Name Tanner Gibson orate \qquad

Score \qquad instructor (Mr. Bell)

The following questions should be should be answered in three ways: calculation using your calculator, simulation using MultiSim and test using Elvis II.

1. Find the following:
find IT, RT and VA via analysis (show all work.)

RT $=$ \qquad
IT. \qquad

$y=$ \qquad

Find IT, RT and VA via simulation (printout simulation schematic and outputs)

Find IT, RT and VA via test (diagram your test setup and measure RT, IT and VA).
$R T=9.4 \mathrm{KN}$
$1 T=959.23 \cup A$
$V A=4.5 \mathrm{~V}$
2. Find the following:

Find IT, RT and VA via analysis (show all work.)

S?: \qquad
li:- \qquad
VA = \qquad

Find IT, RT and VA via simulation (printout simulation schematic and outputs)

Find IT, RT and VA via test (diagram your test setup and measure RT, IT and VA).
$R T=7 \mathrm{~K} \Omega$
$I T=1.286 \mathrm{~mA}$
$V A=2.571 \mathrm{~V}$
3. Find the following:

Find IT, RT and VA via analysis (show all work.)
$R T=$ \qquad

Find IT, RT and VA via simulation (printout simulation schematic and outputs)

Find IT, RT and VA via test (diagram your test setup and measure RT, IT and VA).
$R 1=0.397 \mathrm{k} \Omega$
$\mathrm{n}=1.409 \mathrm{~mA}$
$V A=4.502 \mathrm{~V}$
4. Find the following:

Find IT, RT and VA via analysis (show all work.)
$R T=$ \qquad

Find $I 1, I 2, I T, R T$ and VA via simulation (printout simulation schematic and outputs)

Find IT, RT and VA via test (diagram your test setup and measure RT, IT and VA).
$R T=2.778 \mathrm{k} \Omega$
$\mathrm{IT}=3.24 \mathrm{~mA}$
$11=2.672 \mathrm{~mA}$
$12=\frac{568.434}{5.34} \mathrm{uA}$
$V A=5.343 \mathrm{~V}$
5. Find the following:

Find $R_{T H}, V_{T H}$ and RL for maximum power transfer via analysis (show all work.) Create a plot in Exce! for the power transfer.
$R_{T H}=10 \Omega$
$V_{T H}=4.5 \mathrm{~V}$
$R \mathrm{~L}=10 \Omega$
$V A=4.091 \mathrm{~V}$

Find $R_{T H}, V_{T H}$ and RL for maximum power transfer via simulation (printout simulation schematic and outputs).

