A Basic Introduction of How to EECT Guide

Jeff Noggle Spring 2014

Instructor Andy Bell

Table of Contents

- Combine multiple resistors in series and parallel.
- By example calculate RT, IT, PT, and all the nodal voltages, branch currents and power dissipation of a resistor network
- By example calculate the Thevenin Résistance and Voltage of a resistor network.
- Multiple capacitors combine in series and parallel.
- Using a simple RC circuit determine the a. Time Constant
 - b. Create a graph that shows the RC time constant as a function of time
 - c. Determine XC at a fixed frequency
 - d. Create a graph that shows how XC changes as a function of frequency

- Multiple inductors combine in series and parallel.
- - a. Time Constant
 - b. Create a graph that shows the RL time constant as a function of time

 - c. Determine XL at a fixed frequency d. Create a graph that shows how XL changes as a function of frequency

Combine multiple resistors in series and parallel

Combining resistors in series:

Calculating the total resistance for two or more resistors strung end to end - that is, in series - is simple: You simply add the resistance values to get the total resistance.

Resistors Simulated in Multisim

R ₁ =	4.7	Ω
R ₂ =	4.7	Ω
R _T =	4.7	Ω

CombiningResistors inParallelReciprocal
rule

When Resistors are connected in parallel, the total total resistance (Rt) is equal to: 1/Rt=1/R1+1/R2+1/R3+...... Note: Due to this reciprocal relationship, the total resistance is always smaller than any individual resistance:

Rtotal=1/(1/2.2k Ω +1/4.7 Ω +1/3.3 Ω)=1.0 31k Ω

Calculated by excel

R ₁ =	2.20E+03
R ₂ =	4.70E+03
R ₃ =	3.30E+03
R _T =	1.03E+03

Product over the sum Method

Multisim Simultaion

Calculation by hand an Excel

R1	4.70E+03	Ω
R2	3.30E+03	Ω
R _T	1.94E+03	Ω

$$R_{T} = \frac{R_2 \times R_3}{R_2 + R_3}$$

Instructor Andy Bell

By example calculate RT, IT, PT, and all the nodal voltages, branch currents and power

Calculate RT, IT, PT, and all the nodal voltages, branch currents and power dissipation of a resistor network.

								ļ				Ļ			Ļ		ļ					ļ						ļ				ļ		Ļ				į		Ļ			ļ		
	• •	•	·	·	•••	•		·	I	: 8	88	7 u	A	ł	•	• •	·	•	• •	•	·	·	·	•••	·		• •	÷	• •			·	• •	·	•••	•	•	·	•••		•••	• •	·	• •	ł
			:	:				:		•	•	·	·	2			•	R:	3			:	:		:			-	۷:	6.	60	V	1	:				:				• •		• •	-
			:	:					• •		•	·	4	V	IN		م	À	7			•	•	• •	•	•					: :			:				:				: :	:	: :	1
	: :	:	:	:	: :	:	: :		: :		:	:	P	rot	pe3	3 7	2.	7k	Ω	1	:	:	:		:	:	1	1	: :	: :	: :	:	: :	:		: :		:		:	: :	: :		: :	1
	• •		·	·	• •	•	• •		• •	• •	÷	·	F	21	•	• •	à	i.	• •	•	÷	:	R	2	·	·	:		•	• •		VE	•	·	• •	•	•	·	• •	•	• •	• •	·	• •	1
								Ŧ				-	Ň	Ŵ	v—		*	A				ڊ_	À	7		-		۶	-	-					_										-
			•	•	• •	i i		T	, io	be	1	2	.2	k(2		Fr	οþ	e2	1	1	4.7	7k	Ω	:	:		Pro	οb	e4		:		:	:			:				: :	:	: :	1
:	V	: 9	9.O	0	۷.		· _		1	/1	:	:	: :	:	:	: :		:	: :	:	÷	:	:	: :	:	:	: :	:	:<	Ľ.	4. 4.5	76	5	:	:5	4) 76	ò		:	: :	::		: :	1
	1		1	23	mA	•	÷	•	<u>.</u> 9	1	1	·	• •	·	•		W	. 8	2	4١	1		·	• •	·	•	• •	·	:\$	Ś.	4./	Ķ,	1	·	Ś	4.	/ĸ	ņ	• •	•	• •	• •	·	• •	
				:				Т									I:	34	47	u/	Á								:						:1			:							-
	: :		:	:			: :		: :			:	: :	:									:	-	•			•	i i	Pr	obe	5	• •	•	-	Pro	be	e-		1	•	1		1	1
	: :	1	:	:	: :	:					1	:	: :	:	:	: :	:	:		:	÷	:	:	1	:				.	R	6	1	IC	:	ΞL	RI		:		2	1:				
	• •		·	·	• •	•	• •	÷	• •	• •	·	·	• •	·	•	• •	·	•	• •	•	·	•	•	• •	·	•	• •	·	:2	-3	.3k	Ω	• •	·	5	33	k(Ω	• •	•	• •	• •	·	• •	
								÷															÷						Ś	2.					3										-
			:	:				:	: :			:	: :	:			:	:		:	:	:	:		:			:	:	:	: :	:		:				:		1		: :	:	: :	1
	: :	1	:	:	: :	:	: :	:	: :		1	:	: :	:	:	: :	:	:	: :	:	÷	:	:		•	•	• •	•	i Ì	Pŗ	obe	7	: :	:	Ť	ro	be	8		1	I: 1	112	uA	4	1
	• •	•	·	·	• •	•	• •	·	• •	• •	·	·	• •	·	•	• •	·	•	• •	•	·	·	·	· V	: 0	D V				•	• •	·	• •	·	•	• •	•	·	• •	1		• •	÷		
																								1	: 1	. 1	2 n	nA	F						. =										
	: :		:	:			: :	:	: :		2	:	: :	:			:	:	: :	:	:	:	:		:			:	: :		: :	:		:		: :		:		:		: :	:	: :	1

/in =	9							
R1 =	2.2E+3							
R2 =	4.7E+3							
3 =	2.7E+3							
R4 =	4.7E+3							
R5 =	4.7E+3							
R6 =	3.3E+3							
RL =	33.0E+3							
R12 =	6.9E+3							
R123 =	1.9E+3	R12=R ²	1+R2					
R45 =	2.4E+3	R123=((R3*R12)/	(R3+R				
RL6 =	3.0E+3	12)						
RL456 =	5.4E+3	R45=R4	4/2					
RT =	7.3E+3	RL6=(R	(6^RL)/(R(-₽⊿5+₽L6	o+RL)				
T =	1.2E-3	RT=R12	23+RI 456					
/B =	6.60	IT=Vin	/RT			PR1 =	265.2E-6	
/C =	3.70	VB=RL4	456*IT			PR2 =	566.6 <mark>E-6</mark>	
Probe5 =	617.2E-6	VC=RL	6*BIT			PR3 =	2.1E-3	$ \rangle$
Probe6 =	617.2E-6	IProbe	5=(VB-VC))/R4		PR4 =	1.8E-3	
Probe3 =	887.3E-6	IProbe	0=(VB-VC) 3=(VIN-VB)/R3		PR5 =	1.8E-3	
Probe2 =	347.2E-6	IProbe	2=IT-IPRO	BE3		PR6 =	4.2E-3	
Probe7 =	1.1E-3	IProbe	7=VC/R6			PRL =	415.6E-6	
Probe8 =	112.2E-6	IProbe	8=VC/RL			PT=	11.110E-3	
/A =	8.24	VA=B1·	-(R1*IPRO	BE2)	/	PT check =	11.110E-3	

PR1=Iprobe^2*R1 PR2=IPROBE2^2*R2 PR3=IPROBE3^2*R3 PR4=IPROBE5^2*R4 PR5=IPROBE6^2*R5 PR6=(VC^2)/R6 PRL=(VC^2)/R7 PT=Vin*IT PT check=SUM(ALL PROBES)

EECT 111

Instructor Andy Bell

By example calculate the Thevenin Resistance and Voltage of a resistor network

By example calculate the Thevenin Resistance and Voltage of a resistor network.

Thevenin's theory is used to simplify complex networks so the calculations of voltage across any two given points in a circuit.

R1= 10.0E+3 Ω R2= 10.0E+3 Ω R3= 10.0E+3 Ω 10.0E+3 Ω R4= R5= 10.0E+3 Ω R6= 10.0E+3 Ω Step 2 R1= 10.0E+3 Ω R2= 10.0E+3 Ω R34= 5.0E+3 Ω R5= 10.0E+3 Ω R6= 10.0E+3 Ω Step 3 R1= 10.0E+3 Ω R2= 10.0E+3 Ω R3456= 25.0E+3 Ω Step 4 R1= 10.0E+3 Ω R23456= 7.1E+3 Ω Step 5 R123456= 17.1E+3 Ω

Step 1

Multiple capacitors combine in series and parallel

Multiple capacitors combined in parallel

C ₁ =	10.0E-6
C ₂ =	22.0E-6
C ₃ =	47.0E-6
C _t =	79.0E-6

Calculating capacitance for capacitors in parallels is very simple, it is actually the same as calculating resistors in parallel. This is done by adding the capacitors.

Ctotal=C1+C2+C3.....

Multiple capacitors combined Series

- For series capacitors:
 - Sum of the reciprocals

- For two series capacitors:
 - Product-over-the-sun

	C1=	10	.0E-9	F
	C1=	10	.0E-9	F
/	Ct=	5	.0E-9	F

10nF

C2 :

:10nF

1.0kΩ

Capacitance Reactance Multisim verification of Series and Parallel

Series		Parallel
1/((abs(imag(V(vout1)/I(I	R1))))*2*pi*1000)	1/((abs(imag(V(vout2)/I(R2))))*2*pi*1000)
R1	Vout1	R2 Vout2
	C1	1kΩ
1 Vpk	— 10μF V2	(⁺) +10μF +22μF +47μF
· · · · · · · · · · · · · · · · · · ·	22µF	· + · · · + · · · + · · · + · · · · + ·
· · · · · · · · · · · · · · · · · · ·	C3	
	<u></u>	

Capacitor Single Frequency AC Analysis @ 1000 Hz

	AC Frequency Analysis	Real	Imaginary
1	1/((abs(imag(V(vout1)/I(R1))))*2*pi*100 0)	5.99768 u	0.00000
2	1/((abs(imag(V(vout2)/I(R2))))*2*pi*100 0)	79.00000 u	0.00000

Using a simple RC circuit determine the

- a. Time Constant
- b. Create a graph that shows the RC time constant as a function of time
- c. Determine XC at a fixed frequency
- d. Create a graph that shows how XC changes as a function of frequency

C=		47.0E-6	Farands
Freq	Хс		
1	0	338.63	
2	0	169.31	
3	0	112.88	
4	0	84.66	
5	0	67.73	
6	0	56.44	
7	0	48.38	
8	0	42.33	
9	0	37.63	
10	0	33.86	
20	0	16.93	
30	0	11.29	
40	0	8.47	
50	0	6.77	
60	0	5.64	
70	0	4.84	
80	0	4.23	
90	0	3.76	
100	0	3.39	

EECT 111

Instructor Andy Bell

16

Time Constant chart

Multiple inductors combine in series and parallel

Parallel Inductor Combinations

Multisim Simulations

Excel verification

L1=	1.00E-04 H
L2=	2.20E-04 H
L3=	4.70E-04 H
Lt=	6.00E-05 H

Formula for Parallel inductors Reciprocal method

For two inductors by cross product method

Instructor Andy Bell

19

Inductors in Series Combination

Excel calculation

L ₁ =	100.0E-6 H
L ₂ =	220.0E-6 H
L ₃ =	470.0E-6 H
L _T =	790.0E-6 H

Calculation of series Inductors

- All the inductance values add together to calculate total Inductance
- $L_T = L_1 + L_2 + L_3....etc$
- Example (Fig. 1-1)
- LT = 100μH + 220 μH + 470 μH
- Lτ = 790 μH

Inductance

Inductors In parallel and Series calculation verification Series Parallel

R5 \sim -~~~ 1Ω 1Ω R2 R3 ٧2 **L1** 21Ω 100µH 1Ω V1 1 Vpk 1kHz 1 Vpk 0° . . . L2 \sim)1kHz 220µH -⁄ 0° : L4 L5 L6 100µH 470µH 220µH L3 470µH abs(imag((V(vout1)/I(R1))/(2*pi*1000) 23

imag((V(vout))/I(R1))/(2*pi*1000))) abs(imag((V(vout))/I(R1))/(2*pi*1000))) Grapher View File Edit View Graph Trace Cursor Legend Tools Help Image: Single Frequency AC Analysis Real Imaginary 1 abs(mag((V(vout)//I(R5)))/(2*pi*1000))) 63.29847 u

0.00000

abs(imag((V(vout1)/I(R1))/(2*pi*1000))) 790.00000 u

Using a simple RL circuit determine the

- a.) Time Constant
- b.) Create a graph that shows the RL time constant as a function of time
- c.) Determine XL at a fixed frequency
- d.) Create a graph that shows how XL changes as a function of frequency

	47.0E-6
10	0.002953097
20	0.005906194
30	0.008859291
40	0.011812388
50	0.014765485
60	0.017718583
70	0.02067168
80	0.023624777
90	0.026577874
100	0.029530971
200	0.059061942
300	0.088592913
400	0.118123884
500	0.147654855
600	0.177185826
700	0.206716797
800	0.236247768
900	0.265778738
1000	0.295309709

23