

Worst Case Analysis of Electronics Using Parameter Design Techniques

by

Mr. Andrew G. Bell & Mrs. Catherine M. Vincent

ITT Industries A/CD Fort Wayne, Indiana

Worst Case Analysis of Electronics Using Parameter Design Techniques

□ Introduction

- ITT Aerospace/Communications (A/CD) has facilities in Fort Wayne, Indiana and Clifton, New Jersey that employees 1,976 people.
- This presentation is based on a "Parameter Design Technique" used on a space project power supply worse case analysis within the Fort Wayne headquarters.

Worst Case Analysis of Electronics Using Parameter Design Techniques

Introduction

 ITT A/CD products include the U.S. Army SINCGARS and U.K. BOWMAN tactical communication system, voice data switches, data entry terminals, fiber optics transmission systems, ground to air radios used by the Federal Aviation Administration (FAA), and a family of secure communications terminals: space-based navigation and atmospheric remote sensing payloads—GPS, Alpha, GOES Imager/Sounder, AVHRR and HIRS Instruments.

Worst Case Analysis of Electronics Using Parameter Design Techniques

Background

Classical Worst Case Analysis has been used to demonstrate electronic design "robustness" over the years on numerous space and communication programs at ITT A/CD. The amount of time (computer time and set up time) it takes to complete a WCA can vary greatly based upon the complexity of the design and performance being measured. This variance can be compounded by a simulation failure requiring engineering intervention or the need to execute multi-run simulations.

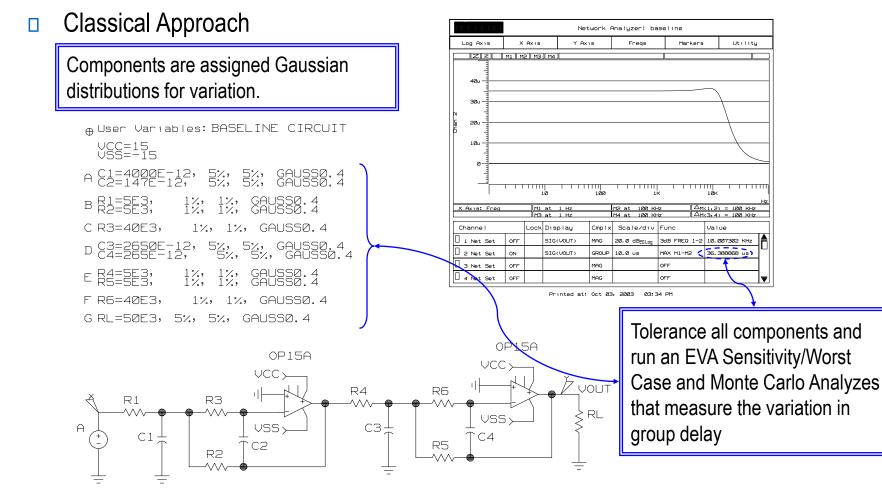
An alternate "Parameter Design Technique" approach which requires fewer simulations has been successfully used at ITT A/CD to demonstrate a similar quality measurement in far less time.

Worst Case Analysis of Electronics Using Parameter Design Techniques

Objectives

Compare the Classical Worst Case Analysis approach to the alternate "Parameter Design Technique" by analysis of the maximum group delay of a 4 pole transitional Butterworth-Thompson lowpass filter. All simulations were performed on an UltraSPARC-II 400MHz Sun UNIX Workstation.

- If a circuit's "robustness" can be demonstrated using a technique that produces similar quality measurement relative to the classical techniques there could be:
 - from an engineering standpoint significant time savings.
 - from a customer standpoint a cost savings
 - from a managerial standpoint similar design risk in less time and money.


Worst Case Analysis of Electronics Using Parameter Design Techniques

- □ Approach
 - Using Analog Workbench build a circuit simulation model for a simple 4 pole transitional Butterworth-Thompson lowpass filter.
 - Using classical worst case analysis techniques, predict the circuit's worst case group delay performance and measure the simulation time.
 - Use a "Parameter Design Technique" to predict the circuit's worst case performance.
 - Select important noise factors
 - > Select appropriate orthogonal array and run experiments
 - > Evaluate the simulation results using an analysis of means
 - > Determine appropriate confirmation run
 - Compare "Parameter Design Technique" results to the classical approach.

Worst Case Analysis of Electronics Using Parameter Design Techniques

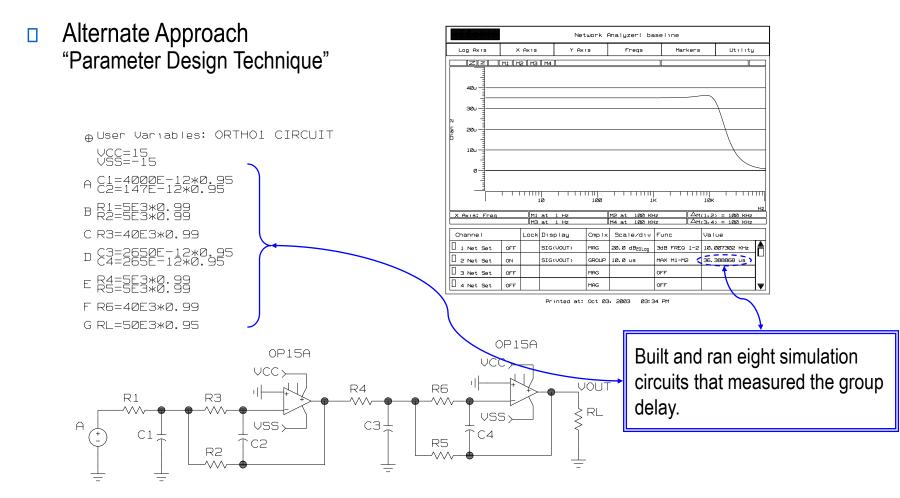
Worst Case Analysis of Electronics Using Parameter Design Techniques

- Alternate Approach "Parameter Design Technique"
 - Select important noise factors
 - brainstorm with others on what is important
 - > group terms if possible

Γ	Noise		_		_	_	_	-
L	Factors	Α	В	С	D	E	F	G
ſ		C1 & C2	R1 & R2	R3	C3 & C4	R4 & R5	R6	RL
	1	(min)	(min)	(min)	(min)	(min)	(min)	(min)
ſ		C1 & C2	R1 & R2	R3	C3 & C4	R4 & R5	R6	RL
L	2	(max)	(max)	(max)	(max)	(max)	(max)	(max)

Select appropriate orthogonal array

Simulations	Run	А	В	с	D	Е	F	G
ortho1	1	1	1	1	1	1	1	1
ortho2	2	1	1	1	2	2	2	2
ortho3	3	1	2	2	1	1	2	2
ortho4	4	1	2	2	2	2	1	1
ortho5	5	2	1	2	1	2	1	2
ortho6	6	2	1	2	2	1	2	1
ortho7	7	2	2	1	1	2	2	1
ortho8	8	2	2	1	2	1	1	2


In our case, we selected component groupings based upon knowledge of the circuit's operation. This reduced the number of noise factors down to six. Then we added the load resistance.

The L8 Orthogonal Array was selected. It allows for us to test two values for each noise factor. In our example, we selected minimum and maximum values of the factors to be equal to the minimum and maximum values of the components based upon the tolerance of each part.

Worst Case Analysis of Electronics Using Parameter Design Techniques

Worst Case Analysis of Electronics Using Parameter Design Techniques

Results

"Parameter Design Technique"

Simulations	Run	А	в	с	D	E	F	G	Results (usec)
ortho1	1	1	1	1	1	1	1	1	34.22
ortho2	2	1	1	1	2	2	2	2	35.75
ortho3	3	1	2	2	1	1	2	2	34.75
ortho4	4	1	2	2	2	2	1	1	35.79
ortho5	5	2	1	2	1	2	1	2	37.43
ortho6	6	2	1	2	2	1	2	1	38.09
ortho7	7	2	2	1	1	2	2	1	37.51
ortho8	8	2	2	1	2	1	1	2	38.13

The raw data for the eight runs was collected and placed into a table. The results show that the group delay of the filter varied between 38.13 µsec and 34.22 µsec.

Total simulation time was 8 seconds.

Worst Case Analysis of Electronics Using Parameter Design Techniques

Analysis - Using the Analysis of Means "Parameter Design Technique"

Simulations	Run	А	в	с	D	Е	F	G	Results (usec)
ortho1	1	1	1	1	1	1	1	1	34.22
ortho2	2	1	1	1	2	2	2	2	35.75
ortho3	3	1	2	2	1	1	2	2	34.75
ortho4	4	1	2	2	2	2	1	1	35.79
ortho5	5	2	1	2	1	2	1	2	37.43
ortho6	6	2	1	2	2	1	2	1	38.09
ortho7	7	2	2	1	1	2	2	1	37.51
ortho8	8	2	2	1	2	1	1	2	38.13

2

2

2

2

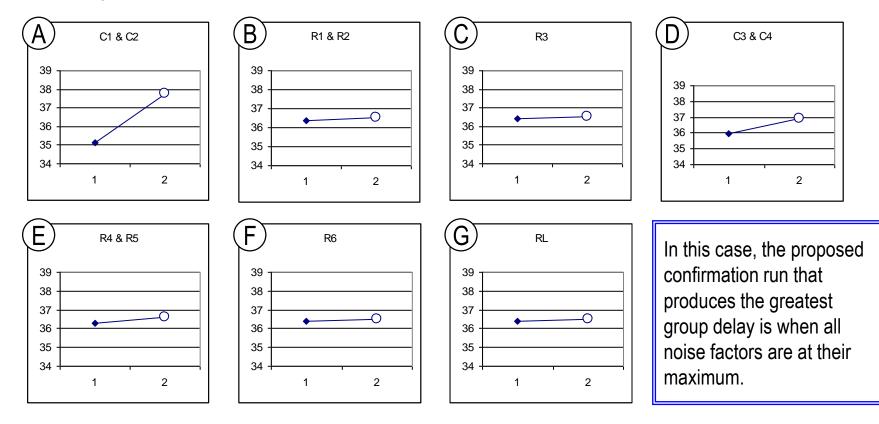
2

	AVE (1)	AVE (2)
Α	3.51E+01	3.78E+01
в	3.64E+01	3.65E+01
с	3.64E+01	3.65E+01
D	3.60E+01	3.69E+01
Е	3.63E+01	3.66E+01
F	3.64E+01	3.65E+01
G	3.64E+01	3.65E+01

An Analysis of Means (ANOM) is performed on the results to determine which confirmation run might produce the greatest amount of group delay.

2

2


confirmation

9

Worst Case Analysis of Electronics Using Parameter Design Techniques

Analysis - Factor Plots "Parameter Design Technique"

Worst Case Analysis of Electronics Using Parameter Design Techniques

□ Analysis - using Classical Worst Case Analysis

-	Ser	sitivity/Worst	Case Ana	alysis (AV	VBHDL 5.2)]		Mo	onte Carlo (AWB	HDL 5.2)	· 🗆
cadence		Sensi	tivity/Wor	rst Case A	analysis: base	line		cadence		Monte Ca	ırlo: baseline	
Displa	Display Order Control Utilit							CDF/PDF	Horizontal	Markers M1-M2 Mar	kers M3-M4 Cont	rol Utility
Component	Parameter	Nom	Min	Max	Relative (1%)	Sensitivity		M1 M2 N	13 M4 d	Analys	es Complete: 1000	of 1000 runs 🕨
ROOT												
Variable	c1	4n	3.8n	4.2n	155.021n							
Variable	r2	5K	4.95K	5.05K	140.815n			100				
Variable	r3	40K	39.6K	40.4K	129.670n						/	
Variable	c2	147p	139.65p	154.35p	125.548n			80 =				
Variable	c3	2.65n	2.5175n	2.7825n	95.615n							
Variable	r4	5K	4.95K	5.05K	53.587n	_		60				
Variable	r5	5K	4.95K	5.05K	34.817n	-						
Variable	c4	265p	278.25p	251.75p	-20.239n			40			/	
Variable	r6	40K	40.4K	39.6K	-12.303n							
Variable	r1	5K	4.95K	5.05K	11.482n	•		20				
Variable	rl	50K	52.5K	47.5K	-198.994f							
Analysis Comp	lete: 16 of	16 runs complete	d					35.0	יד ידי די u 35.5u	1 36.0u	36.5u 37	.0u 37.5u
Channe 1		Display	Min		Nom	Max						.00 37.50 s
🛛 1 Sens Set	OFF	Net 1	8.805	KHz	10.007 KHz	11.289 KHz		M1 at 34.9932 M3 at 34.9932			(1,2) = 2.7077 u (3,4) = 2.7077 u	# Bins = 10
2 Sens Set	ON	Net 2	35.718	us	36.389 us	38.751 us)		<u>⊼</u> = 36.3992 u		25.965 n 3or	= 99 %	Med = 36.3939 u
3 Sens Set	OFF				(Channe 1		Display	Func	Yalue
🛛 4 Sens Set	OFF						1	🛛 1 MCarlo Se	t OFF	Net 1		

EVA Sensitivity/Worst Case result of 38.75 µsec required 16 seconds of total simulation time.

Monte Carlo worst case result of 37.7 µsec required 16 minutes and 40 seconds total simulation time.

Worst Case Analysis of Electronics Using Parameter Design Techniques

ITT Industries

Engineered for life

Worst Case Analysis of Electronics Using Parameter Design Techniques

Conclusions

Simulations	Run	A	в	С	D	E	F	G	Results (usec)
ortho1	1	1	1	1	1	1	1	1	34.22
ortho2	2	1	1	1	2	2	2	2	35.75
ortho3	3	1	2	2	1	1	2	2	34.75
ortho4	4	1	2	2	2	2	1	1	35.79
ortho5	5	2	1	2	1	2	1	2	37.43
ortho6	6	2	1	2	2	1	2	1	38.09
ortho7	7	2	2	1	1	2	2	1	37.51
ortho8	8	2	2	1	2	1	1	2	38.13
confirmation	9	2	2	2	2	2	2	2	38.57
Monte Carlo									37.70
EVA									38.75

In this example, the alternate "Parameter Design Technique" produced a worst case result that was greater than the 1000 run Monte Carlo but less than EVA.

This is not to suggest that we abandon the classical approaches because sometimes they will produce results that are more accepted by our customers and may show "true" worst case performance. However, in some cases an alternate approach may be acceptable to the customer and more cost effective.

Total simulation times

Parameter Design Technique = 9 sec EVA Sensitivity/Worst Case = 16 sec Monte Carlo = 16 min and 40 sec

Worst Case Analysis of Electronics Using Parameter Design Techniques

Acknowledgements

We would like to thank Eric Smith and George Adamczyk for allowing us to write this paper.

