

METC 111
Spring 2014
Jeff Noggle Cody Kieler Adam Beauchot
Phil Bush Aaron Sprunger

Original Earth Design and Dimensions to Lift A 5 ton Military Truck

Platform and Cable Dimensions

190.7117 inches 298.7825 inches

Cable Angle from platform= 50.33511° This spreadsheet has been designed to calculate the forces in cables when lifting a M939 5 ton military vehicle that has been driven onto a platform that can be lifted by a 25^{\prime} cable that splits into 4 individual cables that attach at each corner of the platform. The platform is assumed to be the L*W of the vehicle, plus 20% of the H in all directions. The single supporting cable makes its split into 4 cables at 200% of H above the platform.

Force per Cable=

Mars Cable Calculations

Cable design with consideration for usage on Mars.

1.) Convert the 5 tons to kg for easier conversion. 5 Tons * $.38=1.9$ Tons.

\mid OBJECT	ACCELERATION DUE TO GRAVITY	GRAVITY
Earth	$9.8 \mathrm{~m} / \mathrm{s}^{2}$ or $32 \mathrm{ft} / \mathrm{s}^{2}$	1 G
the Moon	$1.6 \mathrm{~m} / \mathrm{s}^{2}$ or $5.3 \mathrm{ft} / \mathrm{s}^{2}$.16 G
Mars	$3.7 \mathrm{~m} / \mathrm{s}^{2}$ or $12.2 \mathrm{ft} / \mathrm{s}^{2}$.38 G
Venus	$9.5 \mathrm{~m} / \mathrm{s}^{2}$ or $31 \mathrm{ft} / \mathrm{s}^{2}$.88 G
Jupiter	$24.5 \mathrm{~m} / \mathrm{s}^{2}$ or $80 \mathrm{ft} / \mathrm{s}^{2}$	2.54
the Sun	$275 \mathrm{~m} / \mathrm{s}^{2}$ or $896 \mathrm{ft} / \mathrm{s}^{2}$	28 G

$\alpha=$	$23.0 \mathrm{E}-6$	$\Delta \mathrm{~L}=\alpha^{*} \mathrm{~L} * \Delta \mathrm{~T}$	Orignal Length	300.53 in	$-13 / 4$
Orignal Temp	$68^{\circ} \mathrm{F}$				

3.) Based on the cold temperature, the aluminum will shrink $13 / 4$ inches, in order to maintain the angles indicated, this shrinkage needed to be taken into account, so the aluminum cable needs to be cut at a length of 300.53 inches at $68^{\circ} \mathrm{F}$.

Why not a steel cable?

Steels with ferritic or martensitic structures show a sudden change from ductile (safe) to brittle (unsafe) fracture over a small temperature difference. Even the best of these steels show this behavior at temperatures higher than -100 deg C and in many cases only just below zero

This produces a graph of impact toughness for the material as a function of temperature. An impact toughness versus temperature graph for a steel is shown in the image. It can be seen that at low temperatures the material is more brittle and impact toughness is low. At high temperatures the material is more ductile and impact toughness is higher. The transition temperature is the boundary between brittle and ductile behavior and this temperature is often an extremely important consideration in the selection of a material.

The cable size on Mars is $1 / 16$ in. with Aluminum

	$E=\sigma / \varepsilon$			For Al
AI $=$	10,000,000	PSI	CSA =	1.2E-3
Vehicle weight =	1	ton	Cable size $=$	1/16
Vehicle weight =	1,200	lbs		
Given =	25	ft		
Maximum Allowed elongation $=$	10\%			
max final length =	27.5	ft		
no plastic deformation				
all materials cost the same				
ignore cost of material				
ignore weight of structure				
Assumptions	10\%			
Allowed Strain $=$	0.10			

* 1.) Aluminum was selected as the cable material because of its stability in the extremely cold $\left({ }^{*}-195^{\circ} \mathrm{F}\right)$ conditions present on Mars because of its Face Centered Cubic crystalline structure.

Conclusion

- With a truck that weighs 5 tons on Earth it will only weigh 1.9 tons on Mars.
- Aluminum is the ideal metal for use the aerospace industry.
- Overall an $1 / 16$ cable would do the job to carry a 2 ton truck on Mars.

Cable Design

