

CONTENTS

- Lab 1- Diodes
- Lab 2-Led
- Lab 3-Diodes led
- Lab 4-Power Supply Design
- Lab 5-Transistor Switch
- Lab6-Transistor Amplifier
- Lab 7-JFET Led switch 2N5457
- Lab 8-JFET transistor amplified
- Lab 9-Band Pass
- Lab 10-Notch
- Lab 11-Low Pass
- Lab12-High Pass
- Part Lists for labs
- EECT111 review labs

LAB 1-DIODES

1×1 N4148-
http://ivytechengineering.com/info/stores/diodes/files/1n4148
.pdf
$1 \times 1 \mathrm{k} \Omega$ resistor
Ocilliscope and Function generator

- In this lab we experiment switching diodes using Multisim then built and tested for functionality with an oscilloscope.
- We were also tasked with developing a procedure for characterizing this component

LAB 1 MULTISIM

LAB 1 PICTURES

CONCLUSION

- Observations: Our component meet all expected measurements and values found in the data sheet. The was a simple lab build that required a lot of research and though in how to characterize our component the 1N4148.

LAB 2-LED

Equipment and parts needed:
1 - GDM-8245 Multi-meter
1 - HY1802D DC Power source
1 - Breadboard
1 - LED - 08L53GD - Green
1 - LED - 08L53YD - Yellow
1 - LED - 08L53ED - Amber
$1-560 \Omega$ Resistor

- The procedure for this lab is to first, measure the values for the parts being used in the lab, including the resistor and any diodes. After measuring the values, build a circuit using a bread board, making sure to include a ground, and voltage source. Once the circuit is built, measure the voltage drops across the resistor and the LED. After determining the voltage drop, calculate the currant using Ohm's law with the measured resistance and voltage drops at specific points within the circuit. Try and test different values of resistors to determine if the parameters given in the data table for the given LED is correct on min/max current. Record findings below.

MULTISIM

EXCELL

Green							
Simulated	Measured	Simulated	Measured	Simulated	Measured	Simulated	Calculated
Input Voltage (DC)		Resistor (Ω)		Voltage across LED		Currant (mA)	
9	9.052	560	554	2.092	2.043	12.355	12.7E-3
9	9.045	680	679	2.077	2.013	10.181	$10.4 \mathrm{E}-3$
9	9.045	780	778	2.067	1.994	8.889	9.1E-3
9	9.044	900	897	2.056	1.974	7.717	7.9E-3
9	9.045	1 k	978	2.048	1.965	6.952	7.2E-3
Yellow							
Simulated	Measured	Simulated	Measured	Simulated	Measured	Simulated	Calculated
Input Voltage (DC)		Resistor (Ω)		Voltage across LED		Currant (mA)	
9	9.045	560	554	1.803	1.995	12.852	$12.7 \mathrm{E}-3$
9	9.044	680	679	1.793	1.966	10.599	$10.4 \mathrm{E}-3$
9	9.047	780	778	1.786	1.952	9.249	9.1E-3
9	9.045	900	897	1.778	1.934	8.024	7.9E-3
9	9.043	1 k	978	1.773	1.928	7.227	7.3E-3
Amber							
Simulated	Measured	Simulated	Measured	Simulated	Measured	Simulated	Calculated
Input Voltage (DC)		Resistor (Ω)		Voltage across LED		Currant (mA)	
9	9.045	560	554	1.803	1.863	12.852	13.0E-3
9	9.041	680	679	1.793	1.835	10.599	$10.6 \mathrm{E}-3$
9	9.043	780	778	1.786	1.827	9.249	9.3E-3
9	9.046	900	897	1.778	1.804	8.024	8.1E-3
9	9.042	1k	978	1.773	1.796	7.227	7.4E-3

LAB 2 PICTURES

CONCLUSION

- In this lab, we built three different circuits with a 9 volt DC power supply, a resistor, and an LED. We used different resistor ratings to observe the changes to the brightness of the LED. We noticed that with less resistance, the LED illuminated more light. Some of the problems we ran into included: using too high a rating of resistor and not having any light emitted, and another one was that we only had an "Amber" option for LED in Multisim, but only had "Orange" in the lab. Over all we were able toget the each circuit to work.

LAB 3 MULTISIM

MULTISIM CONTINUE

EXCEL

Zener Diodes				1N4732	Vz	V in	Multisim	Test	1N4733	Vz	V in	Multisim	Test	1N4735	Vz	V in	Multisim	Test
1N4728	Vz	V in	Multisim Test		4.7v	0	0	0		5.1 v	0	0	0		6.2 v	0	0	0
	3.3 v	0	0 0			0.5	0.5	0.5			0.5	0.5	0.5			0.5	0.5	0.5
		0.5	0.50 .5			1	1	1			1	1	1			1	1	1
		1	$1 \quad 1$			1.5	1.5	1.5			1.5	1.5	1.5			1.5	1.5	1.5
		1.5	$1.5 \quad 1.5$			2	2	2			2	2	2			2	2	2
		2	2 2			2.5	2.5	2.5			2.5	2.5	2.5			2.5	2.5	2.5
		2.5	$2.5 \quad 2.5$			2.5 3	2.5 3	2.5 3			2.5 3	2.5 3	2.5 3			2.5 3	2.5 3	2.5 3
		3	2.9992 .999916			3.5	3.2	3.5			3.5	3.5	3.5			3.5	3.5	3.5
		3.5	3.163 .21054			4	+ 4	+ 4			3	4	3 4			- 4	4	3.5 4
		4	3.1833 .235662				4.48				4	4				4	4	4 4.5
		4.5	3.1953 .248417			4.5	4.486	4.496587			4.5	4.5	4.5			4.5	4.5	4.5
		5	3.2033 .256989			5	4.576	4.618575			5	4.93	4.92654			5	5	5
		5.5	3.2093 .26344			5.5	4.595	4.639617			5.5	4.982	4.97985			5.5	5.043	5.03245
		6	3.2143 .268613			6	4.606	4.651248			6	4.999	4.98965			6	5.062	5.05986
		6.5	3.2193 .272945			6.5	4.614	4.659294			6.5	5.01	5.00154			6.5	5.073	5.07156
		7	3.2223 .276643			7	4.62	4.665444			7	5.017	5.01685			7	5.081	5.08064
		7.5	3.2253 .279882			7.5	4.625	4.67042			7.5	5.023	5.02245			7.5	5.087	5.08568
		8	3.2283 .282765			8	4.629	4.674611			8	5.027	5.03056			8	5.092	5.08954
		8.5	3.2313 .285361			8.5	4.633	4.678208			8.5	5.031	5.03068			8.5	5.096	5.09564
		9	3.2333 .287722			9	4.636	4.681368			9	5.035	5.03498			9	5.099	5.09845

EXCEL CONTINUE

$\begin{gathered} \text { 1N473 } \\ 6 \end{gathered}$	Vz	V in	Multisim	Test
	6.8 v	0	0	0
		0.5	0.5	0.5
		1	1	1
		1.5	1.5	1.5
		2	2	2
		2.5	2.5	2.5
		3	3	3
		3.5	3.5	3.5
		4	4	4
		4.5	4.5	4.5
		5	5	5
		5.5	5.5	5.5
		6	6	6
		6.5	6.5	6.5
		7	6.678	6.66598
		7.5	6.701	6.70023
		8	6.714	6.71325
		8.5	6.722	6.72135
		9	6.728	6.72486

$\begin{gathered} \text { 1N473 } \\ 9 \end{gathered}$	Vz	V in	Multisi m	Test
	9.1 v	0	0	0
		0.5	0.5	0.5
		1	1	1
		1.5	1.5	1.5
		2	2	2
		2.5	2.5	2.5
		3	3	3
		3.5	3.5	3.5
		4	4	4
		4.5	4.5	4.5
		5	5	5
		5.5	5.5	5.5
		6	6	6
		6.5	6.5	6.5
		7	7	7
		7.5	7.5	7.5
		8	8	8
		8.5	8.5	8.5
		9	8.941	8.98568

$\begin{gathered} 1 \mathrm{~N} 474 \\ 2 \end{gathered}$	Vz	V in	Multisi m	Test
	12v	0	0	0
		0.5	0.5	0.5
		1	1	1
		1.5	1.5	1.5
		2	2	2
		2.5	2.5	2.5
		3	3	3
		3.5	3.5	3.5
		4	4	4
		4.5	4.5	4.5
		5	5	5
		5.5	5.5	5.5
		6	6	6
		6.5	6.5	6.5
		7	7	7
		7.5	7.5	7.5
		8	8	8
		8.5	8.5	8.5
		9	9	9

EXCEL

1N4744	Vz	V in	Multisim	Test
	15 v	0	0	0
		0.5	0.5	0.5
		1	1	1
		1.5	1.5	1.5
		2	2	2
		2.5	2.5	2.5
		3	3	3
		3.5	3.5	3.5
		4	4	4
		4.5	4.5	4.5
		5	5	5
		5.5	5.5	5.5
		6	6	6
		6.5	6.5	6.5
		7	7	7
		7.5	7.5	7.5
		8	8	8
		8.5	8.5	8.5
		9	9	9

1N4747	Vz	V in	Multisim	Test
	20 v	0	0	0
		0.5	0.5	0.5
		1	1	1
		1.5	1.5	1.5
		2	2	2
		2.5	2.5	2.5
		3	3	3
		3.5	3.5	3.5
		4	4	4
		4.5	4.5	4.5
		5	5	5
		5.5	5.5	5.5
		6	6	6
		6.5	6.5	6.5
		7	7	7
		7.5	7.5	7.5
		8	8	8
		8.5	8.5	8.5
		9	9	9

LAB 4-DUAL 9V SP

http://circuit-diagram.hqew.net/Dúal-Adjustable-Power-Supply-Using-LM-317-_8273.htmil

MULTISIM

LAB 5-NPN LED

- GW Instek LCR meter model\#: LCR-819 SN\#: E120998
- DC Power Supply Model\# HY1802D
- Digital Multi Meter Brand: Gwlnstek Model \#: GDM-8245 SN: CL860332
- LM317 Voltage Regulator
- 74LS04 Hex Inverter
- 2 N2222 NPN Transistor
- $3-1 \mathrm{~K} \Omega$ Resistor, $270 \mathrm{~K} \Omega, 6.8 \mathrm{~K} \Omega$
- 1 -Breadboard
- - Wire kit
- 1 - Transistor 2N2222A
- Hex inverters 74L504D

MULTISIM

PICTURES

CONCLUSION

- A transistor can be used as a switch
- First we struggled having the light to blink but then we figured it out.
- The switch inverter was with problems. Once it was grounded properly the circuit worked how it suppose to work

LAB 6-CE AMPLIFIER

- To understand the operational characteristics of a common emitter (CE) amplifier and be able determine the maximum output available from a basic CE amplifier

Procedures:
Run a baseline simulation to see exactly where you are at with circuit performance
To determine an appropriate load line
To design the RCand RC resistor values
To design the R1 and R2 resistor values
The output amplitude can be adjusted by modifying the value of the CE capacitator.

Tools

- Gw instek LCR METER LCR-819
- DC power supply
- Signal Generator
- Oscilloscope
- Digital multimeter
- Breadboard and wire
- $22 \mathrm{k} \Omega$ Resistor
- 47Ω Resistor
- 1k』 Resistor
- $150 \mathrm{k} \Omega$ Resistor
- $1 \mu \mathrm{~F}$ Capacitor
- $22 \mu \mathrm{~F}$ Capacitor
- $47 \mu \mathrm{~F}$ Capacitor
- 2N2222 NPN Transistor

MULTISIM

PICTURE

CONCLUSION

- The common emmiter amplifier circuit has a resistor in its collector circuit, the current flowing through this resistor produces the voltage output of the amplifier.
- The function generator could not create a 10 mV wave that the circuit was originally designed for. This was fixed by finding out the lowest voltage that the function generator could produce and the schematic was redesigned for that voltage.

LAB 7-JFET LED

- 1 resistors $-4.7 \mathrm{~K} \Omega$
- 1 -Breadboard
- 1 - Wire kit
- 1 - Transistor 2N5457
- LED
- FUNCTION GENERATOR

MULTISIM

PICTURES

LAB 8-JFET TRANSISTOR

- Build a circuit using N-Type JFET

Equipments

- Oscilloscope Brand: Tektronix Model \#: TDS220 SN: B083266
- Digital Multi Meter Brand: Gwlnstek Model \#: GDM-8245 SN: CL860332
- Function Generator Brand: GwInstek Model \#: GFG-8210 SN: C705245
- GW Instek LCR meter model\#: LCR-819 SN\#: E120998
- DC Power Supply Model\#HY1802D

MULTISIM

Model of 2 N5457 used in the simulations .model 2N5457DHJ NJF(Vto $=1.372$ Beta $=1.125 \mathrm{~m}$ Lambda $=2.3 \mathrm{~m}$ + Vtotc=-2.5m Is=181.3flsr=1.747p $\mathrm{N}=1 \mathrm{Nr}=2 \mathrm{Xti}=3$ Alpha $=2.543 \mathrm{u}$ $+\mathrm{Vk}=152.2 \mathrm{Cgd}=4 \mathrm{p} \mathrm{M}=.3114 \mathrm{~Pb}=.5$ $\mathrm{Fc}=.5 \mathrm{Cgs}=4.627 \mathrm{p} \mathrm{Kf}=10.45 \mathrm{E}-18$ + Betatce= -.5 Rd=1 Rs=1Af=1)

PICTURES

LAB 9-LOW PASS FILTER

- Find a design on the web and calculate the proper values for the Capacitors and resistors so the circuit will cut-off frequencies above 1 kHz (Min. -3 dB).
- Build the circuit in MultiSim13 and run an AC circuit analysis to conform your calculations are correct.
- The topology used was 'Sub-Bessel' Sallen-Key and acquired at:
- http://sound.westhost.com/articles/active-filters.htm\#s3

The general formula for a filter is
$f_{0}=1 /\left(2^{*} \pi{ }^{*} R{ }^{*} C\right) \quad$ Where R is resistance, C is capacitance, and $f o$ is the cutoff frequency
however, this is modified (sometimes dramatically) once we start using filters of second order and higher.

MULTISIM

EXCEL AND CONCLUSION

The calculations may be unpredictable for second order filter

A	A		B	C
1	$\mathrm{~A}(0)$	1		
2	$\mathrm{a}(1)$	1.4142		
3	$\mathrm{~b}(1)$	1		
4	c 1	$22.0 \mathrm{E}-9$		
5	c 2	$44.0 \mathrm{E}-9$	$47.0 \mathrm{E}-9$	
6	r 1	$3.82 \mathrm{E}+3$		
7	r 2	$6.41 \mathrm{E}+3$		
8	Fc	$1.0 \mathrm{E}+3$	Hz	
9				

LAB 10-HIGH PASS FILTER

Find a design on the web and calculate the proper values for the Capacitors and resistors so the circuit will cut-off frequencies below 1 kHz .
Build the circuit in MultiSim13 and run an AC circuit analysis to conform your calculations are correct.
The topology used was 'Butterworth' Sallen-Key and acquired at:
http://sound.westhost.com/articles/active-filters.htm\#s3

This is the standard unity gain Sallen-Key circuit. The values are set for a Q of 0.707 , so the behaviour is Butterworth. As you can see, for the low pass filter we change the value of C (10 nF) as follows

$$
\begin{aligned}
& \mathrm{R} 1=\mathrm{R} 2=\mathrm{R}=10 \mathrm{k} \\
& \mathrm{C} 1=\mathrm{C}^{*} \mathrm{Q}=1 \mathrm{nF} * 0.707=7.07 \mathrm{nF} \\
& \mathrm{C} 2=\mathrm{C} / \mathrm{Q}=10 \mathrm{nF} / 0.707=14.14 \mathrm{nF}
\end{aligned}
$$

Exactly the same principle is applied to the high pass filter, except that the standardised value for $\mathrm{R}(10 \mathrm{~K})$ used here is modified by Q , with R 1 becoming 14.14 k and R 2 becomes 7.07 k . In many cases, it is necessary to make small adjustments to the frequency to allow the use of standard value components.

MULTISIM

CONCLUSION

- Designing and building a second order High-Pass filter is fairly easy once a topology and reliable calculation is chosen.
- No dificulties

LAB 11-BAND PASS FILTER

- Find a design on the web and calculate the proper values for the Capacitors and resistors so the circuit will notch out at 1 kHz Build circuit in multisim
- Solve the calculations

MULTIPLE FEEDBACK BAND-PASS

You can visualize the band-pass nature of this circuit by inspecting its topology - R2 and C2 form a differentiator like circuit (high-pass), while C1 and R1A/B form an integrator like circuit (low-pass).
Letting $\mathrm{C} 1=\mathrm{C} 2$ makes the Multiple Feedback Band-pass filter straight forward to design. Just follow these simple steps.

Choose

$$
C=C 1=C 2
$$

then calculate $k=2 \pi f o C$ and

$$
\begin{aligned}
R 1 A & =\frac{Q}{H \cdot k} \\
R 1 B & =\frac{Q}{\left(2 Q^{2}-H\right) k} \\
R 2 & =\frac{2 Q}{k}
\end{aligned}
$$

MULTISIM

CONCLUSION

- Designing and building a Band-Pass filter is fairly easy once a topology is chosen
- Had difficulty at first understanding the calculation but after reading up a bit on the website, earlier referenced, I was able to make a spreadsheet and have it calculate the values.

LAB 12-NOTCH FILTER

- Find a design on the web and calculate the proper values for the Capacitors and resistors so the circuit will notch out at 1 kHz .
- Build the circuit in MultiSim13 and run an AC circuit analysis to conform your calculations are correct.
- The topology was used and acquired at:
http://www.radio-electronics.com/info/circuits/opa mp notch filter/opa mp notch filter.php

$$
\begin{gathered}
f_{\text {notch }}=\frac{1}{2 \pi R C} \\
R=R 3=R 4 \\
C=C 1=C 2
\end{gathered}
$$

Where:
fnotch = centre frequency of the notch in Hertz
$\Pi=3.142$
R and C are the values of the resistors and capacitors in Ω and Farads

LAB 12-NOTCH FILTER

EXCEL AND CONCLUSION

- Designing and building a Notch filter is pretty hard, however it is fairly easy once a topology is chosen.

		A	B	C	D
1	Fm	$1.0 \mathrm{E}+3$	Mid Freq		
2	G	5.7	Inner gain		
3	AO	6	Passband		
4	Q	-0.135135	Rejection		
5	C	$100.0 \mathrm{E}-9$			
6	C1		$100.0 \mathrm{E}-9$		
7	C2	$100.0 \mathrm{E}-9$			
8	C3	$200.0 \mathrm{E}-9$			
9	R	$1.6 \mathrm{E}+3$			
10	R1	$1.0 \mathrm{E}+3$			
11	R2	$4.7 \mathrm{E}+3$			
12	R3	$1.6 \mathrm{E}+3$			
13	R4	$1.6 \mathrm{E}+3$			
14	R5	$795.8 \mathrm{E}+0$			
15					

PART LIST REVISED

PART LIST POWER SUPPLY

Item	Part Description	Part Number	Qty	Unit Price	Total Price
1	Power Transformer 24 VCT .3A	16P124-3	1	\$5.95	\$5.95
2	Silicon Rectifiers - Max Current 1A Max PIV 50	111N4001	4	\$0.10	\$0.40
3	Volt. Regulator Adjustable 1A	10317-T	1	\$0.35	\$0.35
4	Volt. Regulator Adjustable 1A	10337-T	1	\$0.75	\$0.75
5	In-Line Holder For 1-1-4 x 1-4 Fuses	2001LINL	1	\$0.55	\$0.55
6	Bright Red LED	08L53HD	2	\$0.14	\$0.28
7	Instrument Fuses 1/4 Amp	2000AGX1/4	1	\$0.95	\$0.95
8	Multiturn Potentiometers Top Adjust - 2K Ohm	18MPT2K	2	\$0.65	\$1.30
9	Electrolytic Nonpolarized Radial Capacitors - 47 uf 50V	$\frac{\text { 14ERN05047 }}{\underline{U}}$	6	\$0.80	\$4.80
10	RSR SPST Toggle Switch with lead wires 6 Amp 125V	17SWTOGWR	1	\$0.95	\$0.95
		$14 \mathrm{ER0502200}$			
11	Electrolytic Nonpolarized Radial Capacitors - 2200 Uf	\underline{U}	2	\$0.06	\$0.24
12	Electrolytic Nonpolarized Radial Capacitors - 2.2uF 50v	14ER0502.20	4	\$0.06	\$0.12
13	Electrolytic Nonpolarized Radial Capacitors - 100uF 50v	14ER050100U	2	\$0.06	\$0.12

PART LIST LAB 3

Part Name	Part Number		Part Price	QTY		
Copper Clad Circuit Boards - CEM-1 Material Copper 3×4 inches single side	$97 \mathrm{BS11}$			\$0.951.00		
Terminal Blocks 2 Terminal Type Vertical	2405TB1			\$0.70		1.00
Carbon Film Resistors 5\% 1/4 W - Value 47		$\underline{1300547}$		\$0.06	1.00	
Carbon Film Resistors 5\% 1/4 W -Value 1 K	130051K			\$0.12		2.00
Carbon Film Resistors 5\% 1/4 W - Value 2 K	130052K			\$0.06	1.00	
Carbon Film Resistors 5\% 1/4 W - Value 10K	1300510K			\$0.06	1.00	
Carbon Film Resistors 5\% 1/4 W - Value 470		13005470		\$0.06	1.00	
Carbon Film Resistors 5\% 1/4 W - Value 3.9K	130053.9K			\$0.061.00		
Female Header Receptacles No of Contacts 2 - No. of Rows Single	240202SF			\$0.753.00		
	Total			\$2.82		

PART LIST

```
PARTNAME PART# Price Quantity
```



```
Terminal Blocks 2 Terminal Type Vertical 2405TB1 $0.70 1
Carbon Film Resistors 5% 1/4 W - Value 47 1300547 $0.06 1
Carbon Film Resistors 5% 1/4 W - Value 1K 130051K $0.12 }
Carbon Film Resistors 5% 1/4 W - Value 2K 130052K $0.06 . 
Carbon Film Resistors 5% 1/4 W - Value 10K 1300510K $0.06 1
Carbon Film Resistors 5% 1/4 W - Value 470 13005470 $0.06 1
Carbon Film Resistors 5% 1/4 W - Value 3.9K130053.9K $0.06 1
Female Header Receptacles No of Contacts 2 - No. of Rows Single 240202SF$0.75
```


LAB10

Lab 10 - Series/Parallel Capacitors

Names:Mustafa smaili
\qquad
Date: \qquad
The purpose of this lab is to:
Experiment with series circuits and parallel combinations of capacitors.
The following capacitors are needed (1 each of the following): 10uF, 22uF and 47uF
Measure and record the capacitance of each capacitor using the LCR meter. Connect the capacitors as shown in Figure 1 and measure and record the total capacitance, CT. Then connect the capacitors as shown in Figure 2 and measure and record the total capacitance, CT.

Equipment needed:
1-LCR Meter
1-Elvis II
3 - capacitors

Figure 2

LAB11

Lab 11-RC Lab
Names: mustafa smaili,
Date: \qquad
The purpose of this lab is to:
Experiment with RC (Resistor \& Capacitor) circuits.
The following capacitors are needed (1 each of the following): $0.47 \mathrm{uF}, 1 \mathrm{uF}$ and 2.2 uF
Measure and record the resistor value using the DMM and measure and record the capacitor values using the LCR meter in Table 1. Connect the resistor and capacitor as shown in Figure 1. Connect the Function Generator to the input at V 1 and connect Channel 1 of the Oscilloscope to the input and Channel 2 to the output. Adjust the voltage of the Function Generator to 1 Vpp at the frequencies shown in Table 2. Measure the input and output voltages using the Oscilloscope. Record the results in Table 2. Change the capacitor and retest.

Equipment needed:
1-Digital Multimeter
1-LCR Meter
1-Oscilloscope
1-Function Generator
1-Elvis II
3 - capacitors
1- resistor
Capacitance or

	Resistance	
	Expecte	Measured
$\mathrm{C} 1=$. 47 uF	. 464
$\mathrm{C} 2=$	1uF	.915uF
$\mathrm{C3}=$	2.2uF	2.1uF

Table 1-Resistance and Capacitances
Expected = value you expect it to be
Measured = using LCR Meter or DMM

Figure 1
RC C Circuit
cre 1

LAB12

Lab 12 - Series/Parallel Inductors

Names: Mustafa Smaili, \qquad
Date: \qquad
The purpose of this lab is to:
Experiment with series circuits and parallel combinations of inductors.
The following inductors are needed (1 each of the following): $1 \mathrm{mH}, 2.2 \mathrm{mH}$ and 4.7 mH
Measure and record the inductance of each inductor using the LCR meter. Connect the inductors as shown in Figure 1 and measure and record the total inductance, $L T$. Then connect the inductors as shown in Figure 2 and measure and record the total inductance, LT.

Equipment needed:

1-LCR Meter
Inis
3 - Inductors
Expected Simulated Measured

$\mathrm{LL}=$| 1 mH | 1 mH | 1.01 mH |
| :--- | :--- | :--- |
| 2 | | |

$3=4.7 \mathrm{mH} \quad 4.7 \mathrm{mH} \quad 4.32 \mathrm{mH}$

$\mathrm{LT}=$| | 7.9 mH | 7.9 mH | 7.58 mH |
| :--- | :--- | :--- | :--- |

Expected = value you expect it to be
Simulated $=$ using Multisim
Measured $=u$ sing LCR Mete
xpected = value you expect it to be
simulated $=$ using Multisim
Measured = using LCR Meter

Figure 2
Parallel Circuit

LAB13

Lab 13 - RL Lab
Names: Mustafa Smaili

Date:

The purpose of this lab is to:
Experiment with RL (Resistor \& Inductor) circuits.
The following inductors are needed (1 each of the following): $1 \mathrm{mH}, 2.2 \mathrm{mH}$ and 4.7 mH
Measure and record the resistor value using the DMM and measure and record the inductor values using the LCR meter in Table 1. Connect the resistor and inductor as shown in Figure 1. Connect the Function Generator to the input at V1 and connect Channel 1 of the Oscilloscope to the input and Channel 2 to the output. Adjust the voltage of the Function Generator to 1 Vpp at the frequencies shown in Table 2. Measure the input and output voltages using the Oscilloscope. Record the results in Table 2. Change the inductor and retest.

Equipment needed:
1- Digital Multimeter
1-LCR Meter
1-Oscilloscope
1-Function Generator
1 - Elvis II
3 - Inductors
1 -Resistor, 100 ohm

Figure 1
RL Circuit

Inductance or Resistance

	Expected	Measured
L1 =	2.2 mH	2.12 mH
L2 $=$	1 mH	98 mH
L3 $=$	4.7 mH	4.67 mH
R1 =	100 mH	99.99 mH

Table 1 - Resistance and Inductances expected = value you expect it to be Measured $=$ using LCR Meter or DMM

Frequency	Output Voltage L $=2.2 \mathrm{mH}$			Output Voltage L $=1 \mathrm{mH}$			Output Voltage L $=4.7 \mathrm{mH}$		
	Expected	Measu		Expected	Measured		Expected	Measured	
	Output Voltage	Input Voltage	Output Voltage	Output Voltage	Input Voltage	Output Voltage	Output Voltage	Input Voltage	Output Voltage
10	166 mV	451 mV	4.3 mV	75 mV	640 mV	21 mV	355 mV	642 mV	96 mV
50	832 mV	451 mV	18.8 mV	378 mV	655 mV	86 mV	1.7 v	675 mV	116 mV
100	1.6 v	453 mV	19.6 mV	756 mV	658 mV	101 mV	3.5v	678 mV	150 mV
200	3.3 V	452 mV	22.1 mV	1.5 v	656 mV	101 mV	7.1v	681 mV	152 mV
300	4.9v	452 mV	43.3 mV	2.2 v	659 mV	114 mV	10.6 v	684 mV	187 mV
400	6.6V	450 mV	44.1 mV	3.0 V	661 mV	120 mV	14.1 v	688 mV	214 mV
500	8.3 v	451 mV	44.7 mV	3.7 v	662 mV	114 mV	17.5 v	695 mV	232 mV
600	9.9v	452 mV	45.3 mV	4.5 v	660 mV	160 mV	21 V	696 mV	271 mV
700	11.5 v	454 mV	47.7 mV	5.2 v	662 mV	137 mV	24.3 v	700 mV	290 mV
800	13.2 v	453 mV	49.8 mV	6 v	663 mV	150 mV	27.6 v	705 mV	302 mV
900	14.8 v	454 mV	55.2 mV	6.7 v	664 mV	160 mV	30.9 v	708 mV	310 mV
1,000	16.4 v	456 mV	60.8 mV	7.5v	665 mV	172 mV	34 v	701 mV	401 mV
2,000	32 v	462 mV	116 mV	15 v	676 mV	230 mV	61.1 v	750 mV	463 mV
3,000	46 v	465 mV	168 mV	22.2 v	683 mV	278 mV	79.78 v	769 mV	579 mV
4,000	58.2 v	477 mV	217 mV	29.3 v	688 mV	305 mV	91.7 v	808 mV	629 mV
5,000	68.3 v	489 mV	263 mV	36 v	697 mV	347 mV	99.4 v	851 mV	722 mV
6,000	76.5 v	502 mV	308 mV	42.4 v	707 mV	384 mV	104.5 v	860 mV	740 mV
7,000	83.5v	516 mV	346 mV	48.4 v	718 mV	417 mV	108vv	892 mV	814 mV
8,000	89.1 v	527 mV	379 mV	54.1 v	726 mV	440 mV	110.5 v	894 mV	818 mV
9,000	93.6 v	536 mV	406 mV	59.2 v	730 mV	491 mV	112.3 v	908 mV	855 mV
10,000	97.3v	544 mV	427 mV	63.9 v	736 mV	490 mV	113.6 v	909 mV	857 mV

RL Frequency Response
 Expected = value you expect it to be

Measured $=$ Using Oscilloscope

