Black Belt Six Sigma Project Summary

Name of project:	Fuel Economy and Miles per Gallon Metric Testing
Submitted by:	Mike Roeback, Brad Manes, and Tina Fowler
e-mail address:	Mike.Roeback@navistar.com, Brad.Manes@navistar.com,
Tina_Fowler@ho	tmail.com, gpz750turbo@yahoo.com, bdmfarmer@yahoo.com
Date submitted:	<u>12 / 12 / 2011</u>

I. Project Selection Process

Item	Yes	No	Comments
Key business issue	Х		Accurately calculate Fuel Usage per MPG for Fuel Economy Testing
Linked to a define process	Х		Type 2 FE Testing
Customers identified	Х		Navistar Management and Industry Standards
Defects clearly defined	Х		34.78% Waste
Estimated cost savings	Х		Approx. 90k per year

This project was selected because of the high cost of waste associated with it.

II. Project Overview and Summary

Thought we didn't meet our 90% process capability improvement, we managed to improve it 63.7%, which moved our P&D Fuel Economy testing process from a Cp of 0.65 to 1.02. We got a huge gain but there is still plenty of room for more improvement.

III. Approvals

	Name	Signature	Date
Project Leader	Mike Roeback		10/15/2011
Champion	Navistar Management and Proving Grounds		10/15/2011
Process Owner	Tina Fowler		10/15/2011
Engineer	Brad Manes		10/22/2011

Black Belt Project Charter

	Project Title	
	Floject Inte	
Date Charted	Target Completion Date	Actual Completion Date
9/22/2011	December 12, 2011	Actual Completion Date
Project Leader	Team Facilitator	Team Champion
Mike Roeback	Tina Fowler	Proving Ground and Navistar
		Management
Estimated Cost Savings	Actual Cost Savings	Costs of implementing project
90K per yr.	Unknown as of yet.	\$4,650
Participating Green Belts		
Brad Manes		
Tina Fowler		
Mike Roeback		
Other Team Mambara		
Other Team Members		
Valerie Bratten		
Decklass Of a famous (
Problem Statement		
How can Navistar Fuel Econo	my team accurately calculate f	tuel usage to improve Fuel
Economy Testing?		
Project Goal, Objective, a	nd Metrics	
3 cycles ran within 2% of eac	ch other will be accepted as ou	r true Fuel Economy.
	-	-
Describe the output ("Y") a	and the scope	
Accurately calculate Fuel Usa	•	for improved Fuel Economy
(FE) testing.	Se (mines i er Sanon (mil O) i	in improved i dei Leonomy
(i L) usung.		
Departing the process that	will be investigated	
Describe the process that	win be investigated	
True true la		
Two trucks,		
One Control truck, known as '	· · · · · ·	· · · · · · · · · · · · · · · · · · ·
One test truck, known as "B"	(will be modified throughout t	he test)
Inspect both trucks		
Tire size, type and tread depth		
Instrument both truck for EDA		
	-	

Run trucks together (15 seconds apart +/- 5 seconds), swap lead & follow vehicle half way through a test cycle.

Fuel meters are installed in line between the stock truck fuel tank & the engine. The data from the fuel meter will be recorded by the EDAQ system.

Two types of test to perform

P & D (pick-up & delivery) to simulate city driving 6 segments per fuel fill cycle Steady State to simulate highway driving 150 miles (approx.) per fill cycle

Every cycle, miles ran will be divided by gallons of fuel used to determine our MPG. Majority of cycles ran (must compare within 2% of each other, truck to truck) will be accepted as our true MPG.

Describe the challenges and support required

See Attached Financial Argument.

Project Schedule

D1. Select the output characteristic.

Date:10/15/11

Criteria:

Is there a measurable output? Yes. The output can be measured by calculating the Miles Per Gallon between two trucks.

Is there a performance standard for the output? 2% Does variation currently exist? Yes Is there a process associated with the problem? Yes Is the solution unknown? Yes

D2. Define the output performance standard.

Date:10/15/11

Valid T/C ratios must fit within a 2% band. The 2% band means that the lowest T/C ratio cannot be more than 2% below the highest.

D3. Describe the process. Required tools: Detailed process map, FMEA Date:10/22/11

To provide a standardized procedure for comparing in-service fuel consumption of two conditions of a test vehicle. The test results for this procedure is the percent difference in fuel consumption between the Test Vehicle and the Baseline Vehicle or the difference in fuel consumption of one Test Vehicle in two different test conditions.

Uncontrolled variables that affect fuel consumption act on both the test and control

vehicles in such a way that any influence on T/C ratio is effectively cancelled.

T/C Ratio — A T/C ratio is the ratio of the quantity of fuel consumed (data point) by the test vehicle to the quantity of fuel consumed (data point) by the control vehicle during one test run.

All vehicles perform consistently enough that a population of data will produce just one valid segment (of three T/C ratios within a 2% band).

Baseline Segment — A baseline segment is the average of a minimum of three valid T/C ratios. A baseline segment establishes baseline fuel consumption of test vehicles or the first of two vehicles to be tested.

Test Run — A test run is a complete circuit of the test route. A test run always starts and ends at a common point. This may be accomplished by using either a closed loop of highways or a single highway with one-half of the test run outbound, a turn-around point, and one-half of the test inbound, or a test track should this be used. Each vehicle test run generates one data point.

Leg – A portion of a test run that is used to represent a group of commonly repeated elements or route descriptions, that can be repeated once or several times to incorporate an entire test run.

Test Segment — A group of test runs that are performed with vehicles in a specified configuration. A test segment is also the average of a minimum of three valid T/C ratios. A test segment establishes the fuel consumption of the test vehicle after modification or the fuel consumption of the second of two vehicles tested. A valid test segment must be compared to a valid baseline segment.

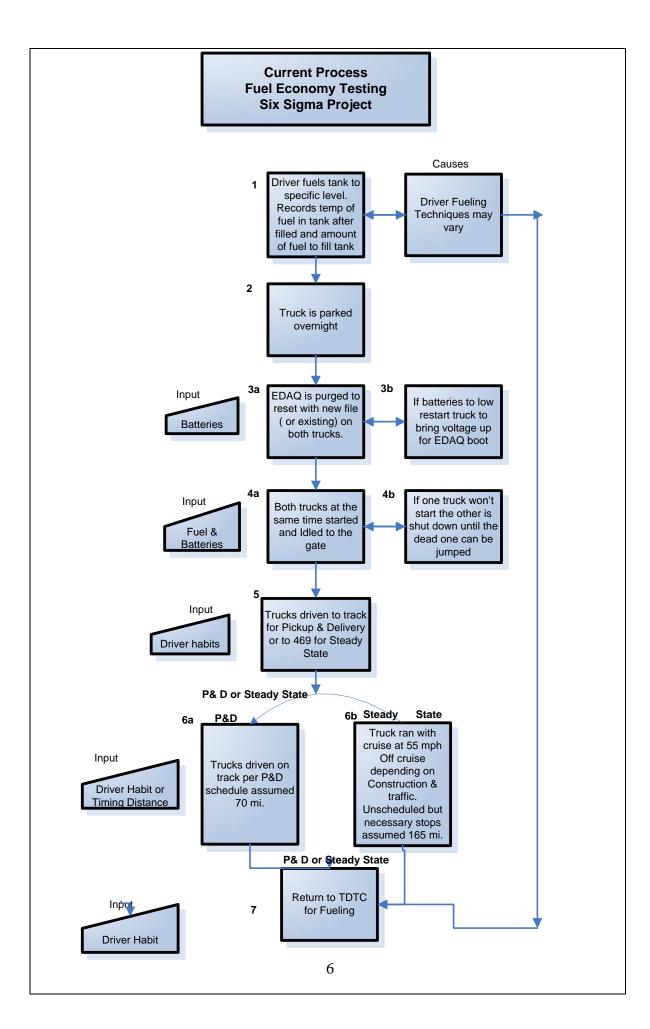
Two trucks,

One Control truck, known as "A or C" (will stay the same throughout the test) One Test truck, known as "B or T" (will be modified throughout the test)

Inspect both trucks Tire size, type and tread depth Instrument both truck for EDAQ

Run trucks together (15 seconds apart +/- 5 seconds), swap lead & follow vehicle half way through a test cycle.

Fuel meters are installed inline between the stock truck fuel tank & the engine. The data from the fuel meter will be recorded by the EDAQ system. Tank fill information will also be tracked as a secondary means of measurement.


Trucks will run a cycle then be brought back to a designated filling area after cycle is completed. At that point, trucks will be filled using the Steve Stick method, recording volume used, and fuel temp after fill and miles ran.

Pre & Post fill templates will be used to calculate density of fuel, therefore, adjusting our

filled fuel measurement

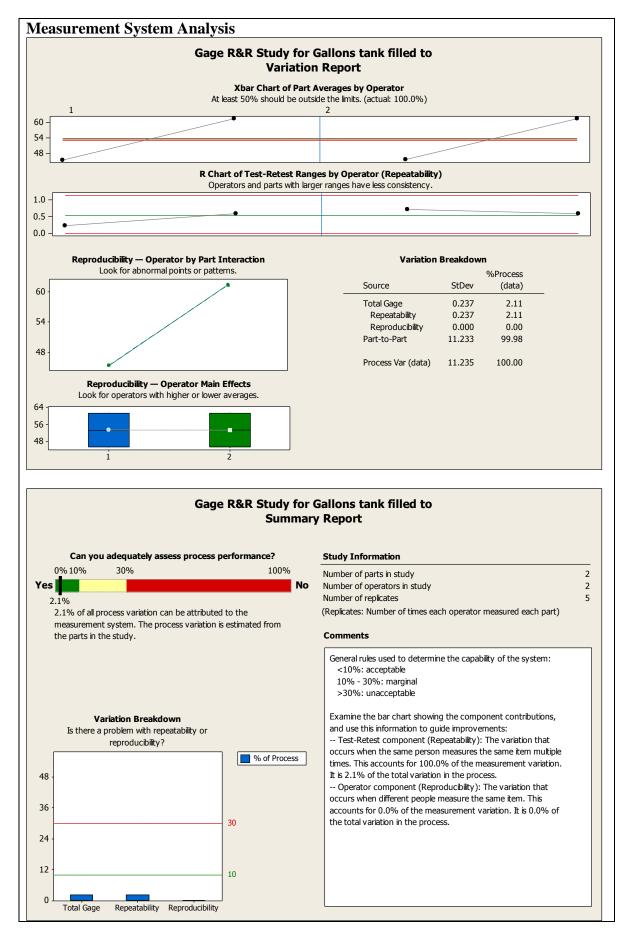
Two types of test to perform P & D (pick-up & delivery) to simulate city driving 6 legs per fuel fill cycle Steady State to simulate highway driving 150 miles (approx.) per fill cycle

Miles ran will be divided by gallons of fuel used to determine our MPG every cycle.

M1. Validate the measuring system.	Date:
Required tools: Gage R&R/Attribute Agreement Analysis	

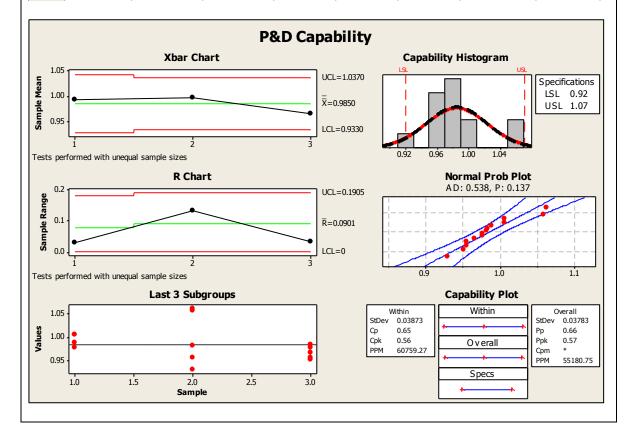
First Problem Found!

First fuel meter was only accurate within 1.5% sucking up 75% of our 2% total customer spec.

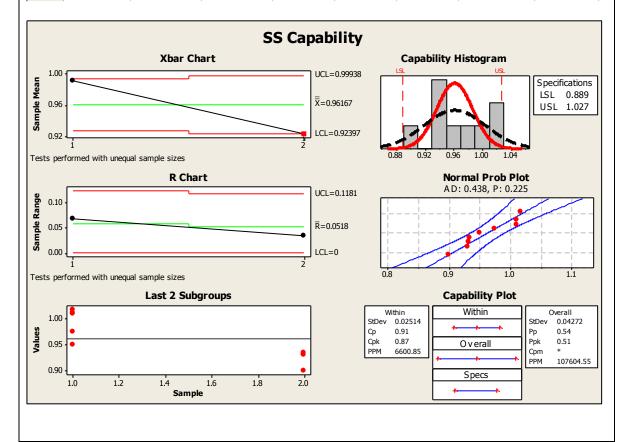

The second meter is better @ .6% accuracy but still consuming 33.3% of our total spec. Fuel meters are determined <u>Not Capable</u>!

Plan "B" -the alternate fuel measuring system

Fill both trucks at pumps using Steve Stick Method & record results after re-measuring in a controlled environment.


Both Drivers Filling Both Trucks

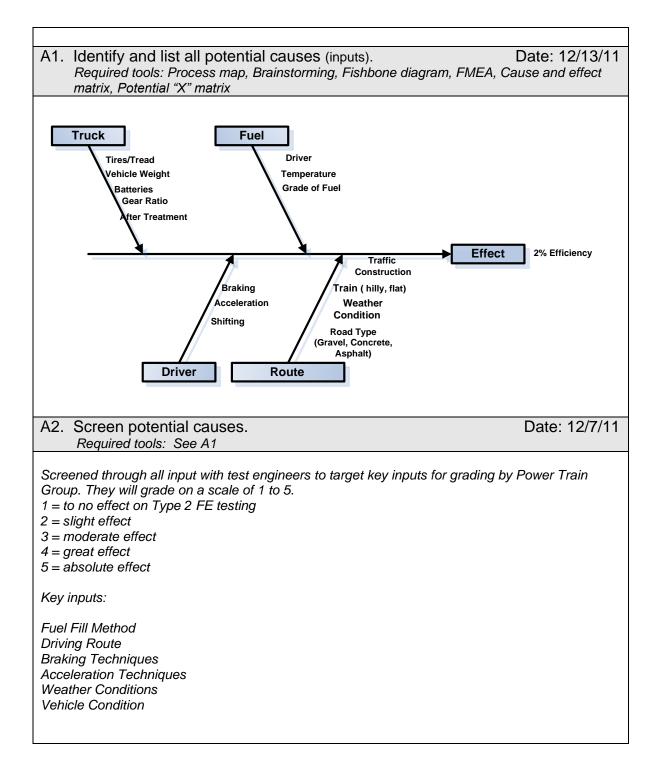
÷	C1	C2-T	C3	C4	C5	C6	C7
	Driver	Truck	MM tank filled from top	Gallons tank filled to	Difference from ideal	A∨g. fuel used per run	error per fill
1	1	A	76	45.50	0.00	7.833	0.00%
2	1	A	77	45.38	-0.12	7.833	-1.53%
3	1	A	77	45.38	-0.12	7.833	-1.53%
4	1	A	75	45.62	0.12	7.833	1.53%
5	1	A	76	45.50	0.00	7.833	0.00%
6	2	A	77	45.38	-0.12	7.833	-1.53%
7	2	A	74	45.74	0.24	7.833	3.06%
8	2	A	74	45.74	0.24	7.833	3.06%
9	2	A	73	45.86	0.36	7.883	4.57%
10	2	A	79	45.14	-0.36	7.833	-4.60%
11	1	В	78	61.08	-0.30	7.711	-3.89%
12	1	В	74	61.68	0.30	7.711	3.89%
13	1	В	77	61.23	-0.15	7.711	-1.95%
14	1	В	75	61.53	0.15	7.711	1.95%
15	1	В	74	61.68	0.30	7.711	3.89%
16	2	В	78	61.08	-0.30	7.711	-3.89%
17	2	В	76	61.38	0.00	7.711	0.00%
18	2	В	77	61.23	-0.15	7.711	-1.95%
19	2	В	75	61.53	0.15	7.711	1.95%
20	2	В	74	61.68	0.30	7.711	3.89%
_	1						



Fueling Gage R&R Passed

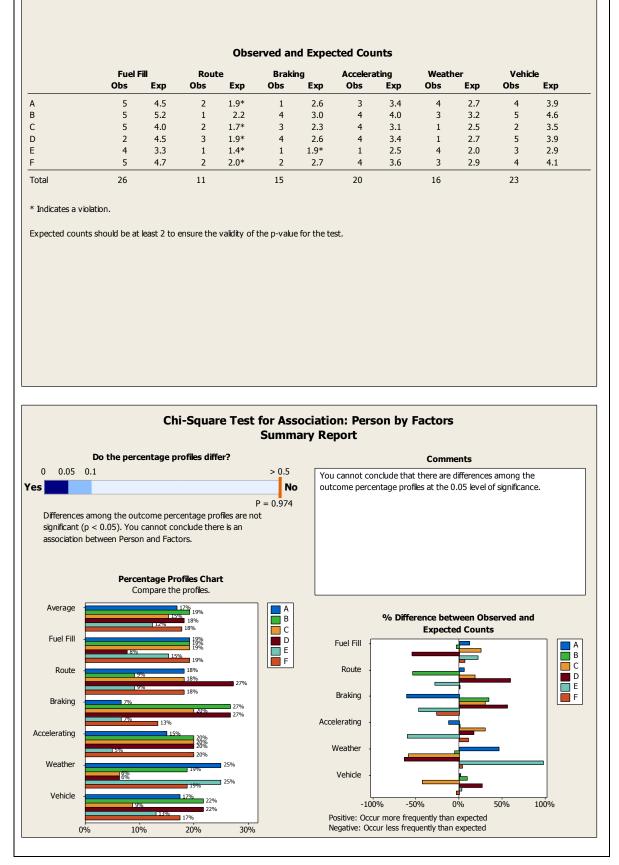
ſ	M2. Establish current process capability for the output. Date: Required tools: Capability six pack, Control charts								
		Required to	ols: Capabi	lity six pack,	Control ch	arts			
									C9 1
	Ŧ	C1-T	C2	C3	C4	C5	C6	C7-T	C8 ••
		Test Type	Fuel Fill A	Fuel Fill B	Mileage	MPG A	MPG B	Calibration	T/C Ratio
	1	P&D	7.979	7.888	70	8.773	8.874	Baseline	0.98860
	2	P&D	7.931	7.971	70	8.826	8.782	Baseline	1.00504
	3	P&D	8.982	8.767	70	7.793	7.984	Baseline	0.97606
	4	P&D	6.644	6.684	70	10.536	10.473	Baseline	1.00602
	5	P&D	8.169	8.022	70	8.569	8.726	Cal 1	0.98201
	6	P&D	8.230	8.736	70	8.505	8.013	Cal 1	1.06148
	7	P&D	6.940	7.337	70	10.086	9.541	Cal 1	1.05720
	8	P&D	8.152	7.574	70	8.587	9.242	Cal 1	0.92910
	9	P&D	8.037	7.672	70	8.710	9.124	Cal 1	0.95459
	10	P&D	7.890	7.754	70	8.872	9.028	Cal 2	0.98276
	11	P&D	8.065	7.872	70	8.679	8.892	Cal 2	0.97607
	12	P&D	7.159	6.910	70	9.778	10.130	Cal 2	0.96522
	13	P&D	7.875	7.525	70	8.889	9.302	Cal 2	0.95556
	14	P&D	7.614	7.236	70	9.194	9.674	Cal 2	0.95035

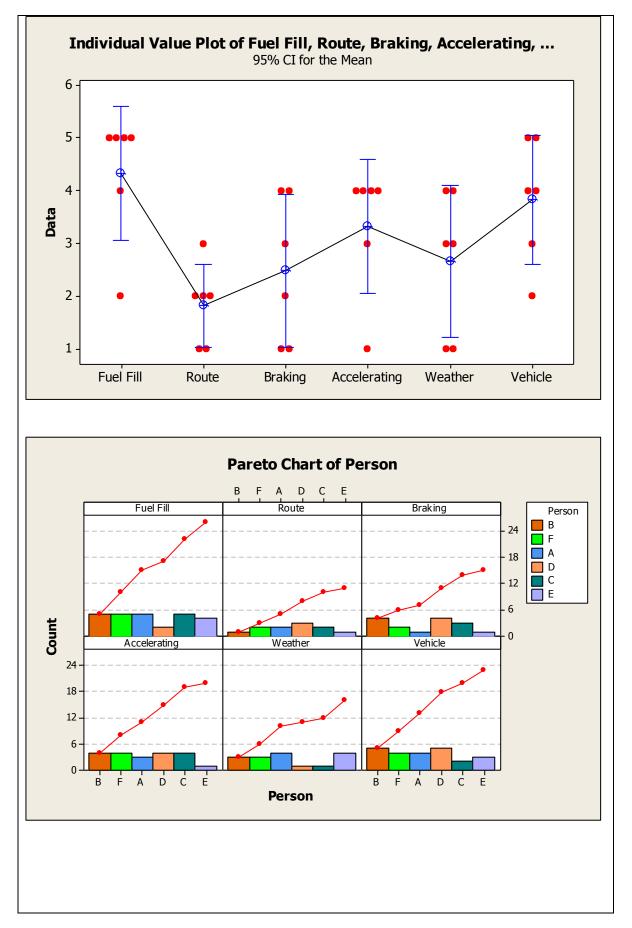
Ŧ	C1-T	C2	C3	C4	C5	C6	C7-T	C8
	Test Type	Fuel Fill A	Fuel Fill B	Mileage	MPG A	MPG B	Calibration	T/C Ratio
1	SS	17.912	18.094	165	9.212	9.119	Cal 1	1.01016
2	SS	19.178	18.689	165	8.604	8.829	Cal 1	0.97450
3	SS	19.143	18.186	165	8.619	9.073	Cal 1	0.95001
4	SS	17.783	18.084	165	9.279	9.124	Cal 1	1.01693
5	SS	17.966	18.135	165	9.184	9.098	Cal 1	1.00941
6	SS	19.442	17.482	165	8.487	9.438	Cal 2	0.89919
7	SS	17.700	16.467	165	9.322	10.020	Cal 2	0.93034
8	SS	18.017	16.824	165	9.158	9.807	Cal 2	0.93378
9	SS	17.532	16.318	165	9.411	10.112	Cal 2	0.93076


M3. Determine project objectives.

Date:

Our Current Cp for Steady State FE test process is 0.91 which is much better than the Cp of our Pick-up & Delivery FE test process of 0.65. We will be concentrating on the P&D portion of our FE test since it's the less capable of the two.


The goal is a 90% increase in capability for an improved Cp of 1.235.

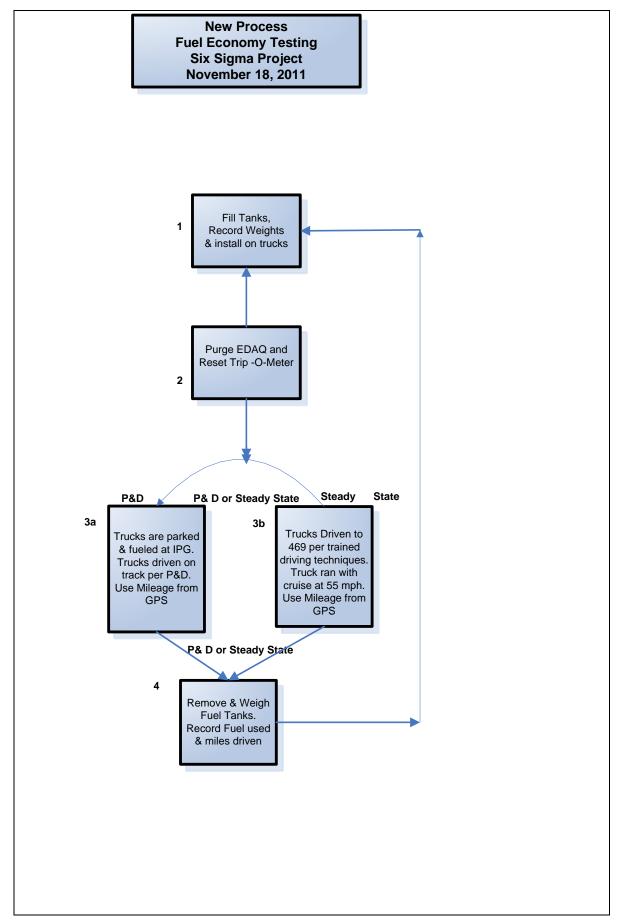

Once we have improved our Cp we can look at shifting the process closer to the Upper or Lower Spec Limit to increase our Cpk.

					Key Inp				L.		
	to their	on Typ	e II	Fue	el Econo	omy T	estin	g ***	۲		
			-								
				<u> </u>							
					GRAD	ECA	RD				
				No	Slight	Effect	Mode	rate	Grad	de Effect	Absolute
	Key Inp	outs		Effe			Effe			Effect	Effect
				1	2		3			4	5
Fue	I Fill Metho	d									
Driv	ing Route										
	kingTechni	dues									
	elerationTe										
					_						
	ather cond	1							_		
Veh	icle Condi	tion									
\ 3.	Determin	e the f(x)	— k	ey inp	ut variable(s)					e: 12/12/1
	Required t	ools: Hypo	thes	sis tesi	ting, Correla	ation, k	legressi	on, De	esign	of experin	nents
	Chi-Sour	are test to	ar	nalysi	s the data	olle	cted.				
Ran	On Oque								-		
	•			~~	~		~ =	~			
Ran +	C1-T	C2		C3	C4 Broking		C5 arating	Ce	-	C7	
t	C1-T Person	C2 Fuel Fill		oute	Braking		erating		ther	Vehicle	
+ 1	C1-T Person A	C2 Fuel Fill 5		oute 2	Braking 1		<mark>erating</mark> 3		ther 4	Vehicle 4	_
↓ 1 2	C1-T Person	C2 Fuel Fill 5 5		oute 2 1	Braking 1 4		erating		ther	Vehicle 4 5	-
+ 1	C1-T Person A B	C2 Fuel Fill 5		oute 2	Braking 1		erating 3 4		ther 4 3	Vehicle 4	-
↓ 1 2 3	C1-T Person A B C	C2 Fuel Fill 5 5		oute 2 1 2	Braking 1 4 3		erating 3 4 4		ther 4 3 1	Vehicle 4 5 2	-

Chi-Square Test for Association: Person by Factors Diagnostic Report

I-1. Establish operating tolerances for key inputs and the output. Date: 12/13/11

After examining the grade cards we found that Fuel Fill Technique seemed to be the input with the greatest effect on a FE test failure.

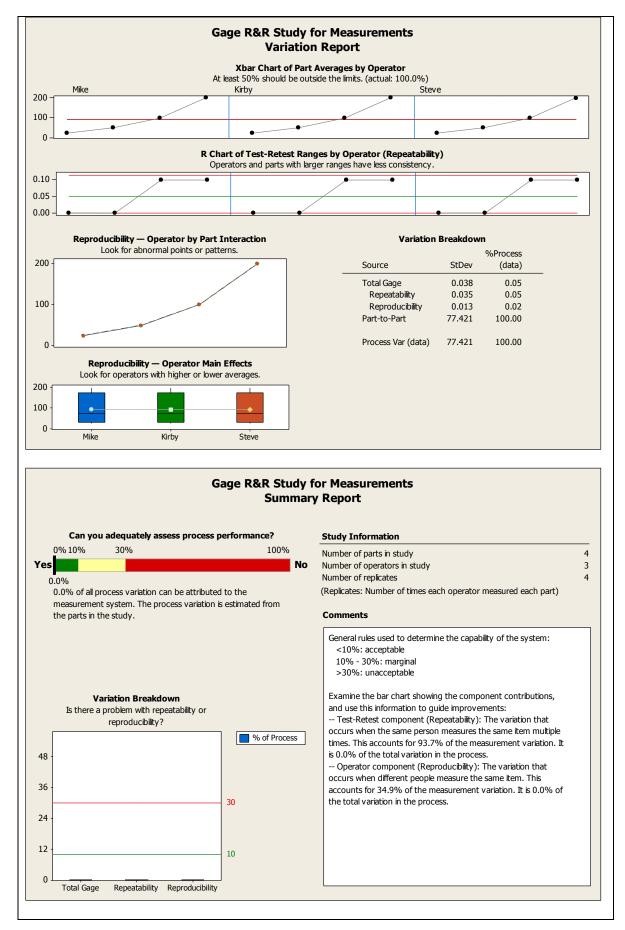

Fuel weight tanks will be used in place of the OEM fuel tanks, Eliminating the Steve Stick & the variation associated with it.

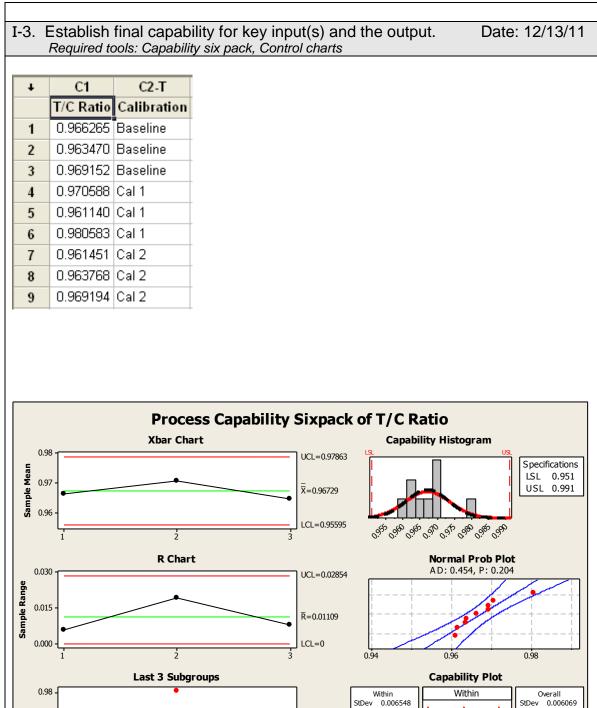
The trucks will be filled & left at the track for P&D testing to eliminate the variance associated with the trip to & from TDTC.

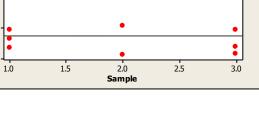
Braking & Acceleration points will be set up on the track to remove a majority of the variation out of the driver's techniques.

Both Vehicles will be serviced & have new batteries installed to make their individual fuel economies more consistent.

In addition to these changes, extra controls will be put into place for the Steady State & P&D Test.




I-2. Re-evaluate the measuring system.


Date: 12/13/11

Required tools:	Gade	R&R/Attrib	ite Aaree	ment Analysis	

Run				Run			
Order	Operators	Parts	Measurements	Order	Operators	Parts	Measurements
1	Mike	200	200.1	25	Mike	100	100.1
2	Mike	50	50	26	Mike	200	200.1
3	Mike	100	100.1	27	Mike	50	50
4	Mike	25	25	28	Mike	25	25
5	Kirby	25	25	29	Kirby	25	25
6	Kirby	100	100	30	Kirby	100	100.1
7	Kirby	200	200.1	31	Kirby	50	50
8	Kirby	50	50	32	Kirby	200	200.1
9	Steve	100	100.1	33	Steve	25	25
10	Steve	25	25	34	Steve	100	100
11	Steve	200	200.1	35	Steve	200	200
12	Steve	50	50	36	Steve	50	50
13	Mike	50	50	37	Mike	200	200.1
14	Mike	25	25	38	Mike	25	25
15	Mike	200	200	39	Mike	100	100
16	Mike	100	100.1	40	Mike	50	50
17	Kirby	50	50	41	Kirby	50	50
18	Kirby	200	200.1	42	Kirby	200	200
19	Kirby	25	25	43	Kirby	25	25
20	Kirby	100	100	44	Kirby	100	100
21	Steve	200	200	45	Steve	50	50
22	Steve	50	50	46	Steve	100	100.1
23	Steve	100	100.1	47	Steve	25	25
24	Steve	25	25	48	Steve	200	200

Final Cp 1.02

Values

0.96

Ср

Cpk

PPM

1.02

0.83

6574.41

Рр

Ppk

Cpm

PPM

O v erall

Specs

1.10

0.89

3680.32

C1. Implement process controls for the key inputs. Required tool: Error proofing	Date:12/13/11
<i>List controls including error proofing. Utilize highest level of control possible. 0, 1, 2, or 3.</i>	Categorize controls
DriversDriving Habits (Insert controls (Training)) WOT Till- 5 mph of posted speed limits Coast & Braking same Distance Cruise set for same time (Steady State SS Only) Synchronized Lane changes Level 1 control	
Drivers/ Engineer (Use satellite mileage) Miles are set according to course or route. Too much variation on track when other test is being ratified (using different lanes which vary in length per lap) Unscheduled but necessary stops on SS route add mile Both Speedometers have been Calibrated! Level 2 control)
Truck Maintenance (installed new Batteries) Old methods= Bad Batteries Alternators would have to recharge batteries after truck on length of time the truck sat. Extra hp needed = more New method= Test to be ran with both trucks running the same access out the entire FE test Level 1 & 2 control	fuel
Follow-up to ensure effectiveness.	Date:
No wasted runs as of yet but we've only had 9 runs.	

Note: Describe justification(s) for omitting any of the above steps, or required tools.