Lab Notebook

Michael Roeback

EECT111-01C

Spring 2014
Professor Andy Bell

Lab Notebook Reading and Sorting Resistors

Michael Roeback

January 23, 2014
Professor Andy Bell

Lab 1 - Reading and Sorting Resistors
Names: Jon Wyatt, Jimmie Rinser, Michael Roeback (bench 5)
Date: 1-23-14

The purpose of this lab is to:
Learn the resistor color code using 15 resistors which must be sorted from smallest to largest value. Build a resistor kit that includes 15 resistors and, sort resistors based on color code from smallest to largest and measure the resistance of each resistor and verify sorting

Equipment needed:

1 - Digital Multimeter
1-15 unique resistors

	Color Code	Measured Value
$100=$	Brown black brown	98.17
$220=$	Red red brown	219.03
$330=$	Orange orange brown	325.73
$470=$	Yellow violet brown	462.13
$1 \mathrm{~K}=$	Brown black red	$.992 \mathrm{E}+3$
$2.2 \mathrm{~K}=$	Red red red	$2.192 \mathrm{E}+3$
$3.3 \mathrm{~K}=$	Orange orange red	$3.268 \mathrm{E}+3$
$4.7 \mathrm{~K}=$	Yellow violet red	$4.654 \mathrm{E}+3$
$10 \mathrm{~K}=$	Brown black orange	$9.802 \mathrm{E}+3$
$22 \mathrm{~K}=$	Red red orange	$22.152 \mathrm{E}+3$
$33 \mathrm{~K}=$	Orange orange orange	$33.108 \mathrm{E}+3$
$47 \mathrm{~K}=$	Yellow violet orange	$47.155 \mathrm{E}+3$
$100 \mathrm{~K}=$	Brown black yellow	$99.92 \mathrm{E}+3$
$1 \mathrm{M}=$	Brown black green	$1.0041 \mathrm{E}+6$
$10 \mathrm{M}=$	Brown black blue	$10.826 \mathrm{E}+6$

Equipment Used: GwINSTEK GGM-8245, Ser. \# CL860334, Cal Date 111412
Observations: All resistors had gold band tolerance all were within tolerance

Lab Notebook Resistor Variability

Michael Roeback

January 29, 2014
Professor Andy Bell

Lab 2 -Resistor Variability

Names: \qquad
Date: \qquad

The purpose of this lab is to:
Learn the how resistors vary using 25 resistors with the same color code.

Select a set of 25 resistors.
Measure and record the resistance of each resistor.

Equipment needed:

1 - Digital Multimeter
$1-25$ resistors with the same color code.

Resistor color code $=$ Blue, Grey, Red, Gold
Resistor value = \qquad
Resistor tolerance $=\quad 5 \%$

Using Microsoft Excel plot the resistor values and determine:

Smallest resistance $=$ \qquad
Largest resistance = $\quad 6.870 \mathrm{k}$
Average resistance = \qquad
Standard Deviation = \qquad

Do any of your resistor values exceed the part tolerance? _No

Sample	Measured Value
1	6.771
2	6.748
3	6.749
4	6.772
5	6.787
6	6.707
7	6.801
8	6.698
9	6.773
10	6.736
11	6.780
12	6.755
13	6.794
14	6.836
15	6.770
16	6.729
17	6.786
18	6.811
19	6.780
20	6.748
21	6.771
22	6.779
23	6.842
24	6.738
25	6.870

Equipment Used: DIMM Used ; GwINSTEK GGM-8245 Ser. \# CL860334 Cal Date 111412

Observations: All Resistors tested within Tolerance.

Lab Notebook Series Resistors

Michael Roeback

February 6, 2014
Professor Andy Bell

Lab 3 - Series Resistors

Names: Mike Roeback, Cody Kieler, Shane Miller
Date: 06FEB2014

The purpose of this lab is to:
Experiment with series circuits and verify that the simulation, analysis (calculations) and test results all agree.

From the resistor kit select 3 resistors (10K, 2.2K, 4.7K)

Measure and record the value of each resistor. Connect the resistors as shown in Figure 1. Measure and record the total resistance, RT. Then connect the resistors as shown in Figure 2, the 9V come from the Elvis II (Modular Engineering Educational Laboratory Platform). Then measure and record with the Digital Multimeter the current and voltages of the series circuit.

Equipment needed:
1 - Digital Multimeter
1 - Elvis II
3 - Resistors

Figure 1

Figure 2

	Measured	Calculated	Simulated
$\mathrm{R} 1=$	10.1E+3	$10.0 \mathrm{E}+3$	$10.0 \mathrm{E}+3$
$\mathrm{R} 2=$	$2.2 \mathrm{E}+3$	$2.2 \mathrm{E}+3$	$2.2 \mathrm{E}+3$
R3 =	4.7E+3	4.7E+3	4.7E+3
$\mathrm{RT}=$	$17.0 \mathrm{E}+3$	$16.9 \mathrm{E}+3$	$16.9 \mathrm{E}+3$

Measured = using Digital Multimeter
Calculated = based on color code and Excel values
Simulated $=$ Multisim simulation

Measured = using Digital Multimeter
Calculated = based on color code and Excel values
Simulated $=$ Multisim simulation

Ref	Simulated (MultiSim_12)	Calculated	Measured/Calc.	Actual Measure	Symbol	Formulas
V1=	9	9	9.002	9.002	V	
R1=	$10.0 \mathrm{E}+3$	$10.0 \mathrm{E}+3$	10.1E+3	$10.1 \mathrm{E}+3$	Ω	
R2=	$2.2 \mathrm{E}+3$	$2.2 \mathrm{E}+3$	$2.2 \mathrm{E}+3$	$2.2 \mathrm{E}+3$	Ω	
R3=	$4.7 \mathrm{E}+3$	$4.7 \mathrm{E}+3$	$4.7 \mathrm{E}+3$	$4.7 \mathrm{E}+3$	Ω	
RT=	$16.9 \mathrm{E}+3$	$16.9 \mathrm{E}+3$	$17.0 \mathrm{E}+3$	$17.0 \mathrm{E}+3$	Ω	R1+R2+R3
$\mathrm{IT}=$	$532.9 \mathrm{E}-6$	532.5E-6	$530.8 \mathrm{E}-6$	$505.7 \mathrm{E}-6$	A	V1/RT
$\mathrm{VA}=$	3.675	3.675	3.641	3.670	V	IT* $\left.{ }^{*} 2+\mathrm{R} 3\right)$
$\mathrm{VB}=$	2.503	2.503	2.500	2.517	V	IT*R3

Lab Notebook Andy's Black Box (Team Project)

Michael Roeback

February 13, 2014

Professor Andy Bell

Lab 4 - Black Box Design

Names: Jeff Noggle (Multisim), Ramon Jamili (Elvis Setup), Anas Alrawahi (Presenter), Jon Wyatt (Data Recorder), Mike Roeback (Calculations)

Date: $2 / 13 / 2014$

The purpose of this lab is to:
Learn about series circuits

The voltage applied to a Black Box is 9 V and the measured current draw is 10 mA . Design a 3 resistor series circuit that meets the voltage and current requirements using "standard" resistor value.

Equipment needed:

1 - Digital Multimeter
1 - Elvis II
3 - Standard Resistors

	Measured	Calculated	Simulated
$\mathrm{V} 1=$	9.146	9	9
$\mathrm{IT}=$	10.26 mA	10 mA	10.001 mA
$\mathrm{RT}=$	888Ω	900Ω	900Ω
R1 =	464.35Ω	470Ω	470Ω
$\mathrm{R} 2=$	326.15Ω	330Ω	330Ω
R3 =	97.98Ω	100Ω	100Ω

Observations:___Unable to adjust voltage on Elvis ran calculation with voltage at a little over simulated and calculated. All resistors had gold band tolerance all were within tolerance.

Equipment Used: GwInstek GGM-8245 SN cl860334 cal date 111412

Ohms					Ω^{*} Amps	Voltage Left	
900.00	Resistance		Resistor Values Used		Voltage Drop	9.0	Supplied Total
9.00	Voltage	R1	470	Ω	4.7	4.3	After R1
$10.0 \mathrm{E}-3$	Amperage	R2	330	Ω	3.3	1.0	After R1 and R2
		R3	100	Ω	1.0	0.0	After R1, R2 and R3
R=V/A		RT	900	Ω	9.0		
			0.00	Total left	0.0		

Lab Notebook MEMS Variable Resistor

Michael Roeback

February 20, 2014
Professor Andy Bell

Lab 5 - MEMS Variable Resistor

Names: Mike Roeback, Jimmie Rinser, Jon Wyatt
Date: \qquad

The purpose of this lab is to:
Learn about variable resistors and a Wheatstone Bridge

Using the Pressure Sensor Model Kit build resistors R1 - R4 except modify the resistor pattern so that only resistor varies, R1. Make R4 a fixed value resistor so that it has the same "pattern" as R2 and R3.

Circular Membrane

Equipment needed:

1 - Digital Multimeter
1 - Elvis II
1 - Pressure Sensor Model Kit
10 - paperclips

	Measured
$R 1=$	
$R 2=$	
$R 3=$	
$R 4=$	

Observations: Built Pressure Sensor but It was never Tested

Lab Notebook Black Box Design

Michael Roeback

February 20, 2014
Professor Andy Bell

Lab 6 - Black Box Design

Names: Jonathan Wyatt, Jimmie Rinser, Michael Roeback
Date: 2/20/2014

The purpose of this lab is to:
Learn about parallel circuits

The voltage applied to a Black Box is 9 V and the measured current draw is 18 mA . Design a 2 resistor series circuit that meets the voltage and current requirements using "standard" resistor value.

Equipment needed:

1 - Digital Multimeter
1 - Elvis II
2 - Standard Resistors

	Design	Measured	Calculated	Simulated
$\mathrm{V} 1=$	9	8.994	9	9
$\mathrm{IT}=$	18	17.687	18	18.002
$\mathrm{RT}=$	2.5	.4963k	. 5 k	.5k
$\mathrm{R} 1=$	1k	.995k	1k	1k
$\mathrm{R} 2=$	1k	.989k	1k	1k

Lab Equipment Used: GwInstek GGM-8245, SN cl860334, cal date 111412

Observations: Though both 1 k resistor were within their rated 5% tolerance, they were a little lower resistance then calculated and simulated.

Observations: all resistors had gold band tolerance all were within tolerance

Calculated

AndysOtherBlackBox (Calculated)			
0.009	Current Through R1	9	Total Circuit Voltage
0.009	Current Through R2	0.018	Total Circuit Amperage
500	Total Resistance	1000	R1
1000	Resistor 1 (R1)	1000	R2
1000	Resistor 2 (R2)	500	R1,R2 Product/Sum

Simulated

Actual Circuit

Voltage Check

Lab Notebook 4 Resistor Parallel Circuit

Michael Roeback

Lab 7-4 Resistor Parallel Circuit

Names: Mike Roeback,
Date: $\underline{02 / 27 / 2014}$

The purpose of this lab is to:
Learn about parallel circuits

The voltage applied to 4 parallel resistors x is 9 V . Measure all the resistor values, total current and all the branch currents.

1 - Digital Multimeter
1 - Elvis II
3 - Standard Resistors

	Design	Measured
$\mathrm{R} 1=$	$2.2 \mathrm{k} \Omega$	$2.1976 \mathrm{k} \Omega$
$\mathrm{R} 2=$	$3.3 \mathrm{k} \Omega$	$3.2757 \mathrm{k} \Omega$
R 3	$=$	$4.7 \mathrm{k} \Omega$
R 4	$4.7193 \mathrm{k} \Omega$	
R	$4.7 \mathrm{k} \Omega$	$4.6885 \mathrm{k} \Omega$

	Measured	Calculated	Simulated
V 1 =	9.006	9	9
RT =	$843.8 \mathrm{E}+0 \Omega$	$845.2 \mathrm{E}+0 \Omega$	845.232Ω
$11=$	4.076 mA	4.1E-3	$4.091 \mathrm{E}-3$
$12=$	2.739 mA	2.7E-3	$2.727 \mathrm{E}-3$
$13=$	1.902 mA	1.9E-3	$1.915 \mathrm{E}-3$
$14=$	1.914 mA	1.9E-3	$1.915 \mathrm{E}-3$
IT -	10527 mf	1 CLE -2	10 ¢105-2

Observations: $\underline{\text { All Resistors had gold tolerance bands, were } 1 / 4 \text { watt and within tolerance. }}$

[^0]
Calculated

4 Resistors in Parallel	
$\mathrm{V} 1=$	9
$\mathrm{R} 1=$	$2.2 \mathrm{E}+3$
$\mathrm{R} 2=$	$3.3 \mathrm{E}+3$
$\mathrm{R} 3=$	$4.7 \mathrm{E}+3$
$\mathrm{R} 4=$	$4.7 \mathrm{E}+3$
$\mathrm{RT}=$	$845.2 \mathrm{E}+0$
$\mathrm{I}=$	$4.1 \mathrm{E}-3$
$\mathrm{I}=$	$2.7 \mathrm{E}-3$
$\mathrm{I}=$	$1.9 \mathrm{E}-3$
$\mathrm{I}=$	$1.9 \mathrm{E}-3$
$\mathrm{IT}=$	$10.6 \mathrm{E}-3$

Amps	IT Off RT
$10.6 \mathrm{E}-3$	Amperage
$845.2 \mathrm{E}+0$	Resistance
9	Voltage

Pass	IT Check

$10.6 \mathrm{E}-3|11+| 2+13+14$

Simulated

Title: Lab_?_Circuit_RT		
$\therefore \because$ Find,Total.Circuit.Resistance, Total.Circuit.Current Ail Sub-Circuit Currents		
Designed by: : Andy Bely	Document N: : 0001	Revision: 1.0
Checked by: Mike Roeback	Date: . $2 / 2722014$	Size: A
Approved by:	Sheet : . 1 . . . of : 1	

Measured

Total Resistance
Supplied Voltage

Elvis Power Supply

It Circuit Break-out

Testing I1

I4 Circuit Break-Out

Supply Voltage has changed to 12 volts, Total circuit amperage to remain the same as it was with the 9 volt supply. Make the proper adjustments.

Calculated

4 Resistors in Parallel		Series added	Amps	11
V1=	12		0.005455	Amperage
R1=	$2.2 \mathrm{E}+3$		$2.2 \mathrm{E}+3$	Resistance
R2=	$3.3 \mathrm{E}+3$		12	Voltage
R3=	$4.7 \mathrm{E}+3$			
R4=	$4.7 \mathrm{E}+3$		Amps	12
R5*=		281.7E+0	0.003636	Amperage
RT=	$1.1 \mathrm{E}+3$		$3.3 \mathrm{E}+3$	Resistance
11=	5.5E-3		12	Voltage
12=	3.6E-3			
13=	$2.6 \mathrm{E}-3$		Amps	13
14=	2.6E-3		0.002553	Amperage
1T=	10.6E-3		$4.7 \mathrm{E}+3$	Resistance
			12	Voltage
Amps	IT Off RT			
10.6E-3	Amperage		Amps	14
$1.1 \mathrm{E}+3$	Resistance		0.002553	Amperage
12 Voltage			$4.7 \mathrm{E}+3$	Resistance
			12 Voltage	
Pass	IT Check			
			14.2E-3 ${ }^{1} 11+12+13+14$	
Amps \quad IT 9v Circuit 0.010648 Amperage 845.2316 Resistance 9 Voltage			Resistor Needed	
			$281.7 \mathrm{E}+0$	Resistance
			3.0E+0	Voltage
			10.6E-3	Amperage
*R5 added the circuit in series to keep the current the same for 12 volts as it was for 9 volts.				

Simulated

Lab Notebook Andy's 1.3volt Drop Black Box

Michael Roeback

March 6, 2014

Professor Andy Bell

Lab 8 - Andy's 1.3volt Drop Black Box

Names: Mike Roeback, Roman Jamili, Jeff Noogle
Date: 3/6/2014

The purpose of this lab is to:
Learn about series-parallel circuits
The voltage applied to 2 resistors ($4.7 \mathrm{k} \Omega$ in Series) and Andy's Black Box is 9 V . Andy's black box is wired in series between the 2 resistors. Within Andy's Black Box is 3 common resistors wired in Parallel, all of which are equal value.
Step 1: Determine the value of the resistors within the box if the voltage drop that the box created is approx. 1.3 volts.
Step 2: If the first $4.7 \mathrm{k} \Omega$ resistor (R1) were to be replaced with a variable resistor (VR1), what value would it be set to if Andy's Black Box were to drop exactly 1.3 volts within this circuit?

Step 1

Step 2

Equipment needed:
1 - Digital Multimeter
1 - Elvis II
3 - Standard Resistors
1-5k Ω Potentiometer

	Calculated	Simulated
$\mathrm{V} 1=$	9	9
R1 $=$	4.7k Ω	4.7kת
$\mathrm{R} 2=$	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$
R3 =	$4.7 \mathrm{k} \Omega$	4.7k
R4 =	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$
R5 =	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$
$\mathrm{VD}=$	1.286	1.286

	Calculated	Simulated	Measured
$\mathrm{V} 1=$	9	9	9.008
VR1 =	$4.579 \mathrm{k} \Omega$	$4.579 \mathrm{k} \Omega$	$4.615 \mathrm{k} \Omega$
R2 =	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	$4.619 \mathrm{k} \Omega$
R3 $=$	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	$4.584 \mathrm{k} \Omega$
$\mathrm{R4}=$	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	$4.729 \mathrm{k} \Omega$
R5 =	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	$4.585 \mathrm{k} \Omega$
$\mathrm{VD}=$	1.3	1.3	1.3

Observations: Step 1 Performed Calculation and Simulation only. Step 2 Lab work done at Station 4. Jeff and Roman worked on Simulated while I tackled the Calculated.

Black Box Calculator

Supplied Power		9	volts	Calculate which 3 equal (standard) value resistors provides $\sim 1.3 \mathrm{v}$ drop in circuit supplied by 9 v with a $4.7 \mathrm{k} \Omega$ resistor wired in series on both sides of it.
R1	$4.700 \mathrm{E}+3$	3.85	volts	
Rbb R1,R2,R3 All in Parallel	$1.587 \mathrm{E}+3$	1.3	volts	
R5	$4.700 \mathrm{E}+3$	3.85	volts	
RT	$10.987 \mathrm{E}+3$			

Using 3 Parallel Rbb(Rev.1)	$4.7 \mathrm{E}+3$	$1.567 \mathrm{E}+3$

Lab Notebook Series/Parallel Resistors

Michael Roeback EECT111-01C

March 6, 2014
Professor Andy Bell

Lab 9 - Series/Parallel Resistors

Names: Mike Roeback

Date: $\underline{3 / 06 / 2014}$

The purpose of this lab is to:
Experiment with series circuits and verify that the simulation, analysis (calculations) and test results all agree.

From the resistor kit select 8 resistors: 2 each 470Ω, 2 each $1 \mathrm{k} \Omega$, and 1 each of the following:
$2.2 \mathrm{k} \Omega, 3.3 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$

Measure and record the value of each resistor. Connect the resistors as shown in Figure 1. Measure and record the total resistance, RT. Then connect the resistors as shown in Figure 2, the 9V come from the Elvis II (Modular Engineering Educational Laboratory Platform). Then measure and record with the Digital Multimeter the current and voltages of the series circuit.

Equipment needed:

1 - Digital Multimeter
1 - Elvis II
8 - Resistors

	Expected	Measured
R1 =	470Ω	
$\mathrm{R} 2=$	470Ω	
R3 =	$1 \mathrm{k} \Omega$	
R4 =	$1 \mathrm{k} \Omega$	
R5 =	$2.2 \mathrm{k} \Omega$	
R6 =	$3.3 \mathrm{k} \Omega$	
R7 =	$4.7 \mathrm{k} \Omega$	
R8 =	$10 \mathrm{k} \Omega$	

Expected = value you expect it to be
Measured = using Digital Multimeter

Figure 1
Series/Parallel Circuit

R34 $=$	Calculated	Simulated	Measured
	500	500	
	$1.031 \mathrm{E}+3$	$1.031 \mathrm{E}+3$	
R567 =	$11.531 \mathrm{E}+3$	$11.531 \mathrm{E}+3$	
R345678 =	451.593E+0	$451.593 \mathrm{E}+0$	
$\mathrm{R} 2345678=$	921.593E+0	$921.593 \mathrm{E}+0$	

Calculated = using Excel calculations
Simulated $=$ Multisim simulation
Measured = using Digital Multimeter

	Calculated	Simulated	Measured
	$9.0 \mathrm{E}+0$	9	
	$9.766 \mathrm{E}-3$	$9.77 \mathrm{E}-03$	
=	$4.41 \mathrm{E}+0$	4.41	
	$4.22 \mathrm{E}+0$	4.22	
$\mathrm{VC}=$	$3.82 \mathrm{E}+0$	3.83	

Adjust R2 so that the VA voltage is equal to 4.5 V . Then measure the value of the new R 2 and calculate and simulate a value that would produce the 4.5 V .

$\mathrm{VA}=$	Measured	Simulated	alculated
		$4.50 \mathrm{E}+0$	4.5
$\mathrm{R} 2=$		489.972E+0	489.972

Calculated = using Excel calculations
Simulated = Multisim simulation
Measured = using Digital Multimeter

Observations: All Resistances are in ohms, Voltages and DC an current is amperes. Due to time constrains this lab was changed to Calculation and Simulation only by Professor Bell.

Resistor	Calculated			Combos	Calculated Ω	Simulated Ω
R1 =	470	Ω		R34 =	500	500
R2 =	470	Ω		R567 =	$1.031 \mathrm{E}+3$	$1.031 \mathrm{E}+3$
R3 =	$1.0 \mathrm{E}+3$	Ω		R345678 =	$11.531 \mathrm{E}+3$	$11.531 \mathrm{E}+3$
R4 =	$1.0 \mathrm{E}+3$	Ω		R2345678 =	$451.593 \mathrm{E}+0$	$451.593 \mathrm{E}+0$
R5 =	$2.2 \mathrm{E}+3$	Ω		RT $=$	$921.593 \mathrm{E}+0$	$921.593 \mathrm{E}+0$
R6 =	$3.3 \mathrm{E}+3$	Ω		$1345678=$	$382.472 \mathrm{E}-6$	$382.0 \mathrm{E}-6$
R7 =	$4.7 \mathrm{E}+3$	Ω				
R8 =	$10.0 \mathrm{E}+3$	Ω				
	Calculated	Simulated				
V1=	$9.0 \mathrm{E}+0$	9	VDC	VA Adjusted to 4.5V	Calculated	Simulated
IT=	$9.766 \mathrm{E}-3$	9.77E-03	Amps	VA $=$	$4.50 \mathrm{E}+0$	4.5
$\mathrm{VA}=$	$4.41 \mathrm{E}+0$	4.41	VDC	R2=	$489.972 \mathrm{E}+0$	489.972
$\mathrm{VB}=$	$4.22 \mathrm{E}+0$	4.22	VDC	(R2*R345678)/		
$\mathrm{VC}=$	$3.82 \mathrm{E}+0$	3.83	VDC	$(\mathrm{R} 2+\mathrm{R} 345678)=$	$470 \mathrm{E}+0$	

R345678

Voltages \& Currents
正

R \bar{T}

Lab Notebook Series/Parallel Capacitors

Michael Roeback

 EECT111-01CApril 10, 2014
Professor Andy Bell

Lab 10 - Series/Parallel Capacitors

Names: Michael Roeback, Janice Pemberton, Shane Miller
Date: $4 / 10 / 2014$

The purpose of this lab is to:
Experiment with series circuits and parallel combinations of capacitors.

The following capacitors are needed (1 each of the following): 10uF, 22 uF and 47 uF

Measure and record the capacitance of each capacitor using the LCR meter. Connect the capacitors as shown in Figure 1 and measure and record the total capacitance, CT. Then connect the capacitors as shown in Figure 2 and measure and record the total capacitance, CT.

Equipment needed:

1 - LCR Meter
1 - Elvis II
3 - capacitors

	Expected	Measured
C1 =	$10 \mu \mathrm{~F}$	$8.18 \mu \mathrm{~F}$
$\mathrm{C} 2=$	$22 \mu \mathrm{~F}$	$17.84 \mu \mathrm{~F}$
C3 $=$	$47 \mu \mathrm{~F}$	$33.46 \mu \mathrm{~F}$
$\mathrm{CT}=$	$6 \mu \mathrm{~F}$	$5 \mu \mathrm{~F}$

Expected = value you expect it to be Measured = using LCR Meter

Figure 1 Series Circuit

	Expected	Measured
$\mathrm{C} 1=$	$10 \mu \mathrm{~F}$	$8.18 \mu \mathrm{~F}$
$\mathrm{C} 2=$	$22 \mu \mathrm{~F}$	$17.84 \mu \mathrm{~F}$
C3 =	$47 \mu \mathrm{~F}$	$33.46 \mu \mathrm{~F}$
$C T=$	$79 \mu \mathrm{~F}$	$59.24 \mu \mathrm{~F}$

Expected = value you expect it to be
Measured = using LCR Meter
Observations: LCR (Bench 6), SPD=Slow, Dis=Value, Mode=C/D, Circuit=Para (except for CT in series), Lf
to Neg. Record of Hundredths Resolution
Series Circuit

Parallel Circuit

Lab Notebook RC Circuit

Michael Roeback

EECT111-01C

April 24, 2014

Professor Andy Bell

Lab 11 - RC Lab

Names: Jon Wyatt, Mike Roeback, Janice Pemberton, Jimmie Risner

Date: 4/24/2014

The purpose of this lab is to:
Experiment with RC (Resistor \& Capacitor) circuits.

The following capacitors are needed (1 each of the following): $0.47 \mathrm{uF}, 1 \mathrm{uF}$ and 2.2 uF

Measure and record the resistor value using the DMM and measure and record the capacitor values using the LCR meter in Table 1. Connect the resistor and capacitor as shown in Figure 1. Connect the Function Generator to the input at V1 and connect Channel 1 of the Oscilloscope to the input and Channel 2 to the output. Adjust the voltage of the Function Generator to 1Vpp at the frequencies shown in Table 2. Measure the input and output voltages using the Oscilloscope. Record the results in Table 2. Change the capacitor and retest.

Equipment needed:

1 - Digital Multimeter
1 - LCR Meter
1 - Oscilloscope
1 - Function Generator
1 - Elvis II
3 - capacitors
1 - resistor

Figure 1
RC Circuit

	Capacitance or Resistance	
	Expected	Measured
$\mathrm{C} 1=$. $47 \mu \mathrm{~F}$. $464 \mu \mathrm{~F}$
$\mathrm{C} 2=$	$1 \mu \mathrm{~F}$. $915 \mu \mathrm{~F}$
$\mathrm{C} 3=$	$2.2 \mu \mathrm{~F}$	$2.1 \mu \mathrm{~F}$
R1 =	1k $\mu \mathrm{F}$	1.001k

Table 1 - Resistance and Capacitances
Expected = value you expect it to be
Measured = using LCR Meter or DMM

Frequency	Output Voltage $\mathrm{C}=$$.47 \mu \mathrm{~F}$			Output Voltage C =$1 \mu \mathrm{~F}$			Output Voltage $\mathrm{C}=$$2.2 \mu \mathrm{~F}$$\qquad$		
	Expected Output Voltage	Measured		Expected Output Voltage	Measured		Expected Output Voltage	Measured	
		Input Voltage	Output Voltage		Input Voltage	Output Voltage		Input Voltage	Output Voltage
10	1	1	1	. 998	1	1	. 991	1	1
50	. 989	1	1	. 954	1	. 940	. 823	1	. 820
100	. 959	1	. 98	. 847	1	. 840	. 586	1	. 600
200	. 861	1	. 88	. 623	1	. 620	. 340	1	. 380
300	. 749	1	. 76	. 469	1	. 480	. 234	1	. 260
400	. 646	1	. 660	. 370	1	. 400	. 178	1	. 220
500	. 561	1	. 580	. 303	1	. 340	. 143	1	. 180
600	. 492	1	. 520	. 256	1	. 300	. 120	1	. 160
700	. 436	1	. 460	. 222	1	. 260	. 103	1	. 160
800	. 390	1	. 420	. 195	1	. 240	. 090	1	. 140
900	. 352	1	. 380	. 174	1	. 220	. 080	1	. 140
1,000	. 321	1	. 360	. 157	1	. 200	. 072	1	. 140
2,000	. 167	1	. 200	. 079	1	. 140	. 036	1	. 120
3,000	. 112	1	. 160	. 053	1	. 100	. 024	1	. 056
4,000	. 084	1	. 104	. 039	1	. 056	. 018	1	. 048
5,000	. 068	1	. 088	. 032	1	. 048	. 015	1	. 048
6,000	. 056	1	. 080	. 027	1	. 040	. 012	1	. 040
7,000	. 048	1	. 072	. 023	1	. 032	. 010	1	. 032
8,000	. 042	1	. 064	. 020	1	. 032	. 009	1	. 032
9,000	. 038	1	. 064	. 018	1	. 032	. 008	1	. 032
10,000	. 034	1	. 056	. 016	1	. 032	. 007	1	. 032

RC Frequency Response
Expected = value you expect it to be
Measured = Using Oscilloscope

Observations: Our first run of measurements were a failure due to a bad 10x switch on the probe measuring the Vout. After a second measuring session our numbers proved compatible with the calculated results. We could have gotten higher resolution if we had continuously adjusted the amplitude for Vout signal on the scope. Bench 6 was used on the first test but results were scrapped. Bench 5 LCR was used for Capacitor measurements, Bench 8 scope was used with bench 5 Elvis for second and final test run.

Lab Notebook Series/Parallel Inductors

Michael Roeback
EECT111-01C

April 24, 2014
Professor Andy Bell

Lab 11 - Series/Parallel Inductors

Names: Mike Roeback

Date: 4/24/2014

The purpose of this lab is to:
Experiment with series circuits and parallel combinations of inductors.

The following inductors are needed (1 each of the following): $1 \mathrm{mH}, 2.2 \mathrm{mH}$ and 4.7 mH

Measure and record the inductance of each inductor using the LCR meter. Connect the inductors as shown in Figure 1 and measure and record the total inductance, LT. Then connect the inductors as shown in Figure 2 and measure and record the total inductance, LT.

Equipment needed:

1 - LCR Meter
1 - Elvis II
3 - Inductors

	Expected	Measured
L1 =	1 mH	
L2 =	2.2 mH	
L3 =	4.7 mH	
LT =	7.8 mH	

Expected = value you expect it to be Measured = using LCR Meter

Figure 1 Series Circuit

	Expected	Measured
L1 =	1 mH	
L2 =	2.2 mH	
L3 =	4.7 mH	
LT =	$599.768 \mu \mathrm{H}$	

Expected = value you expect it to be Measured = using LCR Meter

Figure 2
Parallel Circuit
\qquad

Calculated

Inductor	Henrys
L1	$1.0 \mathrm{E}-3$
L2	$2.2 \mathrm{E}-3$
L3	$4.7 \mathrm{E}-3$
LTSeries	$7.9 \mathrm{E}-3$
LTParallel	$599.768 \mathrm{E}-6$

[^0]: Lab Equipment Used: GwInstek GGM-8245, SN cl860334, cal date 111412

