI   

   function varargout = ready_aim_fire(varargin)     
   % READY_AIM_FIRE M-file for ready_aim_fire.fig     
   % READY_AIM_FIRE, by itself, creates a new READY_AIM_FIRE or raises the existing     
   % singleton* .   
   %     
   % H = READY_AIM_FIRE returns the handle to a new READY_AIM_FIRE or the handle to     
   % the existing singleton* .   
   %     
   % READY_AIM_FIRE('CALLBACK',hObject,eventData,handles,...) calls the local     
   % function named CALLBACK in READY_AIM_FIRE.M with the given input arguments .   
   %     
   % READY_AIM_FIRE('Property','Value',...) creates a new READY_AIM_FIRE or raises the     
   % existing singleton*. Starting from the left, property value pairs are     
   % applied to the GUI before ready_aim_fire_OpeningFcn gets called. An     
   % unrecognized property name or invalid value makes property application     
   % stop. All inputs are passed to ready_aim_fire_OpeningFcn via varargin .   
   %     
   % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one     
   % instance to run (singleton)" .   
   %     

APPENDIX
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% See also: GUIDE, GUIDATA, GUIHANDLES 

% Edit the above text to modify the response to help ready_aim_fire 

% Last Modified by GUIDE v2.5 29-Aug-2010 17:17:24 

% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name', mfilename, ... 
              'gui_Singleton', gui_Singleton, .. .
              'gui_OpeningFcn', @ready_aim_fire_OpeningFcn, ... 
              'gui_OutputFcn', @ready_aim_fire_OutputFcn, ... 
              'gui_LayoutFcn', [] , ... 
              'gui_Callback', []); 
if nargin && ischar(varargin{1}) 
   gui_State.gui_Callback = str2func(varargin{1}); 
end

if nargout 
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else
   gui_mainfcn(gui_State, varargin{:}); 
end
%  End initialization code - DO NOT EDIT 

% --- Executes just before ready_aim_fire is made visible .
function ready_aim_fire_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn .
% hObject handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles  structure with handles and user data (see GUIDATA) 
% varargin command line arguments to ready_aim_fire (see VARARGIN) 
plot(275,0,'s','Markersize',10,'MarkerFaceColor','r')
text(275,50,'target')
axis([0,1000,0,500])
title('Projectile Trajectory') 
xlabel('Horizontal Distance, m') 
ylabel('Vertical Distance, m') 
hold on 
handles.location=275;
% Choose default command line output for ready_aim_fire 
handles.output = hObject; 

% Update handles structure 
guidata(hObject, handles); 

% UIWAIT makes ready_aim_fire wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
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% --- Outputs from this function are returned to the command line .
function varargout = ready_aim_fire_OutputFcn(hObject, eventdata, handles) 
% varargout cell array for returning output args (see VARARGOUT); 
% hObject handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA) 

% Get default command line output from handles structure 
varargout{1} = handles.output; 

% --- Executes on button press in Fire_pushbutton .
function Fire_pushbutton_Callback(hObject, eventdata, handles) 
% hObject handle to Fire_pushbutton (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles  structure with handles and user data (see GUIDATA) 
time=0:0.001:100;
h=time*handles.vel*cosd(handles.theta);
v=time*handles.vel*sind(handles.theta)-1/2*9.81*time.^2;
pos=find(v>=0);
horizontal=h(pos);
vertical=v(pos);
comet(horizontal,vertical);
land=pos(end);
goal=handles.location;
if (h(land)<goal+50 && h(land)>goal-50) % Code to create the "Explosion"
  x=linspace(goal-100, goal+100, 5); 
  y=[0,80,100,80,0]; 
  z=linspace(goal-200,goal+200,9); 
  w=[0,40,90,120,130,120,90,40,0]; 
  plot(x,y,'*r',z,w,'*r') 
  text(goal,400,'Kaboom!') 
  set(handles.textout,'string', 'You Win !','fontsize',16) 
end

function launch_angle_Callback(hObject, eventdata, handles) 
% hObject handle to launch_angle (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of launch_angle as text 
%  str2double(get(hObject,'String')) returns contents of launch_angle as a double 
handles.theta=str2double(get(hObject,'String'));
guidata(hObject, handles); 

% --- Executes during object creation, after setting all properties .
function launch_angle_CreateFcn(hObject, eventdata, handles) 
% hObject handle to launch_angle (see GCBO) 
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% eventdata reserved - to be defined in a future version of MATLAB ®
% handles empty - handles not created until after all CreateFcns called 

% Hint: edit controls usually have a white background on Windows .
% See ISPC and COMPUTER .
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defau ltUicontrolBackgroundColor')) 
 set(hObject,'BackgroundColor','white'); 
end

function launch_velocity_Callback(hObject, eventdata, handles) 
% hObject handle to launch_velocity (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of launch_velocity as text 
% str2double(get(hObject,'String')) returns contents of launch_velocity as a double 
handles.vel=str2double(get(hObject,'String'));
guidata(hObject, handles); 

% --- Executes during object creation, after setting all properties .
function launch_velocity_CreateFcn(hObject, eventdata, handles) 
% hObject  handle to launch_velocity (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles  empty - handles not created until after all CreateFcns called 

% Hint: edit controls usually have a white background on Windows .
% See ISPC and COMPUTER .
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in Reset_pushbutton .
function Reset_pushbutton_Callback(hObject, eventdata, handles) 
% hObject  handle to Reset_pushbutton (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles  structure with handles and user data (see GUIDATA) 
hold off 
plot(handles.location,0,'s','Markersize',10,'MarkerFaceColor','r')
text(handles.location,50,'target')
axis([0,1000,0,500])
title('Projectile Trajectory') 
xlabel('Horizontal Distance, m') 
ylabel('Vertical Distance, m') 
hold on 
set(handles.textout,'string', ”) 

% --- Executes on slider movement .
function slider1_Callback(hObject, eventdata, handles) 
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% hObject  handle to slider1 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'Value') returns position of slider 
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
handles.location = get(hObject,'Value') 
hold off 
plot(handles.location,0,'s','Markersize',10,'Markerfacecolor','r')
axis([0,1000,0,1000])
title('Trajectory')
xlabel('Horizontal Distance') 
ylabel('Vertical Distance') 
text(handles.location-25,50,'Target')
hold on 
guidata(hObject, handles); 

% --- Executes during object creation, after setting all properties .
function slider1_CreateFcn(hObject, eventdata, handles) 
% hObject  handle to slider1 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB ®
% handles  empty - handles not created until after all CreateFcns called 

% Hint: slider controls usually have a light gray background .
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
 set(hObject,'BackgroundColor',[.9 .9 .9]); 
end



  There are many ways to solve problems in MATLAB ® . These solutions represent one 

possible approach. 

     Practice Exercises 2.1 
    1.   7  

   2.   10  

   3.   2.5000  

   4.   17  

   5.   7.8154  

   6.   4.1955  

   7.   12.9600  

   8.   5  

   9.   2.2361  

  10.      -1       

  Practice Exercises 2.2 
    1.     test   is a valid name.  

   2.     Test   is a valid name, but is a different variable from  test .  

   3.     if   is not allowed. It is a reserved keyword.  

   4.     my-book   is not allowed because it contains a hyphen.  

   5.     my_book   is a valid name.  

   6.     Thisisoneverylongnamebutisitstillallowed?  is not allowed because 

it includes a question mark. Even without the question mark, it is not a good 

idea.  

   7.     1stgroup   is not allowed because it starts with a number.  

 APPENDIX

DSolutions to 
Practice Exercises 
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   8.     group_one   is a valid name.  

   9.      zzaAbc   is a valid name, although it’s not a very good one because it combines 

uppercase and lowercase letters and is not meaningful.  

  10.     z34wAwy%12#   is not valid because it includes the percent and pound signs.  

  11.   sin is a valid name, but a poor choice since it is also a function name.  

  12.   log is a valid name, but a poor choice since it is also a function name.    

  Practice Exercises 2.3 
    1.   6  

   2.   72  

   3.   16  

   4.   13  

   5.   48  

   6.   38.5  

   7.   4096  

   8.      2.4179e � 024     

   9.   245  

  10.   2187  
  11.      15 � 32  >  19 � 12 � 1     

  12.      2¿3 � 4 >  15 � 32 � 7.5     

  13.      5¿ 12 � 12  >  14 � 12 � 41.6667     

  14.      14 � 1 >  22 * 15 � 2 >  32 � 25.5     

  15.      15 � 6 * 7 >  3 � 2¿22  >  12 >  3 * 3 >  13 * 622 � 135       

  Practice Exercises 2.4 
    1.    a = [2.3 5.8 9]   

   2.    sin(a)  

   ans =  

  0.7457 -0.4646 0.4121   

   3.    a + 3  

   ans =  

  5.3000 8.8000 12.0000   

   4.    b = [5.2 3.14 2]   

   5.    a + b  

   ans =  

  7.5000 8.9400 11.0000   

   6.    a .* b  

   ans =  

  11.9600 18.2120 18.0000   

   7.    a.^2  

   ans =  

  5.2900 33.6400 81.0000   

   8.    c = 0:10 or  

   c = [0:10]   

   9.    d = 0:2:10 or  

   d = [0:2:10]   

  10.    linspace(10,20,6)  

   ans =  

  10 12 14 16 18 20   

  11.    logspace(1, 2, 5)  

   ans =  
  10.0000 17.7828 31.6228 56.2341 100.0000     



Solutions to Practice Exercises D-3

  Practice Exercises 3.1 
   1.   In the command window, type    

  help cos      
  help sqrt      
  help exp    

  2.   Select  Help    :     MATLAB Help  from the menu bar. 

  Use the left-hand pane to navigate to either  Functions - Categorical List  or 

 Functions - Alphabetical List   
  3.   Select  Help    :     Web Resources    :     The Mathworks Web Site     

  Practice Exercises 3.2 
   1.    x = -2:1:2  

  x =  

  -2 -1 0 1 2  

  abs(x)  

  ans =  

  2 1 0 1 2  

  sqrt(x)  

  ans =  

  0 + 1.4142i 0 + 1.0000i 0 1.0000 1.4142   

  2.       a.    sqrt(-3)  

  ans =  

  0 + 1.7321i  
  sqrt(3)  

  ans =  

  1.7321   
   b.    nthroot(-3,2)  

  ??? Error using ==> nthroot at 33  
  If X is negative, N must be an odd integer.  
  nthroot(3,2)  
  ans =  
  1.7321   

   c.    -3^(1/2)  

  ans =  
  -1.7321  
  3^(1/2)  
  ans =  

  1.7321     

  3.    x = -9:3:12  

   x =  

  -9 -6 -3 0 3 6 9 12  

   rem(x,2)  

   ans =  

  -1 0 -1 0 1 0 1 0   

  4.    exp(x)  

   ans =  

  1.0e+005 *  

   0.0000 0.0000 0.0000 0.0000 0.0002 0.0040 0.0810 1.6275   
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  5.    log(x)  

   ans =  

  Columns 1 through 4  

  2.1972 + 3.1416i 1.7918 + 3.1416i 1.0986 + 3.1416i -Inf 
Columns 5 through 8  

  1.0986 1.7918 2.1972 2.4849  

   log10(x)  

   ans =  

  Columns 1 through 4  

  0.9542 + 1.3644i 0.7782 + 1.3644i 0.4771 + 1.3644i -Inf  

  Columns 5 through 8  

  0.4771 0.7782 0.9542 1.0792   

  6.    sign(x)  

   ans =  

  -1 -1 -1 0 1 1 1 1   

  7.    format rat  

   x/2  

   ans =  

  -9/2 -3 -3/2 0 3/2 3 9/2 6     

  Practice Exercises 3.3 
   1.    factor(322)  

   ans =  

  2 7 23   

  2.    gcd(322,6)  

   ans =  

  2   

  3.    isprime(322)  

   ans =  

  0   Because the result of   isprime   is the number 0, 322 is not a prime 

 number.  

  4.    length(primes(322))  

   ans =  

  66   

  5.    rats(pi)  

   ans =  

  355/113   

  6.    factorial(10)  

   ans =  

  3628800   

  7.    nchoosek(20,3)  

   ans =  

  1140     

  Practice Exercises 3.4 
   1.    theta = 3*pi;  

  sin(2*theta)  

  ans =  

  -7.3479e-016   



Solutions to Practice Exercises D-5

  2.    theta = 0:0.2*pi:2*pi;  

  cos(theta)  

  ans =  

  Columns 1 through 7  

  1.0000 0.8090 0.3090 -0.3090 -0.8090 -1.0000 -0.8090  

  Columns 8 through 11  

  -0.3090 0.3090 0.8090 1.0000   

  3.    asin(1)  

  ans =  

  1.5708   This answer is in radians.  

  4.    x = -1:0.2:1;  

  acos(x)  

  ans =  

  Columns 1 through 7  

  3.1416 2.4981 2.2143 1.9823 1.7722 1.5708 1.3694  

  Columns 8 through 11  

  1.1593 0.9273 0.6435 0   

  5.    cos(45*pi/180)  

   ans =  

  0.7071  

   cosd(45)  

   ans =  

  0.7071   

  6.    asin(0.5)  

   ans =  

  0.5236  This answer is in radians. You could also fi nd the result in degrees. 

   asind(0.5)  

   ans =  

  30.0000   

  7.    csc(60*pi/180)  

   ans =  

  1.1547  

  or    . . .    

   cscd(60)  

   ans =  

  1.1547     

  Practice Exercises 3.5 
  x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];  

   1.    max(x)  

  ans =  

  4 90 92 93   

  2.    [maximum, row]=max(x)  

  maximum =  

  4 90 92 93  

  row =  

  1 1 4 4   
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  3.    max(x')  

  ans =  

  90 75 82 93   

  4.    [maximum, column]=max(x')  

  maximum =  

  90 75 82 93  

  column =  

  2 4 3 4   

  5.    max(max(x))  

  ans =  

  93     

  Practice Exercises 3.6 
  x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];  

   1.    mean(x)  

  ans =  

  2.5000 76.7500 81.0000 80.5000   

  2.    median(x)  

  ans =  

  2.5000 81.0000 83.5000 77.0000   

  3.    mean(x')  

  ans =  

  63.5000 49.2500 60.5000 67.5000   

  4.    median(x')  

  ans =  

  80.0000 60.0000 78.5000 88.0000   

  5.    mode(x)  

  ans =  

  1 55 65 75   

  6.    mean(mean(x))  

  ans =  

  60.1875  

 or    . . .    

  mean(x(:))  

  ans =  

  60.1875     

  Practice Exercises 3.7 
  x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];  

   1.    size(x)  

  ans =  

  4 4   

  2.    sort(x)  

  ans =  

  1 55 65 75  

  2 78 82 75  

  3 84 85 79  

  4 90 92 93   
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  3.    sort(x,'descend')  

  ans =  

  4 90 92 93  

  3 84 85 79  

  2 78 82 75  

  1 55 65 75   

  4.    sortrows(x)  

  ans =  

  1 84 92 93  

  2 55 65 75  

  3 78 82 79  

  4 90 85 75   

  5.    sortrows(x,-3)  

  ans =  

  1 84 92 93  

  4 90 85 75  

  3 78 82 79  

  2 55 65 75     

  Practice Exercises 3.8 
  x = [4 90 85 75; 2 55 65 75; 3 78 82 79;1 84 92 93];  

   1.    std(x)  

  ans =  

  1.2910 15.3052 11.4601 8.5440   

  2.    var(x)  

  ans =  

  1.6667 234.2500 131.3333 73.0000   

  3.    sqrt(var(x))  

  ans =  

  1.2910 15.3052 11.4601 8.5440   

  4.   The square root of the variance is equal to the standard deviation.    

  Practice Exercises 3.9 
   1.    rand(3)  

  ans =  

  0.9501 0.4860 0.4565  

  0.2311 0.8913 0.0185  

  0.6068 0.7621 0.8214   

  2.    randn(3)  

  ans =  

  -0.4326 0.2877 1.1892  

  -1.6656 -1.1465 -0.0376  

   0.1253 1.1909 0.3273   

  3.    x = rand(100,5);   

  4.    max(x)  

  ans =  

  0.9811 0.9785 0.9981 0.9948 0.9962  

  std(x)  
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  ans =  

  0.2821 0.2796 0.3018 0.2997 0.2942  

  var(x)  

  ans =  

  0.0796 0.0782 0.0911 0.0898 0.0865  

  mean(x)  

  ans =  

  0.4823 0.5026 0.5401 0.4948 0.5111   

  5.    x = randn(100,5);   

  6.    max(x)  

  ans =  

  2.6903 2.6289 2.7316 2.4953 1.7621  

  std(x)  

  ans =  

  0.9725 0.9201 0.9603 0.9367 0.9130  

  var(x)  

  ans =  

  0.9458 0.8465 0.9221 0.8774 0.8335  

  mean(x)  

  ans =  

  -0.0277 0.0117 -0.0822 0.0974 -0.1337     

  Practice Exercises 3.10 
   1.    A = 1+i  

  A =  

  1.0000 + 1.0000i  

  B = 2-3i  

  B =  

  2.0000 - 3.0000i  

  C = 8+2i  

  C =  

  8.0000 + 2.0000i   

  2.    imagD = [-3,8,-16];  

  realD = [2,4,6];  

  D = complex(realD,imagD)  

  ans =  

  2.0000 - 3.0000i 4.0000 + 8.0000i 6.0000 -16.0000i   

  3.    abs(A)  

  ans =  

  1.4142  

  abs(B)  

  ans =  

  3.6056  

  abs(C)  

  ans =  

  8.2462  

  abs(D)  
  ans =  

  3.6056 8.9443 17.0880   
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  4.    angle(A)  

  ans =  

  0.7854  

  angle(B)  

  ans =  

  -0.9828  

  angle(C)  

  ans =  

  0.2450  

  angle(D)  

  ans =  

  -0.9828 1.1071 -1.2120   

  5.    conj(D)  

  ans =  

  2.0000 + 3.0000i 4.0000 - 8.0000i 6.0000 +16.0000i   

  6.    D'  

  ans =  

  2.0000 + 3.0000i  

  4.0000 - 8.0000i  

  6.0000 +16.0000i   

  7.    sqrt(A.*A')  

  ans =  

  1.4142     

  Practice Exercises 3.11 
   1.    clock  

  ans =  

  1.0e+003 *  

  2.0080 0.0050 0.0270 0.0160 0.0010 0.0220   

  2.    date  

  ans =  

  27-May-2008   

  3.       a.    factorial(322)  

  ans =  

  Inf   

   b.    5*10^500  

  ans =  

  Inf   

   c.    1/5*10^500  

  ans =  

  Inf   

   d.    0/0  

  Warning: Divide by zero.  

  ans =  

  NaN       
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  Practice Exercises 4.1    
  a = [12 17 3 6]      

  a =      
  12 17 3 6      

  b = [5 8 3; 1 2 3; 2 4 6]      
  b =      

  5 8 3      

  1 2 3      

  2 4 6      

  c = [22;17;4]      
  c =      

  22      

  17      

  4   

   1.    x1 = a(1,2)  

  x1 =  

  17   

  2.    x2 = b(:,3)  

  x2 =  

  3  

  3  

  6   

  3.    x3 = b(3,:)  

  x3 =  

  2 4 6   

  4.    x4 = [b(1,1), b(2,2), b(3,3)]  

  x4 =  

  5 2 6   

  5.    x5 = [a(1:3);b]  

  x5 =  

  12 17 3  

  5 8 3  

  1 2 3  

  2 4 6   

    Practice Exercises 4.2 
   1.    length = [1, 3, 5];  

  width = [2,4,6,8];  

  [L,W] = meshgrid(length,width);  

  area = L.*W  

  area =  

  2 6 10  

  4 12 20  

  6 18 30  

  8 24 40   

  2.    radius = 0:3:12;  

  height = 10:2:20;  

  [R,H] = meshgrid(radius,height);  

  volume = pi*R.^2.*H  

  6.    x6 = [c,b;a]  

  x6 =  

  22 5 8 3  

  17 1 2 3  

  4 2 4 6  

  12 17 3 6   

  7.    x7 = b(8)  

  x7 =  

  3   

  8.    x8 = b(:)  

  x8 =  

  5  

  1  

  2  

  8  

  2  

  4  

  3  

  3  

  6   
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  volume =  

  1.0e+003 *    

  0    0.2827    1.1310    2.5447    4.5239  
  0    0.3393    1.3572    3.0536    5.4287  
  0    0.3958    1.5834    3.5626    6.3335  
  0    0.4524    1.8096    4.0715    7.2382  
  0    0.5089    2.0358    4.5804    8.1430  
  0    0.5655    2.2619    5.0894    9.0478  

  Practice Exercises 4.3 
   1.    zeros(3)  

  ans =    

  0    0    0  
  0    0    0  
  0    0    0  

  2.    zeros(3,4)  

  ans =    
  0    0    0    0  
  0    0    0    0  
  0    0    0    0  

  3.    ones(3)  

  ans =    

  1    1    1  
  1    1    1  
  1    1    1  

  4.    ones(5,3)  

  ans =    

  1    1    1  
  1    1    1  
  1    1    1  
  1    1    1  
  1    1    1  

  5.    ones(4,6)*pi  

  ans =    

  3.1416    3.1416    3.1416    3.1416    3.1416    3.1416  
  3.1416    3.1416    3.1416    3.1416    3.1416    3.1416  
  3.1416    3.1416    3.1416    3.1416    3.1416    3.1416  
  3.1416    3.1416    3.1416    3.1416    3.1416    3.1416  

  6.    x = [1,2,3];  

  diag(x)  

  ans =    

  1    0    0  
  0    2    0  
  0    0    3  
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  7.    x = magic(10)  

  x =    

  92    99    1    8    15    67    74    51    58    40  
  98    80    7    14    16    73    55    57    64    41  
  4    81    88    20    22    54    56    63    70    47  
  85    87    19    21    3    60    62    69    71    28  
  86    93    25    2  9   61  68 75 52   34  
  17    24    76    83    90    42    49    26    33    65  
  23    5    82    89    91    48    30    32    39    66  
  79    6    13    95    97    29    31    38    45    72  
  10    12    94    96    78    35    37    44    46    53  
  11    18    100    77    84    36    43    50    27    59  

    a.    diag(x)  

  ans =
92 80 88 21 9 42 30 38 46 59     

   b.    diag(fliplr(x))  

  ans =
40 64 63 62 61 90 89 13 12 11     

   c.    sum(x)    

  ans =  

  505 505 505 505 505 505 505 505 505 505  

  sum(x')  

  ans =  

  505 505 505 505 505 505 505 505 505 505  

  sum(diag(x))  

  ans =  

  505  

  sum(diag(fliplr(x)))  

  ans =  

  505     

  Practice Exercises 5.1 
   1.    clear,clc  

  x = 0:0.1*pi:2*pi;  

  y = sin(x);  

  plot(x,y)   
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  4.    figure(3)  

  plot(x,y1,'-- r',  

  x,y2,': g')  

  title('Sine and Cosine  

  Plots')  

  xlabel('x values')  

  ylabel('y values')   

  2.    title('Sinusoidal Curve')  

  xlabel('x values')  

  ylabel('sin(x)')   
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  3.    figure(2)  

  y1 = sin(x);  

  y2 = cos(x);  

  plot(x,y1,x,y2)  

  title('Sine and  

  Cosine Plots')  

  xlabel('x values')  

  ylabel('y values')   
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  5.    legend('sin(x)','cos(x)')   
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  Practice Exercises 5.2 
   1.    subplot(2,1,1)   

  2.    x = -1.5:0.1:1.5;  

  y = tan(x);  

  plot(x,y)   

  3.    title('Tangent(x)')  

  xlabel('x value')  

  ylabel('y value')   

  4.    subplot(2,1,2)  

  y = sinh(x);  
  plot(x,y)   

  5.    title('Hyperbolic  

  sine of x')  
  xlabel('x value')  
  ylabel('y value')   

  6.    figure(2)  

  subplot(1,2,1)  
  plot(x,y)  
  title('Tangent(x)')  
  xlabel('x value')  
  ylabel('y value')  
  subplot(1,2,2)  
  y = sinh(x);  

  6.    axis([-1,2*pi+1,  

  -1.5,1.5])   

  7.    figure(4)  

  a = cos(x);  

  plot(a)  

 A line graph is created, with  a  plot-

ted against the vector index number.    
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  Practice Exercises 5.3 
   1.    theta = 0:0.01*pi:2*pi;  

  r = 5*cos(4*theta);  

  polar(theta,r)   

  plot(x,y)  
  title('Hyperbolic  

  sine of x')  

  xlabel('x value')  
  ylabel('y value')     
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  2.    hold on  

  r = 4*cos(6*theta);  

  polar(theta,r)  

  title('Flower Power')   
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  4.    figure(3)  

  r = sqrt(5^2*cos(2*theta));  

  polar(theta3,r)   

  3.    figure(2)  

  r = 5-5*sin(theta);  

  polar(theta,r)   
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  5.    figure(4)  

  theta = pi/2:4/5*pi:4.8*pi;  

  r = ones(1,6);  

  polar(theta,r)     
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  Practice Exercises 5.4 
   1.    figure(1)  

  x = -1:0.1:1;  

  y = 5*x+3;  

  subplot(2,2,1)  

  plot(x,y)  

  title('Rectangular Coordinates')  

  ylabel('y-axis')  

  grid on  

  subplot(2,2,2)  

  semilogx(x,y)  

  title('Semilog x Coordinate System')  

  grid on  

  subplot(2,2,3)  

  semilogy(x,y)  

  title('Semilog y Coordinate System')  

  ylabel('y-axis')  

  xlabel('x-axis')  

  grid on  

  subplot(2,2,4)  

  loglog(x,y)  

  title('Log Plot')  

  xlabel('x-axis')  

  grid on   
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  2.    figure(2)  

  x = -1:0.1:1;  

  y = 3*x.^2;  
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  subplot(2,2,1)  

  plot(x,y)  

  title('Rectangular Coordinates')  

  ylabel('y-axis')  

  grid on  

  subplot(2,2,2)  

  semilogx(x,y)  

  title('Semilog x Coordinate System')  

  grid on  

  subplot(2,2,3)  

  semilogy(x,y)  

  title('Semilog y Coordinate System')  

  ylabel('y-axis')  

  xlabel('x-axis')  

  grid on  

  subplot(2,2,4)  

  loglog(x,y)  

  title('Log Plot')  

  xlabel('x-axis')  

  grid on   
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  3.    figure(3)  

  x = -1:0.1:1;  

  y = 12*exp(x+2);  

  subplot(2,2,1)  

  plot(x,y)  

  title('Rectangular Coordinates')  

  ylabel('y-axis')  
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  4.    figure(4)  

  x = -1:0.01:1;  

  y = 1./x;  

  subplot(2,2,1)  

  plot(x,y)  

  title('Rectangular Coordinates')  

  ylabel('y-axis')  

  grid on  

  grid on  

  subplot(2,2,2)  

  semilogx(x,y)  

  title('Semilog x Coordinate System')  

  grid on  

  subplot(2,2,3)  

  semilogy(x,y)  

  title('Semilog y Coordinate System')  

  ylabel('y-axis')  

  xlabel('x-axis')  

  grid on  

  subplot(2,2,4)  

  loglog(x,y)  

  title('Log Plot')  

  xlabel('x-axis')  

  grid on   
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  Practice Exercises 5.5 
   1.    fplot('5*t^2',[-3,+3])  

  title('5*t^2')  

  xlabel('x-axis')  

  ylabel('y-axis')   

  subplot(2,2,2)  

  semilogx(x,y)  

  title('Semilog x Coordinate System')  

  grid on  

  subplot(2,2,3)  

  semilogy(x,y)  

  title('Semilog y Coordinate System')  

  ylabel('y-axis')  

  xlabel('x-axis')  

  grid on  

  subplot(2,2,4)  

  loglog(x,y)  

  title('Log Plot')  

  xlabel('x-axis')  

  grid on     
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  3.    fplot('t*exp(t)',[0,10])  

  title('t*exp(t)')  

  xlabel('x-axis')  

  ylabel('y-axis')   

  2.    fplot('5*sin(t)^2 + 
t*cos(t)^2',[-2*pi,2*pi])  

  title('5*sin(t)^2 +  

  t*cos(t)^2')  

  xlabel('x-axis')  

  ylabel('y-axis')   
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  4.    fplot('log(t)+ sin(t)',[0,pi])  

  title('log(t)+sin(t)')  

  xlabel('x-axis')  

  ylabel('y-axis')     
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  Practice Exercises 6.1 
 Store these functions as separate M-Files. The name of the function must be the 

same as the name of the M-File. You’ll need to call these functions either from 

the command window or from a script M-File. You can’t run a function M-File by 

itself. 

   1.    function output = quadratic(x)  

  output = x.^2;   

  2.    function output = one_over(x)  

  output = exp(1./x);   

  3.    function output = sin_x_squared(x)  

  output = sin(x.^2);   

  4.    function result = in_to_ft(x)  

  result = x./12;   
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  5.    function result = cal_to_joules(x)  

  result = 4.2.*x;   

  6.    function output = Watts_to_Btu_per_hour(x)  

  output = x.*3.412;   

  7.    function output = meters_to_miles(x)  

  output = x./1000.*.6214;   

  8.    function output = mph_to_fps(x)  

  output = x.*5280/3600;     

  Practice Exercises 6.2 
 Store these functions as separate M-Files. The name of the function must be the 

same as the name of the M-File. 

   1.    function output = z1(x,y)  

  % summation of x and y  
  % the matrix dimensions must agree  
  output = x+y;   

  2.    function output = z2(a,b,c)  

  % finds a.*b.^c  
  % the matrix dimensions must agree  
  output = a.*b.^c;   

  3.    function output = z3(w,x,y)  

  % finds w.*exp(x./y)  
  % the matrix dimensions must agree  
  output = w.*exp(x./y);   

  4.    function output = z4(p,t)  

  % finds p./sin(t)  
  % the matrix dimensions must agree  
  output = p./sin(t);   

  5.    function [a,b]=f5(x)  

  a = cos(x);  
  b = sin(x);   

  6.    function [a,b] = f6(x)  

  a = 5.*x.^2 + 2;  
  b = sqrt(5.*x.^2 + 2);   

  7.    function [a,b] = f7(x)  

  a = exp(x);  
  b = log(x);   

  8.    function [a,b] = f8(x,y)  

  a = x+y;  
  b = x-y;   

  9.    function [a,b] = f9(x,y)  

  a = y.*exp(x);  
  b = x.*exp(y);     

  Practice Exercises 7.1 
   1.    b = input('Enter the length of the base of the triangle: ');  

  h = input('Enter the height of the triangle: ');  



Solutions to Practice Exercises D-23

  Area = 1/2*b*h  

 When this fi le runs, it generates the following interaction in the command 

 window: 

  Enter the length of the base of the triangle: 5  

  Enter the height of the triangle: 4  

  Area =  

  10   

  2.    r = input('Enter the radius of the cylinder: ');  

  h = input('Enter the height of the cylinder: ');  

  Volume = pi*r.^2*h  

 When this fi le runs, it generates the following interaction in the command 

window:  

  Enter the radius of the cylinder: 2  

  Enter the height of the cylinder: 3  

  Volume =  

  37.6991   

  3.    n = input('Enter a value of n: ')  

  vector = 0:n  

 When this fi le runs, it generates the following interaction in the command 

 window: 

  Enter a value of n: 3  

  n =  

  3  

  vector =  

  0 1 2 3   

  4.    a = input('Enter the starting value: ');  

  b = input('Enter the ending value: ');  

  c = input('Enter the vector spacing: ');  

  vector = a:c:b  

 When this fi le runs, it generates the following interaction in the command 

 window: 

  Enter the starting value: 0  

  Enter the ending value: 6  

  Enter the vector spacing: 2  

  vector =  

  0 2 4 6     

  Practice Exercises 7.2 
   1.    disp('Inches to Feet Conversion Table')   

  2.    disp(' Inches Feet')   

  3.    inches = 0:10:120;  

  feet = inches./12;  

  table = [inches; feet];  

  fprintf(' %8.0f %8.2f \n',table)  
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 The resulting display in the command window is    

  Inches to Feet Conversion Table     

       Inches     Feet  

      0   0.00 

    10   0.83 

      20   1.67 

      …   … 

      …   … 

      …   … 

      100   8.33 

      110   9.17 

      120   10.00 

  Practice Exercises 8.1 
 Use these arrays in the exercises.    

  x = [1 10 42 6      

  5 8 78 23      

  56 45 9 13      

  23 22 8 9];      

  y = [1 2 3; 4 10 12; 7 21 27];      

  z = [10 22 5 13];   

   1.    elements_x = find(x>10)  

  elements_y = find(y>10)  

  elements_z = find(z>10)   

  2.    [rows_x, cols_x] = find(x>10)  

  [rows_y, cols_y] = find(y>10)  

  [rows_z, cols_z] = find(z>10)   

  3.    x(elements_x)  

  y(elements_y)  

  z(elements_z)   

  4.    elements_x = find(x>10 & x< 40)  

  elements_y = find(y>10 & y< 40)  

  elements_z = find(z>10 & z< 40)   

  5.    [rows_x, cols_x] = find(x>10 & x<40)  

  [rows_y, cols_y] = find(y>10 & y<40)  

  [rows_z, cols_z] = find(z>10 & z<40)   

  6.    x(elements_x)  

  y(elements_y)  

  z(elements_z)   

  7.    elements_x = find((x>0 & x<10) | (x>70 & x<80))  

  elements_y = find((y>0 & y<10) | (y>70 & y<80))  

  elements_z = find((z>0 & z<10) | (z>70 & z<80))   

  8.    length_x = length(find((x>0 & x<10) | (x>70 & x<80)))  

  length_y = length(find((y>0 & y<10) | (y>70 & y<80)))  

  length_z = length(find((z>0 & z<10) | (z>70 & z<80)))     
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  Practice Exercises 8.2 
   1.    function output = drink(x)  

  if x> = 21  

  output = 'You can drink';  

  else  

  output = 'Wait ''till you"re older';  

  end  

 Test your function with the following from the command window or a script 

M-File: 

  drink(22)  

  drink(18)   

  2.    function output = tall(x)  

  if x> = 48  

  output = 'You may ride';  

  else  

  output = 'You''re too short';  

  end  

 Test your function with the following: 

  tall(50)  

  tall(46)   

  3.    function output = spec(x)  

  if x> = 5.3 & x< = 5.5  

  output = ' in spec';  

  else  

  output = ' out of spec';  

  end  

 Test your function with the following: 

  spec(5.6)  
  spec(5.45)  
  spec(5.2)   

  4.    function output = metric_spec(x)  

  if x> = 5.3/2.54 & x< = 5.5/2.54  

  output = ' in spec';  

  else  

  output = ' out of spec';  

  end  

 Test your function with the following: 

  metric_spec(2)  
  metric_spec(2.2)  
  metric_spec(2.4)   

  5.    function output = flight(x)  

  if x> = 0 & x< = 100  

  output = 'first stage';  

  elseif x< = 170  

  output = 'second stage';  

  elseif x<260  

  output = 'third stage';  

  else  

  output = 'free flight';  

  end  
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 Test your function with the following: 

  flight(50)  

  flight(110)  

  flight(200)  

  flight(300)     

  Practice Exercises 8.3 
   1.    year =  input('Enter the name of your year in school: 

','s');  

  switch year  

  case 'freshman'  

  day = 'Monday';  

  case 'sophomore'  

  day = 'Tuesday';  

  case 'junior'  

  day = 'Wednesday';  

  case 'senior'  

  day = 'Thursday’;  

  otherwise  

  day = 'I don''t know that year';  

  end  

  disp(['Your finals are on ',day])   

  2.    disp('What year are you in school?')  

  disp('Use the menu box to make your selection ')  

  choice = menu( 'Year in School', 'freshman', 'sophomore', 
'junior', 'senior');  

  switch choice  

  case 1  

  day = 'Monday';  

  case 2  

  day = 'Tuesday';  

  case 3  

  day = 'Wednesday';  

  case 4  

  day = 'Thursday';  

  end  

  disp(['Your finals are on ',day])   

  3.    num = input('How many candy bars would you like? ');  

  switch num  

  case 1  

  bill = 0.75;  

  case 2  

  bill = 1.25;  

  case 3  

  bill = 1.65;  

  otherwise  

  bill = 1.65 + (num-3)*0.30;  

  end  

  fprintf('Your bill is %5.2f \n',bill)     
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  Practice Exercises 9.1 
   1.    inches = 0:3:24;  

  fo r k = 1:length(inches)  

  feet(k) = inches(k)/12;  

  end  

  table = [inches',feet']   

  2.    x = [ 45,23,17,34,85,33];  

  count = 0;  

  fo r k = 1:length(x)  

  if x(k)>30  

  count = count+1;  

  end  

  end  

  fprintf('There are %4.0f values greater than 30 \n',count)   

  3.    num = length(find(x>30));  

  fprintf('There are %4.0f values greater than 30 \n',num)   

  4.    total = 0;  

  fo r k = 1:length(x)  

  total = total + x(k);  

  end  

  disp('The total is: ')  

  disp(total)  

  sum(x)   

  5.    for k = 1:10  

  x(k) = 1/k  

  end   

  6.    for k = 1:10  

  x(k)=(-1)^(k+1)/k  

  end     

  Practice Exercises 9.2 
   1.    inches = 0:3:24;  

  k = 1;  

  while k<=length(inches)  

  feet(k) = inches(k)/12;  

  k = k+1;  

  end  

  disp(' Inches Feet');  

  fprintf(' %8.0f %8.2f \n',[inches;feet])   

  2.    x = [ 45,23,17,34,85,33];  

  k = 1;  

  count = 0;  

  while k< = length(x)  

  if x(k)> = 30;  

   count = count +1;  

  end  

  k= k+1;  

  end  
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  fprintf('There are %4.0f values greater than 30 \n',count)   

  3.    count = length(find(x>30))   

  4.    k = 1;  

  total = 0;  

  while k< = length(x)  

  total = total + x(k);  

  k = k+1;  

  end  

  disp(total)  

  sum(x)   

  5.    k = 1;  

  while(k< = 10)  

  x(k) = 1/k;  

  k = k+1;  

  end  

  x   

  6.    k = 1;  

  while(k< = 10)  

  x(k)=(-1)^(k+1)/k  

  k = k+1;  

  end  

  x     

  Practice Exercises 10.1 
   1.    A = [ 1 2 3 4]  

  B = [ 12 20 15 7]  

  dot(A,B)   

  2.    sum(A.*B)   

  3.    price = [0.99, 1.49, 2.50, 0.99, 1.29];  

  num = [4, 3, 1, 2, 2];  

  total = dot(price,num)     

  Practice Exercises 10.2 
   1.    A = [2 5; 2 9; 6 5];  

  B = [2 5; 2 9; 6 5];  

  % These cannot be multiplied because the number of 
% columns in A does not equal  

  % the number of rows in B   

  2.    A = [2 5; 2 9; 6 5];  

  B = [1 3 12; 5 2 9];  

  % Since A is a 3 × 2 matrix and B is a 2 × 3 matrix,  

  % they can be multiplied  

  A*B  

  %However, A*B does not equal B*A  

  B*A   

  3.    A = [5 1 9; 7 2 2];  

  B = [8 5; 4 2; 8 9];  

  % Since A is a 2 × 3 matrix and B is a 3 × 2 matrix,  
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  % they can be multiplied  

  A*B  

  %However, A*B does not equal B*A  

  B*A   

  4.    A = [1 9 8; 8 4 7; 2 5 3];  

  B = [7;1;5]  

  % Since A is a 3 × 3 matrix and B is a 3 × 1 matrix,  

  % they can be multiplied  

  A*B  

  % However, B*A won't work     

  Practice Exercises 10.3 
   1.        a.    a = magic(3)  

  inv(magic(3))  

  magic(3)^-1   

   b.    b = magic(4)  

    inv(b)  

    b^-1   

   c.    c = magic(5)  

    inv    (magic(5))     

       magic(5)  

  2.    det(a)  

  det(b)  

  det(c)   

  3.    A = [1 2 3;2 4 6;3 6 9]  

  det(A)  

  inv(A)  

  %Notice that the three lines are just multiples of  

  %each other and therefore do not represent 
 %independent equations     

  Practice Exercises 11.1 
   1.    A = [1,4,6; 3, 15, 24; 2, 3,4];  

  B = single(A)  

  C = int8(A)  

  D = uint8(A)   

  2.    E = A+B  

  % The result is a single-precision array   

  3.    x = int8(1)  

  y = int8(3)  

  result1 = x./y  

  % This calculation returns the integer 0  

  x = int8(2)  

  result2 = x./y  

  % This calculation returns the integer 1; it appears  

  % that MATLAB rounds the answer   

  4.    intmax('int8')  

  intmax('int16')  
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  intmax('int32')  

  intmax('int64')  

  intmax('uint8')  

  intmax('uint16')  

  intmax('uint32')  

  intmax('uint64')   

  5.    intmin('int8')  

  intmin('int16')  

  intmin('int32')  

  intmin('int64')  

  intmin('uint8')  

  intmin('uint16')  

  intmin('uint32')  

  intmin('uint64')     

  Practice Exercises 11.2 
   1.    name ='Holly'   

  2.    G = double('g')  

  fprintf('The decimal equivalent of the letter g is %5.0f 
\n',G)   

  3.    m = 'MATLAB'  

  M = char(double(m)-32)     

  Practice Exercises 11.3 
   1.    a = magic(3)  

  b = zeros(3)  

  c = ones(3)  

  x(:,:,1) = a  

  x(:,:,2) = b  

  x(:,:,3) = c   

  2.    x(3,2,1)   

  3.    x(2,3,:)   

  4.    x(:,3,:)     

  Practice Exercises 11.4 

   1.    names = char( 'Mercury','Venus','Earth','Mars','Jupiter', 
'Saturn','Uranus','Neptune','Pluto')   

  2.    R = 'rocky';  

  G = 'gas giants';  

  type = char(R,R,R,R,G,G,G,G,R)   

  3.    space =[' ';' ';' ';' ';' ';' ';' ';' ';' '];   

  4.    table =[names,space,type]   

  5.    %These data were found at 
 %http://sciencepark.etacude.com/astronomy/pluto.php   
  %Similar data are found at many websites  

  mercury = 3.303e23; % kg  



Solutions to Practice Exercises D-31

  venus = 4.869e24; % kg  

  earth = 5.976e24; % kg  

  mars = 6.421e23; % kg  

  jupiter = 1.9e27; % kg  

  saturn = 5.69e26; % kg  

  uranus = 8.686e25; % kg  

  neptune = 1.024e26; % kg  

  pluto = 1.27e22 % kg  

  mass = [mercury,venus,earth,mars,jupiter, saturn,uranus
,neptune,pluto]';  

  newtable = [table,space,num2str(mass)]     

  Practice Exercises 12.1 
   1.    syms x a b c d  

  %or  

  d = sym('d') %etc  

  d =  

  d   

  2.    ex1 = x^2-1  

  ex1 =  

  x^2-1  

  ex2 = (x+1)^2  

  ex2 =  

  (x+1)^2  

  ex3 = a*x^2-1  

  ex3 =  

  a*x^2-1  

  ex4 = a*x^2 + b*x + c  

  ex4 =  

  a*x^2+b*x+c  

  ex5 = a*x^3 + b*x^2 + c*x + d  

  ex5 =  

  a*x^3+b*x^2+c*x+d  

  ex6 = sin(x)  

  ex6 =  

  sin(x)   

  3.    EX1 = sym('X^2 - 1 ')  

  EX1 =  

  X^2 - 1  

  EX2 = sym(' (X +1)^2 ')  

  EX2 =  

  (X +1)^2  

  EX3 = sym('A*X ^2 - 1 ')  

  EX3 =  

  A*X ^2 - 1  

  EX4 = sym('A*X ^2 + B*X + C ')  

  EX4 =  

  A*X ^2 + B*X + C  

  EX5 = sym('A*X ^3 + B*X ^2 + C*X + D ')  
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  EX5 =  

  A*X ^3 + B*X ^2 + C*X + D  

  EX6 = sym(' sin(X) ')  

  EX6 =  

  sin(X)   

  4.    eq1 = sym(' x^2=1 ')  

  eq1 =  

  x^2 = 1  

  eq2 = sym(' (x+1)^2=0 ')  

  eq2 =  

  (x+1)^2=0  

  eq3 = sym(' a*x^2=1 ')  

  eq3 =  

  a*x^2=1  

  eq4 = sym('a*x^2 + b*x + c = 0 ')  

  eq4 =  

  a*x^2 + b*x + c = 0  

  eq5 = sym('a*x^3 + b*x^2 + c*x + d = 0 ')  

  eq5 =  

  a*x^3 + b*x^2 + c*x + d = 0  

  eq6 = sym('sin(x) = 0 ')  

  eq6 =  

  sin(x) = 0   

  5.    EQ1 = sym('X^2 = 1 ')  

  EQ1 =  

  X^2 = 1  

  EQ2 = sym(' (X +1)^2 = 0 ')  

  EQ2 =  

  (X +1)^2 = 0  

  EQ3 = sym('A*X ^2 = 1 ')  

  EQ3 =  

  A*X ^2 = 1  

  EQ4 = sym('A*X ^2 + B*X + C = 0 ')  

  EQ4 =  

  A*X ^2 + B*X + C = 0  

  EQ5 = sym('A*X ^3 + B*X ^2 + C*X + D = 0 ')  

  EQ5 =  

  A*X ^3 + B*X ^2 + C*X + D = 0  

  EQ6 = sym(' sin(X) = 0 ')  

  EQ6 =  

  sin(X) = 0     

  Practice Exercises 12.2 
   1.    y1 = ex1*ex2  

  y1 =  

  (x^2-1)*(x+1)^2   

  2.    y2 = ex1/ex2  

  y2 =  

  (x^2-1)/(x+1)^2   
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  3.    [num1,den1] = numden(y1)  

  num1 =  

  (x^2-1)*(x+1)^2  

  den1 =  

  1  

  [num2,den2] = numden(y2)  

  num2 =  

  x^2-1  

  den2 =  

  (x+1)^2   

  4.    Y1 = EX1*EX2  

  Y1 =  

  (X^2-1)*(X+1)^2   

  5.    Y2=EX1/EX2  

  Y2 =  

  (X^2-1)/(X+1)^2   

  6.    [NUM1,DEN1] = numden(Y1)  

  NUM1 =  

  (X^2-1)*(X+1)^2  

  DEN1 =  

  1  

  [NUM2,DEN2] = numden(Y2)  

  NUM2 =  

  X^2-1  

  DEN2 =  

  (X+1)^2   

  7.    %numden(EQ4)  

  %The numden function does not apply to equations,  

  %only to expressions   

  8.       a.    factor(y1)  

  ans =  

  (x-1)*(x+1)^3  

  expand(y1)  

  ans =  

  x^4+2*x^3-2*x-1  

  collect(y1)  

  ans =  

  x^4+2*x^3-2*x-1   

   b.    factor(y2)  

    ans =  

    (x-1)/(x+1)  

    expand(y2)  

    ans =  

    1/(x+1)^2*x^2-1/(x+1)^2  

    collect(y2)  

    ans =  

    (x^2-1)/(x+1)^2   
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   c.    factor(Y1)  

    ans =  

    (X-1)*(X+1)^3  

    expand(Y1)  

    ans =  

    X^4+2*X^3-2*X-1  

    collect(Y1)  

    ans =  

    X^4+2*X^3-2*X-1   

   d.    factor(Y2)  

    ans =  

    (X-1)/(X+1)  

    expand(Y2)  

    ans =  

    1/(X+1)^2*X^2-1/(X+1)^2  

    collect(Y2)  

    ans =  

    (X^2-1)/(X+1)^2     

  9.    factor(ex1)  

  ans =  

  (x-1)*(x+1)  

  expand(ex1)  

  ans =  

  x^2-1  

  collect(ex1)  

  ans =  

  x^2-1  

  factor(eq1)  

  ans =  

  x^2 = 1  

  expand(eq1)  

  ans =  

  x^2 = 1  

  collect(eq1)  

  ans =  

  x^2 = 1  

  %  

  factor(ex2)  

  ans =  

  (x+1)^2  

  expand(ex2)  

  ans =  

  x^2+2*x+1  

  collect(ex2)  

  ans =  

  x^2+2*x+1  
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  factor(eq2)  

  ans =  

  (x+1)^2 = 0  

  expand(eq2)  

  ans =  

  x^2+2*x+1 = 0  

  collect(eq2)  

  ans =  

  x^2+2*x+1 = 0     

  Practice Exercises 12.3 
   1.    solve(ex1)  

  ans =  

  1  

  -1  

  solve(EX1)  

  ans =  

  1  

  -1  

  solve(eq1)  

  ans =  

  1  

  -1  

  solve(EQ1)  

  ans =  

  1  

  -1   

  2.    solve(ex2)  

  ans =  

  -1  

  -1  

  solve(EX2)  

  ans =  

  -1  

  -1  

  solve(eq2)  

  ans =  

  -1  

  -1  

  solve(EQ2)  

  ans =  

  -1  

  -1   

  3.    a. A = solve(ex3,x,a)  

  Warning: 1 equations in 2 variables.  

  A =  

  a: [1x1 sym]  

  x: [1x1 sym]  

  A.a  
  ans =  



D-36 Appendix D

  1/x^2  
  A.x  
  ans =  
  x  
  %or  

  [my_a,my_x]=solve(ex3,x,a)  
  Warning: 1 equations in 2 variables.  
  my_a =  
  1/x^2  
  my_x =  
  x  

  b. A = solve(eq3,x,a)  

  Warning: 1 equations in 2 variables.  

  A =  

  a: [1x1 sym]  

  x: [1x1 sym]  

  A.a  
  ans =  
  1/x^2  
  A.x  
  ans =  
  x   

  4.       a.    A = solve(EX3,'X','A')  

  Warning: 1 equations in 2 variables.  
  A =  

  A: [1x1 sym]  
  X: [1x1 sym]  

  A.A  
  ans =  
  1/X^2  
  A.X  
  ans =  
  X  
  %or  
  [My_A,My_X]=solve(EX3,'X','A')  
  Warning: 1 equations in 2 variables.  
  My_A =  
  1/X^2  
  My_X =  
  X   

  b.    A = solve(EQ3,'X','A')  

  Warning: 1 equations in 2 variables.  
  A =  

  A: [1x1 sym]  
  X: [1x1 sym]  

  A.A  
  ans =  
  1/X^2  
  A.X  
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  ans =  
  X     

  5.       a.    A = solve(ex4,x,a)  

  Warning: 1 equations in 2 variables.  

  A =  

  a: [1x1 sym]  

  x: [1x1 sym]  

  A.a  

  ans =  

  -(b*x+c)/x^2  

  A.x  

  ans =  

  x  

  %or  

  [my_a,my_x]=solve(ex4,x,a)  

  Warning: 1 equations in 2 variables.  

  my_a =  

  -(b*x+c)/x^2  

  my_x =  

  x  

  %b  

  b. A = solve(eq4,x,a)  

  Warning: 1 equations in 2 variables.  

  A =  

  a: [1x1 sym]  

  x: [1x1 sym]  

  A.a  

  ans =  

  -(b*x+c)/x^2  

  A.x  

  ans =  

  x     

  6.      a.    A = solve(EX4,'X','A')  

  Warning: 1 equations in 2 variables.  

  A =  

  A: [1x1 sym]  

  X: [1x1 sym]  

  A.A  

  ans =  

  -(B*X+C)/X^2  

  A.X  

  ans =  

  X  

  %or  

  [My_A,My_X]=solve(EX4,'X','A')  

  Warning: 1 equations in 2 variables.  

  My_A =  

  -(B*X+C)/X^2  

  My_X =  

  X   
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  b.    A = solve(EQ4,'X','A')  

  Warning: 1 equations in 2 variables.  

  A =  

  A: [1x1 sym]  

  X: [1x1 sym]  

  A.A  

  ans =  

  -(B*X+C)/X^2  

  A.X  

  ans =  

  X     

  7.    A = solve(ex5,x)  

  A =  

  1/6/a*(36*c*b*a-108*d*a^2-    8*b^3+12*3^(1/2)*(4*c^3*a-
c^2*b^2-  

  18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)-2/3*(3*c*a-
b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*
(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^
(1/2)*a)^(1/3)-1/3*b/a-1/12/a*(36*c*b*a-108*d*a^2-8*
b^3+12*3^(1/2)*(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*
b^3)^(1/2)*a)^(1/3)+1/3*(3*c*a-b^2)/a/(36*c*b*a-
108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3*a-c^2*b^2-18*c*b*a*d+
27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)-1/3*b/a+1/2*i*3^(1/2)*
(1/6/a*(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3*a-
c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)+2/3*
(3*c*a-b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*
(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^ 
(1/3))-1/12/a*(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*
(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^
(1/3)+1/3*(3*c*a-b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+ 
12*3^(1/2)*(4*c^3*a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d* 
b^3)^(1/2)*a)^(1/3)-1/3*b/a-1/2*i*3^(1/2)*(1/6/a* 
(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3*a-c^2*b^2-
18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3)+2/3*
(3*c*a-b^2)/a/(36*c*b*a-108*d*a^2-8*b^3+12*3^(1/2)*(4*c^3* 
a-c^2*b^2-18*c*b*a*d+27*d^2*a^2+4*d*b^3)^(1/2)*a)^(1/3))  

  % Clearly this is too complicated to memorize   

  8.    solve(ex6)  

  ans =  

  0  

  solve(EX6)  

  ans =  

  0  

  solve(eq6)  

  ans =  

  0  

  solve(EQ6)  

  ans =  

  0     
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  Practice Exercises 12.4 
   1.    coef = [5 6 -3; 3 -3 2; 2 -4 -12];  

  result =[10; 14; 24];  

  x = inv(coef)*result  

  % or  

  x = coef\result  

  x =  

   3.5314  

  -1.6987  

  -0.8452   

  2.    syms x y z  

  A1 = sym('5*x + 6*y - 3*z = 10');  

  A2 = sym('3*x - 3*y + 2*z = 14');  

  A3 = sym('2*x - 4*y -12*z = 24');  

  A = solve(A1,A2,A3)  

  A =  

  x: [1x1 sym]  

  y: [1x1 sym]  

  z: [1x1 sym]   

  3.    A.x  

  ans =  

  844/239  

  A.y  

  ans =  

  -406/239  

  A.z  

  ans =  

  -202/239  

  double(A.x)  

  ans =  

  3.5314  

  double(A.y)  

  ans =  

  -1.6987  

  double(A.z)  

  ans =  

  -0.8452   

  4.    [x,y,z] = solve(A1,A2,A3)  

  x =  

  844/239  

  y =  

  -406/239  

  z =  

  -202/239   

  5.    syms x y z  

  A1 = sym('5.0*x + 6.0*y - 3.0*z = 10.0');  

  A2 = sym('3.0*x - 3.0*y + 2.0*z = 14.0');  

  A3 = sym('2.0*x - 4.0*y -12.0*z = 24.0');  

  A = solve(A1,A2,A3)  
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  A =  

  x: [1x1 sym]  

  y: [1x1 sym]  

  z: [1x1 sym]  

  A.x  

  ans =  

  3.5313807531380753138075313807531  

  A.y  

  ans =  

  -1.6987447698744769874476987447699  

  A.z  

  ans =  

  -.84518828451882845188284518828452   

  6.    A = sym('x^2 +5*y -3*z^3=15');  

  B = sym('4*x + y^2 -z = 10');  

  C = sym('x + y + z =15');  

  [X,Y,Z]=solve(A,B,C)  

  X =  

  11.560291920108418818149999909102-  

  11.183481663794727000635376340336*i  

  … lots more numbers-  

  Y =  

  3.5094002752389020636845577121798+6.973288332460366414350
1389722123*i  

  … lots more numbers  

  Z =  

  -.696921953473208818345576212814e-1+4.2101933313343605862
852373681236*i  

  … lots more numbers  

  double(X)  

  ans =  

  11.5603 -11.1835i  

  10.2173 - 4.7227i  

  16.8891 - 4.2178i  

  16.8891 + 4.2178i  

  10.2173 + 4.7227i  

  11.5603 +11.1835i  

  double(Y)  

  ans =  

  3.5094 + 6.9733i  

  1.6407 + 5.5153i  

  0.8499 + 7.8114i  

  0.8499 - 7.8114i  

  1.6407 - 5.5153i  

  3.5094 - 6.9733i  

  double(Z)  

  ans =  

  -0.0697 + 4.2102i  

  3.1420 - 0.7926i  

  -2.7390 - 3.5936i  
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  -2.7390 + 3.5936i  

  3.1420 + 0.7926i  

  -0.0697 - 4.2102i     

  Practice Exercises 12.5 
   1.    eq1  

  eq1 =  

  x^2 = 1  

  subs(eq1,x,4)  

  ans =  

  16 = 1  

  ex1  

  ex1 =  

  x^2-1  

  subs(ex1,x,4)  

  ans =  

  15  

  EQ1  

  EQ1 =  

  X^2 = 1  

  subs(EQ1,'X',4)  

  ans =  

  16 = 1  

  EX1  

  EX1 =  

  X^2 - 1  

  subs(EX1,'X',4)  

  ans =  

  15  

  % etc   

  2.    v = 0:2:10;  

  subs(ex1,x,v)  

  ans =  

  -1 3 15 35 63 99  

  subs(EX1,'X',v)  

  ans =  

  -1 3 15 35 63 99  

  %subs(eq1,x,v)  

  %subs(EQ1,'X',v)  

  % You can’t substitute a vector into an equation   

  3.    new_ex1 = subs(ex1,{a,b,c},{3,4,5})  

  new_ex1 =  

  x^2-1  

  subs(new_ex1,x,1:0.5:5)  

  ans =  

  Columns 1 through 5  

  0 1.2500 3.0000 5.2500 8.0000  

  Columns 6 through 9  

  11.2500 15.0000 19.2500 24.0000  

  new_EX1 = subs(EX1,{'A','B','C'},{3,4,5})  
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  new_EX1 =  

  X^2-1  

  subs(new_EX1,'X',1:0.5:5)  

  ans =  

  Columns 1 through 5  

  0 1.2500 3.0000 5.2500 8.0000  

  Columns 6 through 9  

  11.2500 15.0000 19.2500 24.0000  

  %  

  new_eq1 = subs(eq1,{a,b,c},{3,4,5})  

  new_eq1 =  

  x^2 = 1  

  %subs(new_eq1,x,1:0.5:5) % won’t work because it’s an  

  %equation  

  new_EQ1 = subs(EQ1,{'A','B','C'},{3,4,5})  

  new_EQ1 =  

  X^2=1     

  Practice Exercises 12.6 
   1.    ezplot(ex1)  

  title('Problem 1')  

  xlabel('x')  

  ylabel('y')   

  2.    ezplot(EX1)  

  title('Problem 2')  

  xlabel('x')  

  ylabel('y')   
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  3.    ezplot(ex2,[-10,10])  

  title('Problem 3')  

  xlabel('x')  

  ylabel('y')   
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  5.   Equations with only one variable have a single valid value of  x  ; there are no  x - y  
pairs.  

  6.    ezplot(ex6)  

  title('Problem 6')  

  xlabel('x')  

  ylabel('y')   

  4.    ezplot(EX2,[-10,10])  

  title('Problem 4')  

  xlabel('x')  

  ylabel('y')   
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  7.    ezplot('cos(x)')  

  title('Problem 7')  

  xlabel('x')  

  ylabel('y')   

  8.    ezplot('x^2-y^4 = 5')  

  title('Problem 8')  

  xlabel('x')  

  ylabel('y')   

5 0 5

5

0

5

x

y

Problem 8



D-44 Appendix D

  9.    ezplot('sin(x)')  

  hold on  

  ezplot('cos(x)')  

  hold off  

  title('Problem 9')  

  xlabel('x')  

  ylabel('y')   
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Problem 10  10.    ezplot('sin(t)',
'3*cos(t)')  

  axis equal  

  title('Problem 10')  

  xlabel('x')  

  ylabel('y')     

  Practice Exercises 12.7 

    Z=sym('sin(sqrt

(X^2+Y^2))')   

   Z =   

   sin(sqrt(X^2+Y^2))    

   1.    ezmesh(Z)  

  title('Problem 1')  

  xlabel('x')  

  ylabel('y')  

  zlabel('z')   
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  2.    ezmeshc(Z)  

  title('Problem 2')  

  xlabel('x')  

  ylabel('y')  

  zlabel('z')   

1

0

5
5

5 5

0 0

1

xy

Problem 2

z



Solutions to Practice Exercises D-45

  3.    ezsurf(Z)  

  title('Problem 3')  

  xlabel('x')  

  ylabel('y')  

  zlabel('z')   
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  4.    ezsurfc(Z)  

  title('Problem 4')  

  xlabel('x')  

  ylabel('y')  

  zlabel('z')   
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  5.    ezcontour(Z)  

  title('Problem 5')  

  xlabel('x')  

  ylabel('y')  

  zlabel('z')   
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  6.    ezcontourf(Z)  

  title('Problem 6')  

  xlabel('x')  

  ylabel('y')  

  zlabel('z')   
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  8.    t = sym('t');  

  x = t;  
  y = sin(t);  
  z = cos(t);  
  ezplot3(x,y,z,[0,30])  
  title('Problem 8')  
  xlabel('x')  
  ylabel('y')  
  zlabel('z')     

  Practice Exercises 12.8 
   1.    diff('x^2+x+1')  

  ans =  

  2*x+1  

  diff('sin(x)')  

  ans =  

  cos(x) % or define x as symbolic  

  x = sym('x')  

  x =  

  x  

  diff(tan(x))  

  ans =  

  1+tan(x)^2  

  diff(log(x))  

  ans =  

  1/x   

  2.    diff('a*x^2 + b*x + c')  

  ans =  

  2*a*x+b  

  diff('x^0.5 - 3*y')  

  ans =  

  .5/x^.5  

  diff('tan(x+y)')  

  ans =  

  1+tan(x+y)^2  

  diff('3*x + 4*y - 3*x*y')  

  ans =  

  3-3*y   

  7.    figure(7)  

  ezpolar('x*sin(x)')  

  title('Problem 7')   
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  3.    % There are several different approaches  

  diff(diff('a*x^2 + b*x + c'))  

  ans =  

  2*a  

  diff('x^0.5 - 3*y',2)  

  ans =  

  -.25/x^1.5  

  diff('tan(x + y)','x',2)  

  ans =  

  2*tan(x+y)*(1+tan(x+y)^2)  

  diff(diff('3*x + 4*y - 3*x*y','x'))  

  ans =  

  -3   

  4.    diff('y^2 - 1','y')  

  ans =  

  2*y  

  % or , since there is only one variable  

  diff('y^2 - 1')  

  ans =  

  2*y  

  %  

  diff('2*y + 3*x^2','y')  

  ans =  

  2  

  diff('a*y + b*x + c*x','y')  

  ans =  

  a   

  5.    diff('y^2-1','y',2)  

  ans =  

  2  

  % or , since there is only one variable  

  diff('y^2-1',2)  

  ans =  

  2  

  %  

  diff(diff('2*y + 3*x^2','y'),'y')  

  ans =  

  0  

  diff('a*y + b*x + c*x','y',2)  

  ans =  

  0     

  Practice Exercises 12.9 
   1.    int('x^2 + x + 1')  

  ans =  

  1/3*x^3+1/2*x^2+x  

  % or define x as symbolic  

  x = sym('x')  

  x =  

  x  
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  int(x^2 + x + 1)  

  ans =  

  1/3*x^3+1/2*x^2+x  

  int(sin(x))  

  ans =  

  -cos(x)  

  int(tan(x))  

  ans =  

  -log(cos(x))  

  int(log(x))  

  ans =  

  x*log(x)-x   

  2.    % you don’t need to specify that integration is with  

  % respect to x, because it is the default  

  int('a*x^2 + b*x + c')  

  ans =  

  1/3*a*x^3+1/2*b*x^2+c*x  

  int('x^0.5 - 3*y')  

  ans =  

  .66666666666666666666666666666667*x^(3/2)-3.*x*y  

  int('tan(x+y)')  

  ans =  

  1/2*log(1+tan(x+y)^2)  

  int('3*x + 4*y - 3*x*y')  

  ans =  

  3/2*x^2+4*x*y-3/2*y*x^2   

  3.    int(int(x^2 + x + 1))  

  ans =  

  1/12*x^4+1/6*x^3+1/2*x^2  

  int(int(sin(x)))  

  ans =  

  -sin(x)  

  int(int(tan(x)))  

  ans =  

  -1/2*i*x^2-x*log(cos(x))+x*log(1+exp(2*i*x))-
1/2*i*polylog(2,-exp(2*i*x))  

  int(int(log(x)))  

  ans =  

  1/2*x^2*log(x)-3/4*x^2  

  int(int('a*x^2 + b*x + c'))  

  ans =  

  1/12*a*x^4+1/6*b*x^3+1/2*c*x^2  

  int(int('x^0.5 - 3*y'))  

  ans =  

  .26666666666666666666666666666667*x^(5/2)-  

  1.5000000000000000000000000000000*y*x^2  

  int(int('tan(x+y)'))  

  ans =  

  -1/4*i*log(tan(x+y)-i)*log(1+tan(x+y)^2)+1/4*i*dilog(-  

  1/2*i*(tan(x+y)+i))+1/4*i*log(tan(x+y)-i)*log(-  
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  1/2*i*(tan(x+y)+i))+1/8*i*log(tan(x+y)-  

  i)^2+1/4*i*log(tan(x+y)+i)*log(1+tan(x+y)^2)-  

  1/4*i*dilog(1/2*i*(tan(x+y)-i))-  

  1/4*i*log(tan(x+y)+i)*log(1/2*i*(tan(x+y)-i))-  

  1/8*i*log(tan(x+y)+i)^2  

  int(int('3*x + 4*y -3*x*y'))  

  ans =  

  1/2*x^3+2*y*x^2-1/2*y*x^3   

  4.    int('y^2-1')  

  ans =  

  1/3*y^3-y  

  int('2*y+3*x^2','y')  

  ans =  

  y^2+3*y*x^2  

  int('a*y + b*x + c*z','y')  

  ans =  

  1/2*a*y^2+b*x*y+c*z*y   

  5.    int(int('y^2-1'))  

  ans =  

  1/12*y^4-1/2*y^2  

  int(int('2*y+3*x^2','y'),'y')  

  ans =  

  1/3*y^3+3/2*x^2*y^2  

  int(int('a*y + b*x + c*z','y'),'y')  

  ans =  

  1/6*a*y^3+1/2*b*x*y^2+1/2*c*z*y^2   

  6.    int(x^2 + x + 1,0,5)  

  ans =  

  355/6  

  int(sin(x),0,5)  

  ans =  

  -cos(5)+1  

  int(tan(x),0,5)  

  ans =  

  NaN  

  int(log(x),0,5)  

  ans =  

  5*log(5)-5     

  Practice Exercises 13.1 
   1.    plot(x,y,'-o')  

  title('Problem 1')  

  xlabel('x-data')  

  ylabel('y-data')  

  grid on   
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  2.    interp1(x,y,15)  

  ans =  

  34   

  3.    interp1(x,y,15,'spline')  

  ans =  

  35.9547   

  4.    interp1(y,x,80)  

  ans =  

  39.0909   

  5.    interp1(y,x,80,'spline')  

  ans =  

  39.2238   

  6.    new_x = 10:2:100;  

  new_y = interp1(x,y,new_x,'spline');  

  figure(2)   

  7.    plot(x,y,'o',new_x,new_y)  

  legend('measured data','spline interpolation')  

  title('Problem 6 and 7')  

  xlabel('x-data')  

  ylabel('y-data')     

  Practice Exercises 13.2 

    y = 10:10:100';   

   x = [15, 30];   

   z = [23 33    

  45    55  

  60    70  

  82    92  

  111    121  

  140    150  

  167    177  

  198    198  

  200    210  

  220    230];  

   1.    plot(y,z,'-o')  

  title('Problem 1')  

  xlabel('y-data')  

  ylabel('z-data')  

  legend('x=15','x=30')   
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  2.    new_z = interp2(x,y,z,15,20)  

  new_z =  

  45   

  3.    new_z = interp2(x,y,z,15,20,'spline')  

  new_z =  

  45   

  4.    new_z = interp2(x,y,z,[20,25],y')  

  new_z =    

  26.3333    29.6667  

  48.3333    51.6667  

  63.3333    66.6667  

  85.3333    88.6667  

  114.3333    117.6667  

  143.3333    146.6667  

  170.3333    173.6667  

  198.0000    198.0000  

  203.3333    206.6667  

  223.3333    226.6667  

  Practice Exercises 13.3 
    x = [10:10:100];   

   y = [23 33    

  45    55  

  60    70  

  82    92  

  111    121  

  140    150  

  167    177  

  198    198  

  200    210  

  220    230]';  

   1.    coef = polyfit(x,y(1,:),1)  

  coef =  

  2.3224 -3.1333   

  2.    new_x = 10:2:100;  

  new_y = polyval(coef,new_x)  

  new_y =  

  Columns 1 through 6  

  20.0909 24.7358 29.3806 34.0255 38.6703 43.3152  

  Columns 7 through 12  

  47.9600 52.6048 57.2497 61.8945 66.5394 71.1842  

  Columns 13 through 18  

  75.8291 80.4739 85.1188 89.7636 94.4085 99.0533  

  Columns 19 through 24  

  103.6982 108.3430 112.9879 117.6327 122.2776 126.9224  
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  Columns 25 through 30  

  131.5673 136.2121 140.8570 145.5018 150.1467 154.7915  

  Columns 31 through 36  

  159.4364 164.0812 168.7261 173.3709 178.0158 182.6606  

  Columns 37 through 42  

  187.3055 191.9503 196.5952 201.2400 205.8848 210.5297  

  Columns 43 through 46  

  215.1745 219.8194 224.4642 229.1091   

  3.    figure(1)  

  plot(x,y(1,:),'o',new_x,new_y)  

  title('Problem 3 - Linear Regression Model - z = 15')  

  xlabel('x-axis')  

  ylabel('y-axis')   
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  4.    figure(2)  

  coef2 = polyfit(x,y(2,:),1)  

  coef2 =  

  2.2921 7.5333  

  new_y2 = polyval(coef2,new_x);  

  plot(x,y(2,:),'o',new_x,new_y2)  

  title('Problem 4 - Linear Regression Model -
z = 30')  

  xlabel('x-axis')  

  ylabel('y-axis')     

  Practice Exercises 13.4 
   1.    x = -5:1:5;  

  y1 = x.^3 + 2.*x.^2 - x + 3;  

  dy_dx1 = diff(y1)./diff(x)  

  dy_dx =  

  42 22 8 0 -2 2 12 28 50 78  

  dy_dx_analytical1=3*x.^2 + 4*x -1  
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  dy_dx_analytical =  

  54 31 14 3 -2 -1 6 19 38 63 94  

  table = [[dy_dx1,NaN]',dy_dx_analytical1']  

  table =    

  42    54  

  22    31  

  8    14  

  0    3  

  -2    -2  

  2    -1  

  12    6  

  28    19  

  50    38  

  78    63  

  NaN    94  

   % We added NaN to the dy_dx vector so that the length  

  % of each vector would be the same   

  2.      a.    x = -5:1:5;  

  y2a = sin(x);  

  dy_dx2a = diff(y2a)./diff(x);  

  dy_dx_analytical2a=cos(x);  

  table = [[dy_dx2a,NaN]',dy_dx_analytical2a']  

  table =    

  -0.2021    0.2837  

  -0.8979    -0.6536  

  -0.7682    -0.9900  

  0.0678    -0.4161  

  0.8415    0.5403  

  0.8415    1.0000  

  0.0678    0.5403  

  -0.7682    -0.4161  

  -0.8979    -0.9900  

  -0.2021    -0.6536  

  NaN    0.2837  

  b.    x = -5:1:5;  

  y2b = x.^5-1;  

  dy_dx=diff(y2b)./diff(x);  

  dy_dx_analytical2b = 5*x.^4;  

  table = [[dy_dx2b,NaN]',dy_dx_analytical2b']  

  table =    

  2101    3125  

  781    1280  

  211    405  

  31    80  
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  1    5  

  1    0  

  31    5  

  211    80  

  781    405  

  2101    1280  

  NaN    3125  

  c.    x = -5:1:5;  

  y2c = 5*x.*exp(x);  

  dy_dx2c = diff(y2c)./diff(x);  

  dy_dx_analytical2c=5*exp(x) + 5*x.*exp(x);  

  table = [[dy_dx2c,NaN]',dy_dx_analytical2c']  

  table =    

  1.0e+003    *  

  -0.0002    -0.0001  

  -0.0004    -0.0003  

  -0.0006    -0.0005  

  -0.0005    -0.0007  

  0.0018    0  

  0.0136    0.0050  

  0.0603    0.0272  

  0.2274    0.1108  

  0.7907    0.4017  

  2.6184    1.3650  

  NaN    4.4524  

  3.    dy_dx31=gradient(y1)  

 dy_dx31 = 
 42 32 15 4 -1 0 7 20 39 64 78 
    dy_dx3a=gradient(y2a)   
  dy_dx3a =  
  Columns 1 through 6  
     
  -0.2021 -0.5500 -0.8330 -0.3502 0.4546 0.8415  
     
  Columns 7 through 11  
     
  0.4546 -0.3502 -0.8330 -0.5500 -0.2021  
     
   dy_dx3b=gradient(y2b)   
     
  dy_dx3b =  
     
  Columns 1 through 5  
     
  2101 1441 496 121 16  
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  Columns 6 through 11  
     
  1 16 121 496 1441 2101  
     
   dy_dx3c=gradient(y2c)   
     
  dy_dx3c =  
     
  1.0e+003 *  
     
  Columns 1 through 6  
     
   -0.0002 -0.0003 -0.0005 -0.0005 0.0007 0.0077  
     
  Columns 7 through 11  
     
   0.0369 0.1438 0.5090 1.7045 2.6184  
       

  4.    subplot(2,2,1)  

      plot(x',[[dy_dx1,NaN]',dy_dx_analytical1',dy_dx31'])   

     title('x^3+2x^2-x+3')   

     ylabel('derivative')   

     subplot(2,2,2)   

     plot(x',[[dy_dx2a,NaN]',dy_dx_analytical2a',dy_dx3a'])   

     title('sin(x)')   

     legend('forward difference','analytical','gradient')   

     subplot(2,2,3)   

     plot(x',[[dy_dx2b,NaN]',dy_dx_analytical2b',dy_dx3b'])   

     title('x^5-1')   

     xlabel('x')   

     ylabel('derivative')   

     subplot(2,2,4)   

     plot(x',[[dy_dx2c,NaN]',dy_dx_analytical2c',dy_dx3c'])   

     title('5xe^x')   

     xlabel('x')    
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  Practice Exercises 13.5 

   1.    quad('x.^3+2*x.^2 -x + 3',-1,1)  

  ans =  

  7.3333  

  quadl('x.^3+2*x.^2 -x + 3',-1,1)  

  ans =  

  7.3333  

  double(int('x^3+2*x^2 -x + 3',-1,1))  

  ans =  

  7.3333  

  a = -1;  

  b = 1;  

  1/4*(b^4-a^4)+2/3*(b^3-a^3)-1/2*(b^2-a^2)+3*(b-a)  

  ans =  

  7.3333   

  2.       a.    quad('sin(x)',-1,1)  

  ans =  

  0  

  quadl('sin(x)',-1,1)  

  ans =  

  0  

  double(int('sin(x)',-1,1))  

  ans =  

  0  

  a = -1;  

  b = 1;  

  cos(b)-cos(a)  

  ans =  

  0   

  b.    quad('x.^5-1',-1,1)  

  ans =  

  -2  

  quadl('x.^5-1',-1,1)  

  ans =  

  -2.0000  
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  double(int('x^5-1',-1,1))  

  ans =  

  -2  

  a = -1;  

  b = 1;  

  (b^6-a^6)/6-(b-a)  

  ans =  

  -2   

  c.    quad('5*x.*exp(x)',-1,1)  

  ans =  

  3.6788  

  quadl('5*x.*exp(x)',-1,1)  

  ans =  

  3.6788  

  double(int('5*x*exp(x)',-1,1))  

  ans =  

  3.6788  

  a = -1;  

  b = 1;  

  -5*(exp(b)-exp(a)) + 5*(b*exp(b)-a*exp(a))  

  ans =  

  3.6788    
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  (blank) Not reported.

     +       Occurred on one or more previous dates 
during the month. The date in the Date fi eld is 
the last day of occurrence. Used through 
December 1983 only. 

  A   Accumulated amount. This value is a total that 
may include data from a previous month or 
months or year (for annual value). 

  B   Adjusted total. Monthly value totals based on 
proportional available data across the entire 
month. 

  E   An estimated monthly or annual total. 
  X   Monthly means or totals based on incomplete 

time series. 1 to 9 days are missing. Annual 
means or totals include one or more months 
that had 1 to 9 days that were missing. 

  M   Used to indicate data element missing. 
  T   Trace of precipitation, snowfall, or 

snowdepth. The precipitation data value 
will = zero       

  S   Precipitation amount is continuing to be 
accumulated. Total will be included in a 

subsequent monthly or yearly value. 
 Example : Days 1–20 had 1.35 inches of 
precipitation, and then a period of 
accumulation began. The element TPCP 
would then be 00135S and the total 
accumulated amount value appears in a 
subsequent monthly value. If TPCP = "M", 
there was no precipitation measured during 
the month. Flag is set to "S" and the total 
accumulated amount appears in a 
subsequent monthly value.     

Date Temperature (� F) Precipitation (inches)
Elem-> MMXT MMNT MNTM DPNT HTDD CLDD EMXT  EMNP  DT90 DX32 DT32 DT00 TPCP DPNP EMXP  TSNW MXSD  DP01 DP05 DP10

Number of Days
Total

Depart.
from

Normal Greatest Observed Snow, Sleet Number of Days

1999
Month

Mean
Max.

Mean
Min. Mean

Depart.
from

Normal

Heating
Degree
Days

Cooling
Degree
Days Highest

High
Date Lowest

Low
Date

Max
>=90�

Max
<=32�

Min
<=32� 

Min
<=0� Day Date

Total
Fal l

Max
Depth

Max
Date >=.10 >=.50 >=1.0

1 51.4 31.5 41.5 5.8 725 0 78 27 9 5 0  2 16 0 4.56 2.09 1.61 2 2 .7 1 31 9 2 2 

2 52.6 32.1 42.4 3.5 628 0 66 8 16 14 0 2 16 0 3.07 -0.18 0.79 17 1.2 0T 1 6 3 0 

3 52.7 32.5 42.6 -4.8 687 0 76 17 22 8 0  0 19 0 2.47 -1.41 0.62 3 5.3 1 26 8 1 0 

4 70.1 48.2 59.2 3.6 197 30 83 10 34 19 0 0 0 0 2.10 -1.02 0.48 27 0.0T 0T 2 6 0 0 

5 75.0 51.5 63.3 -0.1 69 25 83 29 40 2 0  0 0 0 2.49 -1.12 0.93 7 0.0 0  5 2 0 

6 80.2 60.9 70.6 0.3 4 181 90 8 50 18 1 0 0 0 2.59 -0.68 0.69 29 0.0 0  6 2 0 

7 85.7 64.9 75.3 1.6 7 336 96 31 56 13 8 0 0 0 3.87 0.94 0.80 11 0.0 0  10 4 0 

8 86.4 63.0 74.7 1.9 0 311 94 13 54 31 7 0 0 0 0.90 -2.86 0.29 8 0.0 0  4 0 0 

9 79.1 54.6 66.9 0.2 43 106 91 2 39 23 3 0 0 0 1.72 -1.48 0.75 28 0.0 0  4 1 0 

10 67.6 45.5 56.6 0.4 255 1 78 15 28 25 0 0 2 0 1.53 -1.24 0.59 4 0.0 0  3 2 0 

11 62.2 40.7 51.5 4.0 397 0 76 9 26 30 0 0 8 0 3.48 0.56 1.71 25 0.3 0  5 3 1 

12 53.6 30.5 42.1 2.7 706 0 69 4 15 25 0 0 20 0 1.07 -1.72 0.65 13 0.0T 0T 17 3 1 0 

Annual 68.0 46. 3 57.2 1.6 3718 990 96 Jul 9 Jan 19 4 81 0 29.85 -8.12 1.71 Nov 9.5 1 Mar 69 21 3

  Table D.1   Annual Climatological Summary, Station: 310301/13872, Asheville, North Carolina, 1999 (Elev. 2240 ft. above sea level; Lat. 35°36'N, Lon. 82°32'W) 

     Notes 

 U.S. Department of Commerce National Oceanic & Atmospheric Administration.   
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    %,  267   
   %,   54 ,  625   
  %%,  250   
   %%,   54 ,  625   
  &,  275 ,  301 ,  634   
  ' ,'  417 ,  635   
   ( ),   54 ,  624   
   *,   54 ,  193 ,  625 ,  630   
   +,   54 ,  193 ,  625 ,  630   
-   ,   54 ,  193 ,  625 ,  630   
-   ,   193 ,  630   
   .*,   54 ,  625   
   ./,   54 ,  625   
   .∧,   54 ,  625   
   /,   54 ,  625   
=   ,   54 ,  625   
= =   ,   274 ,  301 ,  633   
   [ ],   54 ,  624   
   [ ],   54 ,  625   
   ̂ ,   54 ,  194 ,  625 ,  630   
|   ,   275 ,  301 ,  634   
  ’,  250   
   ,   54 ,  624   
   ;,   54 ,  624   
   :,   54 ,  193 ,  624 ,  630   
   .,   193 ,  630   
-   .,   193 ,  630   
   ...,   54 ,  625   
   7 (greater than),  274 ,  301 ,  633   
  7=(greater than or equal to),  274 ,  301 ,  633   
  6 (less than),  274 ,  301 ,  633   
  6= (less than or equal to),  274 ,  301 ,  633   
  '= (not equal),  274 ,  301 ,  633   
  ',  275 ,  633   
=   ,   274 ,  301 ,  633    

  A 

   [a,b]=max(x)  function,  80   
   [a,b]=min(x)  function,  81   
   abs  function,  107   
   [a,b] = size(x)  function,  88   
   abs(x)  function,  68 ,  107   
   Add Folder,   224   
   add  function,  229   
   addpath  function,  225 ,  632   
  Advanced graphics 

 animation 

 movies,  568 – 570  
 by redrawing and erasing,  565 – 566  

 handle graphics 
 annotation axes,  564  
 axis handles,  563  
 fi gure handles,  562 – 563  
 plot handles,  562  
 using handles to manipulate graphics,  564 – 565  

 hidden lines,  572  
 images 

  image  function,  545  
 indexed,  550 – 553  
 intensity,  548 – 550  
 Mandelbro and Julia sets,  554 – 558  
  peaks  function,  546  
 pseudo color plot,  546  
 scaled image function (  imagesc  ),  545 ,  547  
 shading option,  547  
 true color (RGB),  553 – 554  

 lighting,  572 – 573  
 reading and writing image fi les 

 storing of information,  559 – 560  
 transparency,  571 – 572  
 volume visualization of scalar data,  573 – 574  
 volume visualization of vector data,  574 – 576   

  Aerospace engineering,  4   
  Albrecht Durer’s woodcut “Melancholia,”  140   
   all  function,  283 ,  634   
  Alternating harmonic series,  325 – 327   
  Analog computer,  604   
   angle  function,  107   
   angle(x)  function,  107   
  Animation 

 movies 
 Mandelbrot image,  568 – 570  

 by redrawing and erasing,  565 – 566   
  Annotating plots,  158 – 159   
  Anonymous functions,  226 – 227   
   ans  variable,  13   
  Antiderivative,  460   
   any  function,  283 ,  634   
  Approximation,  484 ,  494 ,  512 ,  515 – 518   
  Arctangent,  78   
  Argument,  64   
  Array 

  ans,   13  
 cell,  408 – 409  
 character,  398 ,  403 – 406  



 creating simple secret coding scheme,  407 – 408  
 functions and operators,  343  
 logical,  400 – 401  
 multidimensional,  401 – 402  
 multiplication,  30 ,  344 ,  355  
 operations,  28 – 30  
 radius,  23  
 sparse,  401  
 structure,  409 – 412  

 extracting and using data from,  414 – 416  
 to store information about the planets,  412 – 414   

   array editor,   16   
  ASCII,  44 – 45   
  ASCII coding scheme,  399   
   -ascii  command,  45   
  ASCII fi les,  260 – 261   
   asind(x)  function,  76   
   asinh(x)  function,  76   
   asin(x)  function,  76   
  assignment operator,  22   
  asterisk operator (  *  ),  30 – 31 ,  37   
   A  variable,  13   
   axis equal  command,  191   
   axis equal  function,  158   
   axis  function,  158   
  Axis scaling,  158 – 159   
   axis(v)  function,  158    

  B 

   b,   193 ,  248 ,  630 ,  633   
  Backslash (/),  159 – 160 ,  248   
  Ballistic problem 

 using symbolic capability of MATLAB  ® ,  444 – 446  
 plotting,  452 – 454   

  Bar graphs,  175   
   barh(x)  function,  175   
   bar3h(x)  function,  175   
   bar(x)  function,  175   
   bar3(x)  function,  175   
  biomedical engineering and MATLAB  ® ,  3 – 4   
  8-bit signed-integer types,  397   
  16-bit signed-integer types,  397 – 398   
   break  function,  328 ,  634   
  Browse button,  15   
  Built-in functions 

 complex numbers,  104 – 108  
 computational limitations,  108 – 109  
 data analysis functions,  80 – 100  
 elementary math functions,  68 – 75  
 help function ( help ),  65 – 68  
 random numbers,  100 – 104  
 special values and miscellaneous functions,  109 – 111  
 trigonometric functions,  76 – 80  
 using,  63 – 65   

  Buying gasoline, example 
 using menu approach,  296 – 299  
 using  switch / case  structure,  292 – 295   

   B  variable,  14   
   bvp4c  function,  535   
  bytes,  393    

  C 

   c,   193 ,  630   
   %c,   247 ,  633   
  C++,  1 – 2   
   calculation  function,  206   
  Calculus 

 differential,  454 – 458  
 integration,  460 – 463   

  Callback function,  587 – 590   
  Carburizing,  171   
   cat  function,  402   
   ceil(x)  function,  73   
  Cell array,  408 – 409  

 indexing system,  408  
 use of,  409   

   cell-array constructor,  417   
   celldisp  function,  408 ,  417 ,  633   
  Cell mode,  255  

 activating,  50 – 52   
   cellplot  function,  409   
   census  function,  535   
  Center of gravity of the vehicle, calculating,  345 – 348  

 using matrix multiplication,  353 – 354   
   cftool  function,  535   
  Character and string data,  398 – 400   
  Character array,  403 – 406   
   char  function,  399 ,  417   
  Class,  391 – 393   
  Clausius–Clapeyron equation,  70 – 72 ,  161 – 164   
   clc  command,  12 ,  15   
   clear  command,  15 ,  43 – 44   
  Climatologic data, calculation of,  97 – 99   
   clock  function,  110 ,  634   
   C  matrix,  16   
  Coeffi cient matrix,  369 – 371   
   collect  function,  431 – 432 ,  473   
   collect(S)  function,  434   
  Colon operator,  123 – 125   
   colormap  function,  186   
   colormap(map_name)  function,  183   
  combinations,  75   
   comet3  function,  184   
   comet3(x,y,z)  function,  183   
  command history window,  12   
  Commands,  624 – 629   
  command window,  12   
   comment  option,  135   
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  Complex numbers,  104 – 107 ,  397 – 398   
   complex(x,y)  function,  105 ,  107   
   conj(x)  function,  105 ,  107   
   continue  function,  328 ,  634   
   contour  command,  188   
  Contour plots,  188   
   contour(x,y,z)  function,  183   
   conversions,   32   
   cos(x)  function,  76   
   cross  command,  383   
  Cross products,  359 – 361  

 fi nding moment of a force about a point,  361 – 363   
  Cubic spline interpolation technique,  487 – 488   
   cumprod  function,  85   
   cumsum  function,  84 – 85 ,  395 ,  418   
  Cumulative sums,  395   
  Curly brackets ,  409 ,  417 ,  473 ,  635   
  current folder window,  15   
   curve-fi tting toolbox,   508 – 509    

  D 

   d,   193 ,  630   
   %d,   247 ,  633   
  Data analysis functions 

 determining matrix size,  88 – 89  
 mean and median,  82 – 83  
 minimum and maximum,  80 – 82  
 sorting values,  85 – 88  
 standard deviation and variance,  94 – 100  
 sums and products,  83 – 85   

  Database management,  412   
   data_2.dat,   45   
  Data types 

 character and string data,  398 – 400  
 logical data,  400 – 401  
 numeric 

 complex numbers,  397 – 398  
 double-precision fl oating-point number,  392 – 394  
 integer-number types,  397  
 single-precision fl oating-point numbers,  394 – 396  

 sparse matrices,  401  
 symbolic data,  400   

   date  function,  110 ,  634   
  Debugging,  263 – 266 ,  300   
   decision.wav,   261   
   degrees_to_radians,   32   
  Degrees-to-radians function,  224   
   det  command,  383   
  Determinants,  357 – 359   
   det  function,  358   
   diag  function,  136 ,  138 – 139   
  Diagonal matrices,  138   
  Diary function,  42 – 43   
   diary on  command,  42 – 43   

  Dicom fi les,  3   
  Differential calculus,  454 – 458   
  Differential equations,  468 – 470 ,  605  

 solving ordinary, using MATLAB  ® ,  526 – 533  
 solving using numerical techniques,  531 – 532  
 solving using Simulink,  613 – 614   

   diff  function,  455 ,  457 – 458 ,  472 – 473 ,  512 – 519 ,  535   
  Discrete mathematics,  73 – 75   
   disp  command,  296   
   disp  function,  245 – 246 ,  405 ,  411 ,  633   
   distance_handle  function,  227   
  Document window,  16   
  Document window/array editor,  16   
  Dot-asterisk operator (  .*  ),  30 – 31 ,  37 ,  129 ,  427   
   dot  command,  383   
  Dot multiplication,  30   
  Dot operator,  30   
  Dot product,  345   
   double  function,  394 ,  418   
  Double percentage sign (%%),  51   
  Double-precision fl oating-point array,  13   
  Double-precision fl oating-point number,  392 – 394   
  Drag, calculating,  35 – 38   
   dsolve  function,  469 ,  473   
  Dynamic systems,  604    

  E 

   %e,   247 ,  633   
  EBCDIC coding scheme,  399   
   edit  command,  17   
  edit window,  17   
  Einstein, Albert,  6   
  electrical engineering and MATLAB  ® ,  3   
  Elementary math functions 

  abs(x)  function,  68  
 Clausius–Clapeyron equation,  70 – 72  
 combinations,  75  
 common computations,  68 – 69  
 discrete mathematics,  73 – 75  
  exp(x)  function,  68 – 69  
 factorials,  73 – 75  
 logarithm function,  69  
  log(x)  function,  68  
  nthroot(x,n)  function,  68  
 permutations,  74 – 75  
  rem,  remainder function,  68  
 rounding functions,  72 – 73  
  sign(x)  function,  68  
  sqrt  function,  68   

  Element-by-element division ( ./ ) syntax,  30   
  Ellipsis (…),  122   
   else  function,  319 ,  324 ,  330 ,  332 ,  634   
   elseif  function,  285 – 287 ,  634   
   end  command,  231 ,  634   
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  engineering and science, problem-solving schemes in,  5 – 6   
   eps  function,  110   
  equals sign (=),  21   
   etime  function,  334 – 336 ,  634   
   evaluate cell  tool,  258   
  Evenly spaced matrix,  123   
  Excel spreadsheet fi le (.xls),  262   
   expand  function,  431 ,  473   
   expand(S)  function,  434   
   exp  function,  23   
  Explicit list,  28    
  Exponentiation ( ˆ ) syntax,  30 ,  37 ,  383   
  Exponent overfl ow,  109   
   exp(x)  function,  68 – 69   
  “eyeballing it,”  495 – 496   
   eye  function,  379 ,  383 ,  418 ,  635   
   ezcontourf  function,  450 ,  473   
   ezcontour  function,  450 ,  473   
   ezmeshc  function,  450 ,  474   
   ezmesh  function,  450 ,  473   
   ezplot  function,  446 – 450 ,  474   
   ezplot3  function,  450 ,  474   
   ezpolar  function,  450 – 451 ,  474  

  ezmesh(z),   450  
  ezsurf(z),   450  
  subplot(2,2,1),   450  
  subplot(2,2,2),   450  
  subplot(2,2,3),   450  
  subplot(2,2,4),   450  
  title('ezmesh'),   450  
  title('ezmeshc'),   450  
  title('ezsurf'),   450  
  title('ezsurfc'),   450   

   ezsurfc  function,  450 ,  474   
   ezsurf  function,  450 ,  474    

  F 

   %f,   247 ,  633   
   factor  function,  474   
  Factorials,  73 – 75   
   factorial(x)  function,  74   
   factor(S)  function,  434   
   factor(x)  function,  74   
   fi gure  command,  153   
   fi gure window,   191   
   fi le_name,   43 – 44   
   File  option, menu bar,  17   
   fi nd  command,  277 – 280 ,  284 ,  287 ,  634   
   fi ndsym  command,  439   
   fi x  function,  73   
   fl iplr  function,  136 ,  139   
   fl ipud  function,  136   
   fl oor(x)  function,  73   
  Flowcharts,  276 – 277  

 for calculating the cumulative sums of the alternating 
numeric series,  332  

 for changing degrees to radians,  316 – 317  
 factorials with a  for  loop,  317 – 319  
 of  for  loop,  315   

  fl uid dynamics and MATLAB  ® ,  4 – 5   
  Force vectors,  348 – 351   
   for  loop,  312 ,  315 ,  406 ,  634   
   format rat  function,  418   
  FORTRAN,  1 – 2   
  Forward slash (/),  248   
  Four signed-integer types,  397   
  Four unsigned-integer types,  397   
   fplot  function,  182 ,  227   
   fprintf  command,  279 – 280   
   fprintf  function,  247 – 250 ,  633   
  Franklin, Benjamin,  140   
  Function plots,  182   
  Functions,  626 – 629    

  G 

   g,   193 ,  630   
   %g,   247 ,  633   
  gallery,  381 ,  635   
   gallery  command,  383   
  Gauss, Carl Friedrich,  367 – 368   
  Gaussian elimination,  364 ,  367 – 369   
   gcd(x,y)  function,  74   
   ginput  command,  254 – 256 ,  633   
   global  command,  222   
  global variables,  222   
   gradient  function,  518 ,  535   
   grain_size  function,  211   
  Graphical user interface (GUI),  508  

 adding code to the M-fi le,  586 – 590  
 built-in templates 

 axes and menu template,  601  
 example templates,  602  
 GUI with UIcontrols,  599 – 600  
 modal question box,  602  

 creating layout,  582 – 586  
 with multiple user interaction,  590 – 592  
  Ready_Aim_Fire  program,  593 – 598   

  Graphics window,  16 – 17 ,  150   
   grid  command,  153   
   gtext  function,  166   
   gtext(‘string’)  function,  158   
  GUIDE layout editor,  582 – 584 ,  591 ,  594 ,  596 – 597   
  GUIDE program,  412   
  GUIDE Quick Start window,  582 – 591 ,  599    

  H 

   h,   194 ,  630   
  Harmonic series,  395   
   help  command,  187   
   help  function,  65 – 67 ,  158 ,  212 ,  372   
   help plot  command,  156   
  high-level languages,  1 – 2   
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   hist  function,  177   
  Histograms,  176 – 177   
   hist(x)  function,  175   
   hold  command,  153   
   hold on  command,  153    

  I 

   I, i maginary number,  110   
  Ideal gas law,  428   
   ideal_gas_law,   428 ,  430   
  Identity matrices,  379 – 381 ,  401   
  IEEE Standard  754 ,  392   
   if/else/elseif  function,  291   
   if/else  function,  285 ,  300   
   if  statement,  284 ,  634   
  Ill-conditioned matrices,  357   
  Image Processing Toolbox,  4   
  Images 

  image  function,  545  
 indexed,  550 – 553  
 intensity,  548 – 550  
 Mandelbro and Julia sets,  554 – 558  
  peaks  function,  546  
 pseudo color plot,  546  
 scaled image function (  imagesc  ),  545 ,  547  
 shading option,  547  
 true color (RGB),  553 – 554   

   imag(x)  function,  106 – 107   
   imfi nfo  function,  633   
  Indexing, into an array,  122   
   Inf  function,  110   
  ± infi nity,  394   
  Initial value problem,  530 – 531   
   input  command,  291   
   Insert menu  option,  189 ,  191   
  Integer-number types,  397   
  Integration,  460 – 463   
   interp1  function,  485 – 488 ,  535   
   interp2  function,  488 ,  535   
   interp3  function,  488 ,  535   
   interpn  function,  535   
  Interpolation 

 cubic spline,  487 – 488  
 linear,  484 – 487  
 multidimensional,  493  
 thermodynamics,  488 – 492   

   int  function,  461 – 463 ,  474 ,  535   
   int8  function,  418   
   int16  function,  418   
   int32  function,  418   
   int64  function,  418   
   intmax  function,  108 ,  397 ,  418   
   intmin  function,  108 ,  418   
   inv  command,  383   
  Inverse matrix,  356 – 357  

 solutions of systems of linear equations,  364   

   inv  function,  364   
   iskeyword  command,  19   
   isprime(x)  function,  74 ,  634   
   isreal(x)  function,  105 ,  107 ,  634   
   isvarname  command,  18    

  J 

   J, i maginary number,  110   
  JAVA,  1 – 2   
  .jpg fi le,  260    

  K 

   k,   193 ,  630   
  Kirchhoff, Gustav,  365    

  L 

  Last squares fi t,  496   
   lcm(x,y)  function,  74   
  Left division operator (),  369 ,  383   
   legend  function,  159   
   legend(‘string1,’ ‘string  2 ,’ etc)  function,  158   
   length  function,  89   
   length(x)  function,  88   
  Linear interpolation,  484 – 487   
  Linefeed command,  248   
  Line plots,  183 – 184   
   linspace  command,  29   
  Linux operating systems,  2   
   ln  function,  227   
   load  command,  45 ,  633   
  Lobatto quadrature:,  522   
  local variables,  221 – 222   
  Logarithmic plots,  170 – 171   
   log2  function,  69   
   log10  function,  68 – 69   
  Logical data,  400 – 401   
  Logical functions and selection structures 

 debugging,  300  
  disp  function,  278 – 280  
  fi nd  command,  277 – 278 ,  280 ,  283  
 fl owcharting and pseudocode for  fi nd  commands, 

 280 – 281  
 fl owcharts and pseudocode,  276 – 277  
  fprintf  functions,  278 – 280  
 regional and logical operators,  274 – 275  
 selection structures 

 assigning grades example,  288 – 290  
  elseif,   285 – 287  
  if/else,   285  
  switch/case,   291 – 295  

 signal processing using  sinc  function,  281 – 283   
   loglog(x,y)  function,  170   
   logspace  command,  29   
   log(x)  function,  68   
  Loops 

  for,   312 ,  315 ,  406  
 improving effi ciency of,  334 – 336  



Index 651

 midpoint break,  329 – 330  
 cumulative sum of the alternating numeric series, 

 330 – 333  
  while,   312 ,  320 – 322 ,  634  

 alternating harmonic series,  325 – 327  
 calculating factorials using,  324 – 325  
 creating a table for converting degrees to radians, 

 323 – 324  
 midpoint break loops,  329 – 330    

  M 

   m,   193 ,  630   
  Mac OSX,  2   
   magic  command,  383 ,  635   
  Magic matrix,  138 – 140 ,  381   
   magic(m)  function,  136   
  Mandelbro and Julia sets,  554 – 558   
  .mat fi les,  227   
  MathWorks packages,  2   
  MATLAB  ® ,  1  

 in Apple environment,  9  
 approaches for fi nding the inverse of a matrix,  357 ,  364  
 binary-to-decimal conversions,  399 – 400  
 in biomedical engineering,  3 – 4  
 built-in determinant function,  358  
 calculation of derivative,  457 – 458  
 character array,  403  
 coding schemes,  399  
 command window,  10  
 common uses of transpose operation,  344  
 conversion of character information to numeric 

 information,  404  
 cross products,  360 – 361  
 debugging tools,  300  
 default data type in,  396  
 difference between professional and student editions,  3  
 display windows 

 command,  12  
 command history window,  12  
 current folder window,  15  
 document window/array editor,  16  
 edit window,  17  
 graphics window,  16 – 17  
 start button,  17  
 workspace window,  13 – 15  

 dot product in,  345  
 double-precision fl oating-point number,  394 ,  404 ,  458  
 in electrical engineering,  3  
 exiting,  10  
 in fl uid dynamics,  4 – 5  
 folding capability available,  300  
 font control,  405  
 force vectors,  348 – 351  
  Functions-By Category  link,  66  
 getting started,  9 – 11  

 graphical user interface (GUI) 
 adding code to the M-fi le,  586 – 590  
 built-in templates,  599 – 602   
 creating layout,  582 – 586  
 with multiple user interaction,  590 – 592  
  Ready_Aim_Fire  program,  593 – 594  

 identity matrices,  379 – 380  
 inserting code into the M-fi le,  276  
 integer-number types,  397  
  interp1  function,  485 – 488  
 inverse of an ill-conditioned matrix in,  357  
 inverse of zero determinant,  359  
 least squared approach to fi nd the set of  X  values,  370   
 manipulation of symbolic expressions,  425  
  Mathematics  link,  67  
 multidimensional array,  401 – 402  
 multidimensional matrix,  379  
 MuPad notebook interface in,  425  
 opening window,  10  
 and operating system,  9  
 primary data type,  392  
 Release R2011a,  2  
 saving work in 

 activating cell mode,  50 – 52  
 diary function,  42 – 43  
 saving variables,  43 – 45  
 script M-fi le,  45 – 47  

 secondary data type,  392  
 single-precision values,  396  
 solve ordinary differential equations,  526 – 533  
 solving problems 

 assignment operator,  22  
 mathematical constant e,  23  
 matrices,  20 – 24  
 number display,  38 – 42  
 scalar operations,  21 – 22  
 standard algebraic rules,  10 ,  22  
 using variables,  18 – 20  

 solving problems using left division,  369  
 storing of character information,  398  
 student edition,  2 – 3  
 symbolic capability,  424  

 ballistic problem,  444 – 446  
  ezplot  function,  446 – 449  
 to fi nd the optimum launch angle,  459 – 460  
 functions used to manipulate expressions and equa-

tions,  434  
 MuPad calculations,  436  
  solve  function,  435 – 437 ,  439  
 solving math,  438 – 439  

 system of equations,  363 – 364 ,  370 – 375  
 “un-executing” a command,  11  
 in UNIX environment,  9  
 up arrow,  11  
 in Windows OS,  9   
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   matlabFunction  function,  470 – 471 ,  474 ,  632   
   matlab.mat,   43   
  matrices, in MATLAB  ® ,  20 – 24  

 calculating distance to horizon,  131 – 132  
 calculations with two variables,  128 – 130  
 colon operator,  123 – 125  
 defi ning,  121 – 123 ,  344  

 in terms of another matrix,  122  
 empty,  124  
 equation for distance of a freely falling body,  132 – 135  
 evenly spaced matrix,  123  
 indexing, into an array,  122  
 mapping the vectors into a two-dimensional array,  130  
 matrix calculation with scalars,  32 – 34  
 special 

 diagonal,  138  
 magic,  138 – 140  
 of ones,  137  
 placeholder,  137  
 of zeros,  136 – 137  

 using temperature data,  126 – 128   
  Matrix algebra 

 operations and functions 
 cross products,  359 – 361  
 determinants,  357 – 359  
 determine the center of gravity of the vehicle,  345 – 348  
 dot product,  345  
 inverse,  356 – 357  
 multiplication,  351 – 353  
 raising a matrix to a power,  354 – 355  
 singular matrices,  357  
 study of force vectors,  348 – 351  
 transpose operator,  344  

 solutions of systems of linear equations 
 an electrical circuit problem,  365 – 367  
 force balance on a statically determinate truss 

(example),  375 – 378  
 material balances on a desalination unit (example), 

 372 – 374  
 three equations with three unknowns,  363 – 364  
 using matrix inverse,  364  
 using matrix left division,  364 – 371  
 using reverse row echelon function,  371 – 372  

 special matrices 
 gallery,  381  
 identity matrix,  379 – 381  
 magic,  381  
  ones  and  zeros  functions,  379  
 Pascal,  381  
 rosser,  381   

  Matter, converting to energy,  6 – 8   
   max(x)  function,  80   
   max(x,y)  function,  81   
   mean(x)  function,  83   
   median(x)  function,  83   

  medical imaging and MATLAB  ® ,  4   
   menu  function,  295 – 296 ,  634  

 buying gasoline (example),  296 – 299   
   mesh  function,  185   
   meshgrid  command,  129 – 130   
   meshgrid  function,  187   
   mesh plot  function,  187   
  Mesh plots,  184 – 185   
   mesh(x,y,z)  function,  183   
   M-fi les,   12 ,  45 – 47 ,  192  

 accessing code of,  223 – 224  
 advantages,  47  
 to calculate the acceleration of a spacecraft,  48 – 50   

  Microsoft Windows,  2   
  Midpoint break loops,  329 – 330  

 cumulative sum of the alternating numeric series, 
 330 – 333   

   min(x,y)  function,  81   
   mode(x)  function,  83   
  Moment of a force about a point,  361 – 363   
  Monster.com,  3   
   More plots  option,  191   
   motion  function,  213   
  MRI data set,  4   
  Multidimensional array,  401 – 402   
  Multidimensional interpolation,  493   
  multiplication, matrix,  351 – 353  

 calculating center of gravity,  353 – 354  
 syntax (*),  383   

  Multiplicative inverses,  356   
   MuPad  notebook,  424   
   my_3D_array,   401 – 402   
  my_example_fi le,  43   
   my_function,   206 ,  224   
   my_ln_function.mat,   227   
   my_new_fi le.mat,   44   
   my_output_fi le.txt,   250   
   my_structure,   409    

  N 

   n,   248 ,  633   
   namelengthmax  command,  18   
   NaN  function,  110   
   nargin  function,  224   
   nargout  function,  219 – 220 ,  224 ,  632   
   nchoosek  function,  74 – 75   
  Nested loops,  333 – 334   
  nesting functions,  65   
   New Script  button,  17   
  Normal vector,  359   
   nthroot(x,n)  function,  68   
  “Number-crunching” program,  1 – 2   
   numden  function,  474   
   [num,den]=numden(S)  function,  434   
   numden(S)  function,  434   
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   numel  function,  89   
   numel(x)  function,  88   
  Numerical techniques 

 curve fi tting 
 determining heat capacity of a gas,  502 – 505  
 determining water fl ow,  500 – 502  
 linear regression,  495 – 497  
  polyfi t  function,  498 – 499  
 polynomial regression,  497 – 498  

 differences and numerical differentiation 
  diff  function,  512 – 515  
 forward, backward, and central difference tech-

niques,  515 – 519  
 interactive plotting tools,  505 – 508  

  curve-fi tting toolbox,   508 – 509  
 population of the earth,  510 – 511  

 interpolation 
 cubic spline,  487 – 488  
 linear,  484 – 487  
 multidimensional,  493  
 thermodynamics,  488 – 492  

 numerical integration,  520 – 523  
 calculating moving boundary work,  524 – 525  

 for solving differential equations 
 boundary value problems,  531 – 532  
 function handle input,  526 – 528  
 higher-order,  529 – 530  
 partial,  532 – 533   

   num2str  function,  246 ,  405 ,  418    

  O 

   o,   193 ,  630   
   ode23  function,  527 ,  535   
   ode45  function,  527 ,  535   
   ode113  function,  527 ,  535   
   ode15i  function,  527 ,  536   
   ode15s  function,  527 ,  535   
   ode23s  function,  527 ,  535   
   ode23tb  function,  527 ,  536   
   ode23t  function,  527 ,  536   
   ones  function,  137 ,  379 ,  383 ,  635   
  order of operation, standard algebraic rules for,  22   
  Orthogonality,  359   
  Oscilloscope,  604   
   otherwise  syntax,  292 ,  295 ,  634    

  P 

   p,   194 ,  630   
  Pages,  401   
  Partial sums,  395   
   pascal  function,  383 ,  635   
  Pascal matrix,  381   
   pause  command,  153 ,  633   
   pause  function,  246   
   pause(n)  command,  152   

   pcolor(x,y,z)  function,  183   
   peaks  function,  154 – 155 ,  188 – 189   
  percentage sign (%),  47   
  permutations,  74 – 75   
   pi,  value of,  31 ,  76 ,  110 ,  219   
  Pie charts,  175   
   pie(x)  function,  175   
   pie3(x)  function,  175   
  Placeholder ( % ),  247   
  Placeholder matrix,  137   
   planetary_information  fi le,  412 – 415   
   plot  command,  17 ,  150 ,  153 – 156 ,  158   
  Plotting 

 creating plots from workspace window,  191 – 192  
 editing of plots,  189 – 191  
 saving plots,  192  
 subplots,  166 – 167  
 three-dimensional plots 

 contour plots,  188  
 line plots,  183 – 184  
 pseudo color plots,  188 – 189  
 surface plots,  184 – 189  

 two-dimensional plots 
 axis scaling and annotating plots,  158 – 159  
 of ballistics,  164 – 166  
 bar graphs and pie charts,  175  
 of Clausius–Clapeyron equation,  161 – 164  
 creating multiple plots,  152 – 153  
 function plots,  182  
 histograms,  176 – 177  
 line, color, and mark style,  156 – 158  
 logarithmic plots,  170 – 171  
 plots of complex arrays,  155 – 156  
 plots with more than one line,  153 – 155  
 polar plots,  168  
 properties of elements,  180 – 182  
 rates of diffusion,  171 – 174  
 simple x–y plots,  149 – 150  
 titles, labels, and grids,  150 – 151  
 weight distributions,  177 – 178  
  x  –  y  plots with two  y  values,  178 – 180   

   plotting icon,   191 – 192   
   plot(x,y)  function,  170   
   plot3(x,y,z)  function,  183   
   plotyy  function,  179   
  Polar plots,  168   
   polyfi t  function,  496 – 499 ,  536   
   poly  function,  207   
   polygon_gui.fi g  window,  586   
  Polynomial, defi ning,  24   
   polyval  function,  498 – 499 ,  536   
   potential_energy  function,  229   
  power of matrix,  354 – 355   
   precision fi eld,   248   
   primes(x)  function,  74   
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  problem-solving schemes, in engineering and science, 
 5 – 6   

   prod(x)  function,  84   
  Property Editor,  189 ,  191   
  Property inspector,  583 – 586 ,  588 ,  591 ,  593 – 598   
  Pseudocode,  276 – 277   
  Pseudo color plots,  188 – 189   
  Pythagorean theorem,  106    

  Q 

   quad  function,  521 ,  536   
   quad1  function,  522 – 523 ,  536   
  Quadrature,  521 – 523   
   quit/exit  command,  10    

  R 

   r,   193 ,  248 ,  630 ,  633   
  Radians,  31   
  radians-to-degrees function,  224   
   randn  function,  355   
  Random numbers 

 Gaussian,  101 – 102  
 uniform,  100 – 101   

  Rational numbers,  395   
   rats  function,  73 – 74   
   Ready_Aim_Fire  program,  593 – 598 ,  642 – 646   
   realmax  function,  108 ,  394 ,  418   
   realmin  function,  108 ,  394 ,  418   
   real(x)  function,  106 – 107   
  Rectangular plots,  170   
   rem  function,  64 ,  68 ,  212   
   rename  command,  16   
  Residual,  495   
   restore sin  function,  110   
  Rosser matrix,  381   
   round  function,  67 – 68   
  Rounding functions,  72 – 73   
  round-off error,  395 ,  396   
   round(x)  function,  73   
   rref  function,  371 ,  383    

  S 

   s,   193 ,  630   
   %s,   247 ,  633   
   Save,   51 ,  633   
   Save As,   51   
   save  command,  405   
  Scalar,  20   
  Scalar operations,  21 – 22 ,  25 – 28   
  Scalar product,  see  Dot product  
  Scaling techniques 

 exponential relationship,  640  
 linear relationship,  639  
 logarithmic relationship,  640  
 power relationship,  641   

  Script M-fi les,  42 ,  45 – 47   
  Secret coding scheme (example),  407 – 408   
  Semicolon operator,  14 ,  16 – 17 ,  28 ,  121 ,  154   
   semilogx(x,y)  function,  170   
   semilogy(x,y)  function,  170   
   shading  command,  186   
   shading fl at  function,  183   
   shading interp  function,  183   
   sign(x)  function,  68   
   simple  function,  431 ,  474   
   simple(S)  function,  434   
   simplify  function,  431 ,  472 ,  474   
   simplify(S)  function,  434   
  Simpson quadrature,  521   
  Simulink,  2  

 applications,  604 – 605  
 getting started,  605 – 609  
 Library Browser,  605 – 606  
 solving differential equations,  613 – 614  

 position of a falling skydiver,  616 – 618  
 velocity of a skydiver,  614 – 616  

 solving random number problem,  610 – 612   
   sinc  function,  281 – 283   
   sind(x)  function,  76   
   sin  function,  19 – 20 ,  76   
   single  function,  394 ,  418   
  Single-precision fl oating-point numbers,  394 – 396   
  Single quote (  ’  ),  151 ,  383 ,  see  Transpose operator ( ’ )  
  Singular matrices,  357   
   sinh(x)  function,  76   
  sin(t) .ˆ2 syntax,  183   
   sin - 1  . (x)   function,  356   
  SI units,  32   
   size  function,  64 ,  88 ,  380 ,  383 ,  405   
   solve  function,  435 – 437 ,  439 ,  474  

 using,  441   
   some_letters,   410 – 411   
   some_more_numbers,   410 – 411   
   some_numbers,   410   
   sortrows  function,  86 ,  88   
   sort(x,‘descend’)  function,  86   
   sort(x)  function,  86   
   sparse  function,  418   
  Sparse matrices,  401   
  Special characters,  54 ,  112 ,  142 ,  193 – 194 ,  232 ,  267 ,  383 , 

 417 ,  473   
   sphere  command,  189   
   sphere  function,  223 – 224   
   sphere.m  fi le,  223   
   sprintf  function,  252 ,  633   
   sqrt  function,  64 – 65 ,  68   
   squeeze  function,  402 ,  418   
  Standard deviation,  94 – 100   
  standard graphics formats,  192   
   star  function,  218   
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  Start button,  17   
  Statically determinate truss (example),  375 – 378   
   std(x)  function,  96   
  ' ' string data (character information),  417   
   str2num  function,  418   
  Structure arrays,  409 – 412  

 extracting and using data from,  414 – 416  
 to store information about the planets,  412 – 414  
 use in engineering calculations,  412   

  Subfunctions,  228 – 231 ,  586 – 588   
   subplot  command,  166 – 167   
   subplot  function,  170 ,  175   
   subs  function,  474   
  Substitutions,  442 – 443   
   subtract  function,  229   
   sum(diag(A))  function,  139   
   sum(x)  function,  84   
  Surface plots,  184 – 189   
   surfc  command,  188   
   surf  command,  185 – 186   
   surfc(x,y,z)  function,  183   
   surf  function,  220   
   surf plot  function,  187   
  Surf plots,  185 – 186   
   surf(x,y,z)  function,  183   
   switch / case  structure,  291 – 292 ,  634  

 buying gasoline, example,  292 – 295   
  @ symbol,  227 ,  632   
  Symbolic data,  392 ,  400   
  Symbolic equation,  430   
  Symbolic expressions,  430   
  Symbolic mathematics 

 algebra 
 creating symbolic variables,  426 – 428  
 manipulating symbolic expressions and symbolic 

equations,  430 – 433  
 manipulation of numerator and denominator,  426  

 calculus 
 differential,  454 – 458  
 to fi nd the optimum launch angle,  459 – 460  
 integration,  460 – 463  
 solving of Piston–cylinder devices,  464 – 468  

 converting symbolic expressions to MATLAB ®  
 functions,  470 – 471  

 differential equations,  468 – 470  
 plotting 

 ballistic problem,  452 – 454  
  ezcontourf  function,  450  
  ezcontour  function,  450  
  ezmeshc  function,  450  
  ezmesh  function,  450  
  ezplot  function,  446 – 450  
  ezplot3  function,  450  
  ezpolar  function,  450 – 451  
  ezsurf  function,  450  

 three-dimensional  peaks  function,  451  
 two-dimensional plots and contour plots,  451  

 solving expressions and equations 
 Piston–cylinder devices,  464 – 468  
  solve  function,  435 – 437  
 solving systems of equations,  439 – 441  
 substitution,  442 – 443   

  Symbolic toolbox,  400   
   sym  function,  400 ,  428 ,  474   
   syms  function,  474   
  System of equations,  363 – 364 ,  370 – 375    

  T 

   t,   248 ,  633   
   tangent  function,  66   
   tan(x)  function,  76   
  Temperature data analysis, using matrix,  126 – 128   
   text  drop-down menu,  135   
   text  function,  159   
   text(x_coordinate,y_coordinate, ‘string’)  function,  158   
  Thrust-vector control,  5   
   tic  function,  219 ,  634   
   title  command,  152 – 153   
   toc  function,  219 ,  634   
  Transpose operator ( ’ ),  81 ,  105 ,  151 ,  344 ,  383   
  Transposition,  32   
  Trapezoidal rule,  534   
   trapz  function,  520 ,  536   
  Trigonometric functions,  76 – 80  

  sin(x)  function,  76   
  Two-dimensional matrices,  14 ,  391   
  .txt fi le,  260   
   type  command,  223    

  U 

   uiimport  function,  261 ,  633   
   uint8  function,  418   
   uint16  function,  418   
   uint32  function,  418   
   uint64  function,  418   
   uncomment  option,  135   
  Underscore (_),  46   
  Unit vector,  349 ,  359 – 360 ,  382   
   unnamed  variable,  16   
  User-controlled input/output 

 calculation of interactively adjusting parameters, 
 258 – 260  

 debugging,  263 – 266  
 graphical input,  254 – 255  
 more cell mode features,  255 – 258  
 output options,  244 – 250  

 equation for range of projectile motion,  253 – 254  
 formatted output,  251 – 252  
  fprintf  function,  247 – 250  
  sprintf  function,  252  
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 reading and writing data from fi les 
 data fi le types supported MATLAB  ® ,  261  
 exporting data,  262  
 import commands,  262  
 Import Wizard,  261  

 user-defi ned input,  240 – 242  
 behavior of a freely falling object,  242 – 244   

  User-defi ned functions 
 anonymous functions and function handles,  226 – 227  
 creating M-fi les 

 accessing fi les,  223 – 224  
 ASTM grain size,  210 – 212  
 comments,  212  
 converting between degrees and radians,  208 – 210  
 functions with multiple inputs and outputs,  212 – 216  
 functions with no input or no output,  218 – 222  
 global variables,  222  
 kinetic energy of a moving object,  217  
 syntax,  206 – 208  

 creating toolboxes,  224 – 226  
 execution of primary function,  230  
 function functions,  227 – 228  
 subfunctions,  228 – 231    

  V 

   v,   194 ,  630   
   varargin  function,  224 ,  632   
   variable_list,   44   
  Variance,  94 – 100   
   var(x)  function,  96   
  Vector,  20    

  W 

  Water desalination plants (example),  372 – 374   
  .wav fi le,  260   
   wavread  function,  262 ,  633   
  Weather data, calculation of,  89 – 93   
   what  command,  46   
   which  command,  19   
   while  loops,  312 ,  320 – 322 ,  634  

 alternating harmonic series,  325 – 327  
 calculating factorials using,  324 – 325  
 creating a table for converting degrees to radians, 

 323 – 324  
 midpoint break loops,  329 – 330   

   whos  command,  15   
  Workspace window,  13 – 15 ,  34 ,  410    

  X 

   x,   193 ,  630   
   xlabel  command,  152 – 153   
   xlsimport  function,  267 ,  633   
   xlsread  function,  262   
   xlswrite  function,  262 ,  633   
   xor,   275 ,  301 ,  634    

  Y 

   y,   193 ,  630   
   ylabel  command,  152 – 153    

  Z 

   zeros  function,  136 – 137 ,  379 ,  383 ,  635     
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