Digital Fundamental's Lab Notebook

MICHAEL ROEBACK

FALL 2014

EECT112

IVYTECH NORTHEAST

Lab 1: AND / OR Gates

Objective: Design, Simulate, and Build an AND/OR Gate circuit that will light 2 LEDs (one off of the AND Gate, the other off of the OR Gate).

Equipment used @ Station # 7

- NI Elvis II Breadboard: Serial # 1677D3B
- GW INSTEK GDM-8245 DiMM : Serial # CL860237

Parts Used:

- 74LS08P AND Gate, 74LS32P OR Gate, 8 Pin Dipswitch,
- Various Wires, and 2 10K Resistors (later changed to 1K).

Personal Used: (Team Big Boys)

- David Rogers
- Michael Roeback

Date Assigned: September 12, 2014

Date Completed: September 12, 2014

Lab 1: Multisim 13 Simulation

Lab 1: Pre-Building Specifications

		Input V Open	<u>Output V Open</u>	Output V Closed
Power Source 5V(DC):	4.96V			
Resistor 1 (10KΩ):	9.694KΩ	1.14V		
Resistor 2 (10KΩ):	9.735KΩ	1.13V		
Resistor 1 (1KΩ):	0.977KΩ	0.32V	0.05V	3.30V
Resistor 2 (1KΩ):	0.982KΩ	0.32V	0.15V	3.24V

*We ended up having to use 1K resistors due to the Input Voltages on the 10K resistors not falling below 0.8V to signal "low".

Lab 1: Chip Diagrams

Lab 1: Circuit Built on Elvis II: A = 0, B = 0

Lab 1: Circuit Built on Elvis II: A = 1, B = 0

Lab 1: Circuit Built on Elvis II: A = 0, B = 1

Lab 1: Circuit Built on Elvis II: A = 1, B = 1

Both LEDs for AND Gate and OR Gate lit.

Lab 1: AND / OR Gates

Conclusion: Thought the circuits worked fine in simulation, We ended up having to use 1K resistors in place of the 10k resistors due to the Input Voltages not falling below 0.8V to signal "low". This problem was identified during our early stages of testing the circuits in the laboratory.

Additional Notes: Future circuit builds will consist of 10k resistors in simulation and laboratory prototypes. These will be installed on the power side of circuit and switches will be wired directly to ground as voltage pull downs. This should eliminate the issue we experienced while using the 10k resistors as terminators and the switches for power.

Lab 2: Alternative Gate System:

Objective:

Revise a logic system that contains three separate chips (including 74LS04D Hex Inverter chip, 74LS32D OR Gate chip, and 74LS08D AND Gate chip), into a similar logic system using less chips to save power, space and cost.

Team members assigned with task:

- David Rogers
- Mike Roeback

Date Assigned: September 26, 2014

Date Completed: October 3, 2014

Lab 2: Calculations, Using Logic to Build Logic

By using the knowledge that:

- Inverting the inputs and outputs of an OR Gate gives it the same function as a NAND Gate and,
- Connecting the inputs of a NAND Gate together gives it the same function as an Inversion Gate

We can convert the existing logic from (A'+B')(C'+D') to ((A'+B')(C'+D'))'' which equates to an equivalent Gate.

Ready for simulation

Lab 2: Multisim Circuit:

Lab 2: Simulation Testing

Both, the original and new equivalent, circuits were built in Multisim.

Testing within the simulation environment proved the calculations were correct.

Ready for laboratory prototype build and testing.

Materials used:

- NI Elvis II Breadboard (SN: 1677D3B).
- 4 10KΩ Resistors
- 1 AND Gate (74LS08D), 1 NAND Gate (74LS00D), 1 OR Gate (74LS32D), 1 Inverter Gate (74LS04D), 1 8 Pin Dipswitch.
- DMM GW Instek GDM 8245 (SN: L860237).
- Various Wires

Pre – Building Specifications:

Post Build High/Low Measurements*:

		Switch , Label			"High" with LED	"Low" with LED
Power Source 5V(DC):	4.97V		Circuit 1 =	Not OR/AND Gates	3.23 V	.13 V
Resistor 1 (10KΩ):	9.770KΩ	1,"A"	Circuit 2 =	NAND Gate	3.27 V	.13 V
Resistor 2 (10KO):	9 75380	2 "B"			"High" w/o LED	
	5.755822	З, В			TIIGH W/ULLD	
Resistor 3 ($10K\Omega$):	9.746KΩ	5, "C"	Circuit 1 =	Not OR/AND Gates	4.41 V	.13 V

*As shown with the resulting output voltages, the new NAND Gate equivalent circuit is more efficient.

Measurements with LED's.

A,C = 1. Both LED's lit. (All other "High" and "Low" combos rounded to same).

Measurements w/o LED's

<u>Circuit 1</u>

"High"

"Low"

<u>Circuit 2</u>

"High"

"Low"

<u>Circuit 1</u>

Circuit 2

Conclusion:

Throughout this lab, it has been demonstrated how universal NAND Gates are. The ability of using only one chip saves space, energy and money.

Additional Observations:

We did notice that the "high" output voltages were significantly lower with the LED's attached (3.27V & 3.23V), compared to not having the LED's attached (4.45V & 4.41V). We believe this was caused by a voltage drop across the LED's.

Lab 3: Midterm Exam Problem 13 Part A

Objective:

To the right is a diagram for an automobile alarm circuit used to detect certain undesirable conditions. The three switches are used to indicate the status of the door by the driver's seat (D), the ignition (I), and the headlights (L).

Design the logic circuit with these three switches as inputs so that the alarm will be activated whenever either of the following conditions exists. Start with a truth table, find the Boolean equation, simplify, then prove using Multisim.

- i. The headlights are on while the ignition is off.
- ii. The door is open while the ignition is on.

Personal Used:

• Michael Roeback

Date Assigned: October 17, 2014

Date Completed: October 17, 2014

Lab 3: Truth Table & Boolean Calculations

Midterm_Lab_Truth_Table				
D=A	I=B	L=C	AL=X	Products
D	I	L	AL	
0	0	0	0	
0	0	1	1	D'I'L
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	DI'L
1	1	0	1	DIL'
1	1	1	1	DIL

Factoring the Sum of the Products		
(D'I'L)+(DI'L)+(DIL')+(DIL)		
I'L(D'+D)+DI(L'+L)		
I'L(1)+DI(1)		
AL=(I'L)+(DI) or (B'C)+(AB)=X		

Lab 3: Simulation Build (Multisim)

Lab 3: Midterm Exam Problem 13 Part B

Finally, build the circuit in the lab using the NI Elvis Protoboard and demonstrate compliance with your truth table and Multisim results. Take pictures for your digital portfolio. <u>Turn in</u> <u>with this exam</u> (1) a printout of your Multisim circuit, (2) a truth table hand drawn or from Excel, and (3) your final Boolean expression used for Multisim.

Lab 3: Midterm Assignment:

Materials used:

- NI Elvis II Breadboard (SN: 1677D1).
- 4 10KΩ Resistors
- 1 AND Gate (74LS08D), 1 NAND Gate (74LS00D), 1 OR Gate (74LS32D), 1 Inverter Gate (74LS04D), 1 8 Pin Dipswitch.
- DMM GW Instek GDM 8245 (SN: CL860332).
- Various Wires

Lab 3: Midterm Assignment

Pre - Build Specifications				Switch Labol
Power Sou	urce (5V) =	4.96	VDC	Switch, Laber
Resistor 1	(10kΩ) =	9.86	kΩ	1,A
Resistor 2	(10kΩ) =	9.76	kΩ	4,B
Resistor 3	(10kΩ) =	9.77	kΩ	8,C
Post - Build Output (VDC)				
Low=	0.163	High w/LED=	3.23	
		High w/o LED=	4.36	

Lab 3: Gates Functioning Correctly

Lab 3: Midterm Assignment Completion:

Conclusion:

Given the input parameters and expected outputs, a system of gates can be designed and configured to set a warning alarm off when necessary. Circuit worked correctly in all alarm modes.

Lab 4: Binary Counter

Objective:

- 1. Convert 4-bit D-Flip Flop binary counter to single package BCD counter.
- 2. Update Multisim to use TTL chips available in lab for BCD counter and 7-Segment Decoder/Driver.
- 3. Use NI Elvis II+ to build 4-bit binary counter with hex 7-segment display

Equipment: used @ Station # 5

- NI Elvis II Breadboard: Serial # 1677D1E
- GW INSTEK GDM-8245 DiMM : Serial # CL860332
- Tektronix Oscilloscope TDS-220

Personal Used: (Team Big Boys)

- David Rogers
- Michael Roeback

Date Assigned: October 31, 2014

Date Completed: November 7, 2014

Lab 4: 4-bit D-Flip Flop Binary Counter

Lab 4: Convert 4-bit D-Flip Flop Binary Counter to Single Package BCD Counter.

Edit Model

23

Observation:

Lab 4: Completed MultiSim Circuit

Lab 4: Pin Outs for NI Elvis II+ Build

Lab 4: NI Elvis II+ Build Operational

LabVIEW	931.322	6 mHz
Waveform Settings		
Frequency	Amplitude	DC Offset
\sim	0.0 10.0	-5.0 5.0
200m 1M	4.80 🐑 Vpp	0.00 🖶 V
	Iz 50 🚔 %	None
Sweep Settings		
1 Hz 1k	ency Step Hz 100 🖨 H	z 1000 🚔 ms
Instrument Control	er de la composition	
Dev1 (NI ELVIS II+)	Prototyping board	•
Manual Mada	Run Sweep	Stop Help
Manual Mode		

Lab 4: Operational Picture and Video

Lab 4: Semi-Successful

Conclusion:

- Bench top Oscilloscope was used to confirm the Elvis Function Generator was working correctly due to doubts caused by malfunctioning IC chips.
- After a couple of the components (74LS48D IC Chips and Display) were swapped out due to failures, the counter worked but the display was intermittently accurate.

Lab 5: Basic Stamp Experiment #1, Exercise #2

Objective:

• LED Blinking Circuit, from Industrial Control Student Workbook Version 1.1. The circuit has a single input button and a single output LED. Write a program for when the pushbutton is pressed, blink the LED five times over 10 seconds then stop and wait for another press of the pushbutton.

Equipment: used @ Station # 6

- Basic Stamp 2.0 Board
- GW INSTEK GDM-8245 DiMM : Serial # CL860260

Personal Used: (Team Big Boys)

- David Rogers
- Michael Roeback

Date Assigned: November 14, 2014

Date Completed: November 14, 2014

Lab 5: Flow Chart and Code Entry

Lab 5: Schematics and Setup

Parts Used:

(1) LED, green
(2) 220-ohm resistors
(1) 10K-ohm resistor
(1) Pushbutton
(1) 10K-ohm multi-turn potentiometer
(1) 1 uF capacitor
(Miscellaneous) jumper wires

Lab 5: Completed Build

Lab 5: Operational Basic Stamp Board

Observations:

- After building the board and burning the EPROM, it failed to show any signals of operation.
- Borrowed a working board from another test group and burned our teams program on it to find the program was written and the setup used was working correctly.
- Troubleshot several boards and marked bad ones.
- Acquired a working Basic Stamp 2.0 board.
- Swapped out 220 ohm resistors for 100 ohm to brighten LEDs.

Conclusion:

- Setup burns correctly.
- Objective was met with 100% success.

Lab 6: Basic Stamp Experiment #1, Exercise #3

Objective:

Analog Data Input, from Industrial Control Student Workbook Version 1.1. Write a program to simulate process control of a Heater Control using an RC network with a capacitor and potentiometer. Temperature is monitored and a heater is energized below 100 degrees and de-energized above 120 degrees. The potentiometer will represent a temperature sensor and the LED will represent the heater being energized. Will use the Debug window to display our temperature and status of the heater.

Equipment: used @ Station # ?

- Basic Stamp 2.0 Board
- GW INSTEK GDM-8245 DiMM : Serial # ?

Personal Used: (Team Big Boys)

- David Rogers
- Michael Roeback

Date Assigned: November 14, 2014

Date Completed: November 14, 2014

Lab 6: Flow Chart and Code Entry

' {\$STAMP BS2} 'Progam 1.2, Simple Heater

LED1 VAR OUT4 RC CON 7 Temp VAR Word

OUTPUT 4 LED1 = 1

Main: GOSUB ReadTemp GOSUB CheckTemp PAUSE 250 GOTC Main

Temp = Temp/30

'Pot is on variable to hold results 'Setup LED as Ouptput

'Energize initially

'RC network is on Pin 7

'LED1 is on P4

'Read Pot value as temperature 'check temp to setpoint

'Read Pot

'Scale the results down, 'store as temperature

DEBUG "Temp = ", DEC Temp, CR

RETURN CheckTemp:

ReadTemp

HIGH RC PAUSE 10 RCTIME RC, 1, TEMP

'If Temp > 100, or heat already on, 'check if should be off IF (Temp > 100) OR (LED1 = 1) THEN CheckOff LED1 = 1'If not, then energize and display DEBUG "The Heater energized", CR

```
CheckOff:
```

'If Temp < 120 or heat is off already, all done IF (Temp < 120) OR (LED1 = 0) THEN CheckDone LED1 = 0DEBUG "The Heater de-energized", CR CheckDone: RETURN

Lab 6: Schematics and Setup

Parts Used:

(1) LED, green
(2) 220-ohm resistors
(1) 10K-ohm resistor
(1) Pushbutton
(1) 10K-ohm multi-turn potentiometer
(1) 1 uF capacitor
(Miscellaneous) jumper wires

(1) 1 uF capacitor

(1) 1 uF capacitor
(1) 1 uF capacitor
(1) 1 uF capacitor
(1) 1 uF capacitor

Lab 6: Completed Build

Lab 6: Operation Monitoring Through Debugging Screen.

Debug Terminal	Debug Terminal
Com Port: Baud Rate: Parity: Data Bits: Flow Control: TX DTR RTS COM1 9600 Image: None 8 Image: Off Image: RX DSR CTS	Com Port: Baud Rate: Parity: Data Bits: Flow Control: TX DTR RTS COM1 9600 ▼ None 8 ▼ 0ff ● RX DSR CTS
Temp = 119	Temp = 103
Temp = 119 Temp = 120 The Heater de-energized	Temp = 100 The Heater energized Temp = 100
Macros Resume Clear Close Echo Off	Macros Resume Clear Close ⊏ Echo Off

Lab 6: Thermostat Completion

Observations:

- Due to the difficulty locating a 10k ohm Potentiometer a 1k ohm was used in its place. Unfortunately, it wasn't capable of the necessary range needed to fully actuate the circuit.
- After scavenging a 10k ohm Potentiometer off of an existing built basic stamp board, the thermostat reacted with 100% accuracy.
- Swapped out 220 ohm resistors for 100 ohm to brighten LEDs.

Conclusion:

• Heater energizes below 100 degrees and de-energized above 120 degrees. Debugging screen confirm successful operation of circuitry.