Worst Case Analysis Using Analog Workbench by Andrew G. Bell ITT Industries

	- Analog Workbench II (AWB/	Mixed-Signal 3.	.5)	•
	cadence /	malog Workbench	h II	
Į.	Circuit Tools	Settings	Utility	
L	Analog Workbench/Mixed-Si	.gnal Version 🔅	3.5	
L	Cadence Design Sys	tems, Inc.		
L	555 River Oaks Parkway, S	an Jose, CA 951	134	
	FOR HELP: call (U.S. & Canada onl email crc_customers@	y, toll-free) 8 Cadence.com	300-cadenc2	
	Join the Analog Workbench electro Send your email address to a	mic distributio wb_mail@cadence	on list !! e.com	
	COPYRIGHT (c) 1984 - 1999 BY CADENCE All rights reserved under the copyri	DESIGN SYSTEMS .ght laws of the	S, INC. e United	
	receipt or possession does not conve	: Licensed by ar lesign Systems, y any rights to	nd contains Inc. and its p reproduce	
	or disclose its contents. Use, dupl the UNITED STATES Government is subj	ication, or dis ect to the rest	sclosure by triction as	
	set forth in the Code of Federal Reg	pulations subdiv	vision	
	b) (3) (11) of the Rights in Technical	. Data and Compu	lter	
	Software clause at 252 22) JULK			<u> </u>
	Current Circuit :			

Analog Workbench has two powerful capabilities, which makes it very useful in WCA. First, it has parameterized models that can be toleranced. Second, it allows the user to establish marker functions of the user choosing.

small signal analysis (frequency domain)

× Frequ	iency Swe	eper)(AHB/	Mixed-Signal 3	- Functio	on Generator (AW	B/Mixed-Signal	3,5)	P [
cadence		Fr	equency Sweepe	Cadence Function Generator: CIRCUIT									
Frequency Range	L	inear/Log	(Now Log)	Simulation	Time		Utility						
Present Frequency R 1 Hz to 10 Number of Steps: 10	ange : KHz O				$\sum_{i=1}^{n}$	\bigwedge	\square	\					
Channel		Source	Amplitude		\/	/	/						
1 Sweeper Set	ON	A	1 V	\\									
2 Sweeper Set	OFF			V	\sim			\sim					
3 Sweeper Set	OFF			2m	4m	6m	8m						
4 Sweeper Set	OFF				Simulati	on Hime	C1-	3					
						Source	Scale						
				L 1 Fgen Set	0N	n	200m						
Input Tools				2 Fgen Set	OFF		200m 200m	<u></u>					
Input Ioois				4 Fgen Set	OFF		200m						

large signal analysis (time domain)

A. G. Bell ITT Industries

T.

Output Tool

Output Tool

Worst Case Analysis Using Analog Workbench

A. G. Bell ITT Industries DC tool not shown

WCA Example

Consider the following example:

A requirement is established and a circuit must be designed to meet the requirements worst case. Analog Workbench will be used to develop statistical device models and perform the worst case analysis using Monte Carlo and Sensitivity analyzes.

For the parts:

All parameters will be assigned a Flat distribution All parameters will vary independently Passive tolerances will be set to their extremes

For the analysis:

A Sensitivity/Worst Case analysis will be performed A 400 sample Monte Carlo will be run If needed additional analysis will be done to show the expected worst case performance

First it is necessary to develop device models

WCA Worksheet for RNR55 Type Resistor

Purchase Tolerance IRC CGH-1/4-X = $\pm 1\%$ Aging (10 year) MIL-STD-1547 = $\pm 1\%$ Radiation = 0% Temperature (75C) MIL-R-55182F = $\pm 0.5\%$

 $tol = \sqrt{(1\%)^2 + (1.5\%)^2 + (0.5\%)^2} = \pm 1.87\%$

Will use $\pm 2\%$ for resistors

WCA Worksheet for CCR05 Type Resistor

Purchase Tolerance Kemet CCR05 = $\pm 1\%$ Aging (40Khrs) Kemet Engineering Bulletin = $\pm 5\%$ Radiation = 0% Temperature (75C) MIL-C-20G = $\pm 0.5\%$

$$tol = \sqrt{(1\%)^2 + (5\%)^2 + (0.5\%)^2} = \pm 5.12\%$$

Will use $\pm 5\%$ for capacitors

TL061, TL061A, TL061B, TL061Y, TL062, TL062A TL062B, TL062Y, TL064, TL064A, TL064B, TL064Y LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS SL05072F - NOVEMBER 1970 - REVISED JANUARY 1990

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	electrica	l characterístics, V _{CC±}	= ±15 V (u	nless otherwi	se not	ed)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		PARAMETER	TEST C		TL061C TL062C TL064C		ן ד ד	L061AC L062AC L064AC		UNIT		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					MEN	TYP	MAX	MIN	TYP	MAX		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vio	Input offset voltage	$V_{O} = 0,$ R _S = 50 Ω	T _A = 25°C T _A = Full range		3	15 20		3	6 7.5	mV	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mAiO	Temperature coefficient of input offset voltage	$V_{O} = 0$, $R_{S} = T_{A} = Full range$	50 Q. je		10			10		pyrc	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ħο	Input offset current	۸ ^O =0	T _A = 25°C T _A = Full range		5	200 5		5	100 3	pA nA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ήB	Input bias current‡	VO = 0	T _A = 25°C T _A = Full range		30	400 10		30	200 7	pA nA	\sum
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VICR	Common-mode input voltage range	T _A ≈ 25°C		±11	-12 to 15		±11	-12 10 15		v	X
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VoM	Maximum peak output voltage swing	R _L = 10 kΩ, R _L ≥ 10 kΩ,	T _A = 25°C T _A = Full range	±10 ±10	±13.5		±10 ±10	±13.5		V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AVD	Large-signal differential voltage amplification	$\begin{array}{l} V_Q \approx \pm \ 10 \ V_s \\ R_L \geq 10 \ k\Omega \end{array}$	Ť _A = 25°C Ť _A = Full range	3	6		4	8	Y _//	www	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	⁸ 1	Unity-gain bandwidth	R _L = 10 kΩ,	T _A = 25°C		1			(1)	Y / - /	MHz.	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	η	Input resistance	T _A = 25°C			1012			1012	\langle / \rangle	Ω	
$ \begin{array}{ c c c c c c } \hline k_{SVR} & & & & & & & & & & & & & & & & & & &$	CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}m$ R _S = 50 Ω , T _f	in, V _O = 0, x = 25°C	70	86		80	86	{	đB	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC2}/\Delta V_{IO})$	$V_{CC} = \pm 9 V t$ $V_{O} = 0, R_{S} =$ $T_{A} = 25^{\circ}C$	o±15V, 50Ω,	70	95		æ	95	\checkmark	æ	
Supply current ICC VO = 0, (each amplifier) TA = 25°C, No load 200 250 200 250 μA VO1/VO2 Crosstalk attenuation AvD = 100, AvD = 100, AvD = 100, TA = 25°C 120 120 dB	PD	Total power dissipation (each amplifier)	V _O = 0, No load	T _A = 25°C,		6	7.5		6	7.5	whV	
$V_{O1}N_{O2}$ Crosstalk attenuation $A_{VD} = 100$, $T_A = 25^{\circ}C$ 120 120 dB	Icc	Supply current (each amplifier)	V _O = 0, No load	T _A = 25°C,		200	250		200	250	μΑ	
	V01/V02	Crosstalk attenuation	A _{VD} = 100,	T _A = 25°C		120			120		đB	

Extracting device parameters may require assumption to be made about max or min values not defined.

T All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for T_A is 0°C to 70°C for TL06_C, TL06_AC, and TL06_BC and --40°C to 85°C for TL06_I.

Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature as ensitive as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

Extracted parameters used to create a device model using Analog Workbench's Parameter Entry Tool

P	arameter Entry	(AWB/Mixed-Sign	nal 3.5)		r [
cādence	Parameter Ent	ry: TLO64_AGB										
Similar Copy	[BodyLocationUti										
Model Parameters Level 1												
Offset voltage	(¥05)·3m (4.5	m: 1.5 m:	FLAT) V								
Input bias current	(TB) · 30 n (7 r	u: 15 n: Fi	.att) a								
Input offset current	(TBOS):5n(3n	: 2.5 n: FI	.at) a								
Open-loop gain	(AO): 6000 (200)0 : 2000	: FLAT) V/V								
Gain-BW product	(GBW): 1 M (10 %	:: 10 %: FI	AT) Hz								
Positive slew rate	(SRP): sra (;	;) V/sec	,								
Negative slew rate	(SRM): sra (;	;) V/sec									
Madal Damastana Lanal O												
Model Parameters Level 2), 20000 (1)	1000 . 100	י (ידיג דית 100	u /u							
Common-mode reject.	(0466): 20000 (10	, 1000 ; 100)00 ; FLAI) ·	v/v							
Obw excess phase	(PU (PD): (;;;;	. uey 	দ্যা মৃদ্য ম								
dales, power alssip.	(PD (TEOD): 0 (1.5	лц; т.элц; . ъ	rlai) w								
I short(+ sink)	(ISOP		n N									
D C output ree	(ISOM		n ohmo									
A C output res	(ROAC		ohne									
n. c. oucput res	(NORC): ()))		When in								
Device Placement: /TL064_AGB				when in c	loubt it's a good i							
Device Type: FET Input Opamp	Bo	dy: TL064_AGB		to assign a	a small symmetric							
Similar Device:	Si	imilar Device Li	.brary:	tolerance	-							

Now the design...

Simulation of the transfer function show a close but not exact match with the requirements

-		Net	work Analyz	er (AMB/	Mixed-	Signal	3.5)			· · □
cadence			Network	Analyze	r: XFEF	1				
Log Axis	Х Ах	tis	Y Axi	ls Freqs			Mar	kers	UU	tility
ZZMI	M2 M3	M4								
0		1		1					_	
-10		R	equireme	ents						
c 1 h _20 1	Fre	q	Gain	To	ol					\
	390	OHz	-0.1dB	±0.1	dB					$\langle \rangle$
<u></u>	780	OHz	-0.5dB	±0.1	dB					
1	1.17	kHz	-1.2dB	±0.1	dB					
-40	1.57	kHz	-2.5dB	±0.1	dB					·····/··
-50				±2	σ				4	······
	<u> </u>	1	i	. 1 .	100			1K	1 1	H7
X Axis: Freq		M1 at	390 Hz		M2 at	780 Hz		$\Delta M(1)$	(1,2) = 390	Hz
Channel		no at	mlav	Comlx	Scale	1.57 M	Func		7.4) = 400 7.4)	пг
		DPD	(P)	мао	10.0	in .	MI		105 60020	mdB A
L 1 Net Set ON			(0)	MAG	10.00		MO	E.	AT3 086EA	
2 Net Set	OFF	C1		MAG	10.0 0	20Log 18	M3	1-1-	1 2344712	dB
A Net Set	OFF	c1		MAG	10.0	20Log 18-nu	M4		2.5614308	
4 Met Set	OFF	1.1				-201.03				

A circuit implementation is proposed and simulated against the requirements

F	• 🗆									
cadence			Netwo	rk Anal	lyzer: CIRCUI	T				
Log Axis	X	Axis	Y Axi	.s	Freqs	Mark	ers	Utilit	y	
	1 M2	M3 M4								
0		1		_1		1				
-10		R	equire	emen	ts					
c = = = = = = = = = = = = = = = = = = =	Г	Freq	Gai	n	Tol			<u>\</u>		
a III		390Hz	-0.10	lΒ	±0.1dB					
1 -30		780Hz	-0.50	lΒ	±0.1dB	•••••		···		
		1.17kHz	-1.20	lΒ	±0.1dB				\setminus	
-40	····	1.57kHz	-2.50	iB	±0.1dB	•••••		••••	·/··	
-50					±2σ]	4		
	1	10			100		' 1K		Hz	Simulated
X Axis: Freq		M1 at 39 M3 at 1.1	<u>0 Hz</u> 17 KHz		<u>M2 at 780 H</u> M4 at 1.57 D	z KHz	$\frac{\Delta M}{\Delta M}$	(1,2) = 390 Hz (3,4) = 400 Hz		circuit matches
Channel		Lock Displa	Y	Cmplx	Scale/div	Func		Value		closely with
1 Net Set	ON	PRB(C)		MAG	10.0 dB _{20Log}	M1	¥	-107.35167 mdB		requirements
2 Net Set	OFF	C1		MAG	10.0 dB _{20Log}	м2		-467.34531 mdB		
3 Net Set	OFF	01		MAG	10.0 dB _{20Log}	м3		-1.2086071 dB		
4 Net Set	OFF	C1		MAG	10.0 dB _{20Log}	M4	\backslash	-2.5012989 dB	1	

A Sensitivity Analysis is performed next to determine how changes in each parameter will change the the frequency response at all four frequencies.

Worst Case Analysis Using Analog Workbench

		Sensitivity/Horst Case Analysis (AHB/Mixed-Signal 3.5)													
	cadence		Sensi	tivity/Worst	: Case Anal	ysis: CIRCUIT									
	Displa	ay	Order		Cor	ntrol	Utility								
	Component	Parameter	r Nom	Min	Max	Relative (1%)	Sensitivit	y							
	(CRC)														
	Variable c2 Variable c4		5n	5.25n	4.75n	-3.126m		1							
			5n	5.25n	4.75n	-3.126m		1							
	Variable	c1	10n	9.5n	10.5n	1.988m									
	Variable c3		10n	9.5n	10.5n	1.988m		Most sensitive to							
	Variable	r3 (14.3К	14.586K	14.014K	-1.676m		passive part							
	Variable	r1	14.3K	14.586K	14.014K	-1.676m		variations							
	Variable r4		5.49K	5.3802K	5.5998K	573.521u									
	Variable	r2)	5.49K	5.3802K	5.5998K	573.520u									
	TL0. U2	AO	6K	4K	8K	13.835u	1	Polotivoly inconsiti							
d to	TL0. U1	AO -	6K -	- <u> </u>	- <u> </u>	— <u> </u>	+>	A OD A MD share at							
ork	TL0. U1	GBW	1M	1.1M	900K	-11.014u	1	to OP AMP change							
zer															
ker	Analysis Comp	lete: 45 of	f 45 runs complete	ed											
tions	Channel		Display	Min		Nom	Max								
	1 Sens Set	ON	Net 1	-172.820	mdB -	-107.352 mdB	-49.527 mdB	In spec							
	2 Sens Set	OFF	Net 2	-709.156	mdB -	-467.345 mdB	-246.005 mdB								
	3 Sens Set	OFF	Net 3	-1.697	dB	-1.209 dB	-745.551 mdB	Out of							
			· · · · · · · · · · · · · · · · · · ·												

5

-	Sen	sitivity/Worst Ca	ase Analysi	s (AHB/Mi	(ed-Signal 3.5)		· 🗆						
Cadence Sensitivity/Worst Case Analysis: CIRCUIT													
Displa	y	Order		C	ontrol	Utility							
Component	Parameter	Nom	Min	Max	Relative (1%)	Sensitivi	ity						
(CRC) Variable	c2	5n	5.25n	4.75r	46.995m								
Variable	c4	5n	5.25n	4.75n	-46.995m								
Variable	r3	14.3K	14.586K	14.014K	-29.586m		Still 1	nost sensitive					
Variable	r1	14.3K	14.586K	14.014K	-29.585m		tor	assive part					
Variable	c1	10n	9.5n	10.5r	. 15.326m		vai	viations but					
Variable	c3 J	10n	9.5n	10.5r	. 15.325m		order	of sensitivity					
Variable	r2	5.49K	5.5998K	5.3802K	1.983m	D	hos el	on sensitivity					
Variable	r4	5.49K	5.5998K	5.3802K	-1.983m	D	1 as Ci 1 <i>5</i>	Taligeu for the					
TLU. U1	GBW	1M	1.1M	9008	84.937u	1	1.5	o/knz gain					
TL0. 02	GB₩	1M	1.1M	9008	-84.6/lu	1							
TLU.UI	AU	БК	4K	88	. 26.017u	1	•						
Analysis Compl	ete: 45 of	45 runs complete	d										
Channel		Display	Min		Nom	Max							
1 Sens Set OFF		Net 1	-172.820	mdB	-107.352 mdB	-49.527 mdB							
2 Sens Set	OFF	Net 2	-709.156 mdB		-467.345 mdB	-246.005 mdB							
3 Sens Set OFF		Net 3	-1.697	dB	-1.209 dB	-745.551 mdB							
4 Sens Set	ON	Net 4	-3.272	dB	-2.501 dB	-1.770 dB	•						

Parametric Plots are performed to determine how variation in some of the more sensitive components change the performance at 1.57kHz

Worst Case Analysis Using Analog Workbench

Nood to ti	ahtan				Para	metric Pla	otter (A	WB/Mixed-Sig	gnal	3,5)			• 🗆	R	2 and R4
tolerance	es on	cad	епс	e			Param	etric Plotte	er: C	TRCUIT				1	not that
C1-C4, R1	& R3	X Axi	<u>∍</u>	M1		M2	M3	M4	Se	etup	Control	Uti:	lity	in	nportant
			12T	TM	LM2IM	31 M41							Ť		
Outer: c4 from 4	1.75n to 5.	25n in steps	of 125p	o units				Outer: r1 fro	om 148	K to 14.6K :	in steps of	100 u	nits		
Inner: None			\sim					Inner: None					i		
X Axis: c4	X Axis: c4 Y Axis: Network Analyzer Value 4											Y Axis	s: Netw	ork Analy	zer Value 4
c4: N/A		r1: N/A		~		: 0), q								
M1 at 4.75n M2 at 5.25n \ \ \ \ \ \ \ \ \ \ \ \ M(1,2) = 500p								M1 at 14K M2 at 14.6K						$\Delta M(1,2)$	= 600
M3 at 4.75n		M4 at 5.25n	<i>i</i>	$\Delta M(3,4) = 500p$				M3 at 14K			at 14.6%			$\Delta M(3,4)$	= 600
	Display	Func		@Param	value	Value			D)isplay	Func		Para	value	Value
Plot Set		M1 - M2	N N	0.0000	00 Y	-467.4119m	łB	Plot Set			M1 - M2		0 0000	100 ~ ><	-123.75094mdB
Outer: c1 from 9) 5n to 10	5n in stens o	f 250m	units				Outer · r4 fr	om 5 (38K to 5 6K	in steps o	f 22 11	nits		
Inner: None				- <u>\</u>				Inner: None							
X Axis: cl			Y Axi	s: Netw	ork Analy	vzer Value 4		X Axis: r4				Y Axis	s: Netv	ork Analy	zer Value 4
cl: N/A			:	0.0	1			r4: N/A				: (D. 0		
M1 at 9.5n M2 at 10.5n AM(1, 2						= 1n		M1 at 5.38K		M2	at 5.6K		1	△M(1,2)	= 220
M3 at 9.5n M4 at 10.5n $\Delta h(3,4) = 1n$								M3 at 5.38K M4 at 5.6K					△M(3,4) = 220		
	Display	Func		0Param	value	Value			Г	Display	Func		@Para	n value	Value
Plot Set		M1 - M2		0.0000	00	153.65344ma	1B	Plot Set			M1 - M2		0.000	000 >	-7.7176333mdB

Purchase tolerance =
$$\pm 1\%$$
 Original Worksheet
Aging (10 years) = $\pm 1.5\%$
Temperature (+75°C to -55°C) = $\pm 0.5\%$
 $tol = \sqrt{(1\%)^2 + (1.5\%)^2 + (0.5\%)^2} = \pm 1.87\%$

Purchase tolerance = 0%Modified ToleranceAging (5 years) = $\pm 0.75\%$

Temperature (+40°C to 0° C) = ±0.25%

$$tol = \sqrt{(0.75\%)^2 + (0.25\%)^2} = \pm 0.8\%$$

Can the passive part tolerances be relaxed or will other parts be needed?

We can reduce the resistor tolerance because we know something about how it is being used, i.e. 5 years, tailored and over smaller temperature range

This reduces the resistor variation to ±0.8% and likewise we will reduce the capacitor tolerance by the same proportion to ±2%

We will also change the distribution of each passive parameter to gaussian and link the passive part variations together

A. G. Bell If you used 4000 samples it would take longer but you have more confidence in the answer.

Conclusions:

- \checkmark AWB is a powerful tool that can be used for WCA
- ✓ Marker Functions provide a unique ability to check performance
- ✓ Both the Sensitivity and Monte Carlo tools are needed for WCA
- ✓ Much more work is still needed to develop statistical device models
- ✓ It still may be necessary to apply some realism to part variations