- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80- $\mu \mathrm{A}$ Max ICC
- Typical $\mathrm{t}_{\mathrm{pd}}=20 \mathrm{~ns}$
- ± 4-mA Output Drive at 5 V
- Low Input Current of $1 \mu \mathrm{~A}$ Max
- Look-Ahead Circuitry Enhances Cascaded Counters
- Fully Synchronous in Count Modes
- Parallel Asynchronous Load for Modulo-N Count Lengths
- Asynchronous Clear

description/ordering information

The 'HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.
The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high.

SN54HC193 . . . J OR W PACKAGE
SN74HC193 . . D, N, NS, OR PW PACKAGE
(TOP VIEW)

SN54HC193... FK PACKAGE

(TOP VIEW)

NC - No internal connection

ORDERING INFORMATION

$T_{\mathbf{A}}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - D	Tube	SN74HC193N	SN74HC193N
		Tube	SN74HC193D	HC193
	Tape and reel	SN74HC193DR		
	SOP - NS	Tape and reel	SN74HC193NSR	HC193
	TSSOP - PW	Tape and reel	SN74HC193PWR	HC193
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube	SNJ54HC193J	SNJ54HC193J
	CFP - W	Tube	SNJ54HC193W	SNJ54HC193W
	LCCC - FK	Tube	SNJ54HC193FK	SNJ54HC193FK

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description/ordering information (continued)

All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load ($\overline{\mathrm{LOAD}})$ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs.

A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and $\overline{\text { LOAD }}$ inputs.

These counters were designed to be cascaded without the need for external circuitry. The borrow ($\overline{\mathrm{BO}}$) output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO) output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding $\overline{\mathrm{BO}}$ and $\overline{\mathrm{CO}}$ to DOWN and UP, respectively, of the succeeding counter.
logic diagram (positive logic)

Pin numbers shown are for the D, J, N, NS, PW, and W packages.

4-BIT SYNCHRONOUS UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)
 SCLS122C - DECEMBER 1982 - REVISED DECEMBER 2002

typical clear, load, and count sequence

The following sequence is illustrated below:

1. Clear outputs to 0
2. Load (preset) to binary 13
3. Count up to 14,15 , carry, 0,1 , and 2
4. Count down to 1,0 , borrow, 15,14 , and 13

NOTES:
A. CLR overrides $\overline{\text { LOAD, data, and count inputs. }}$
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

SN54HC193, SN74HC193 4-BIT SYNCHRONOUS UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage	-0.5 V to 7 V
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right.$ or $\left.\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}\right)$ (see Note 1)	$\pm 20 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$) (see Note 1)	$\pm 20 \mathrm{~mA}$
Continuous output current, $\mathrm{I}_{\mathrm{O}}\left(\mathrm{V}_{\mathrm{O}}=0\right.$ to V_{CC})	$\pm 25 \mathrm{~mA}$
Continuous current through $\mathrm{V}_{\text {CC }}$ or GND	$\pm 50 \mathrm{~mA}$
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): D package	$73^{\circ} \mathrm{C} / \mathrm{W}$
N package	$67^{\circ} \mathrm{C} / \mathrm{W}$
NS package	$64^{\circ} \mathrm{C} / \mathrm{W}$
PW package	$108^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$5^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
esses beyond those listed under "absolute maximum ratings" may cause permane ctional operation of the device at these or any other conditions beyond those in lied. Exposure to absolute-maximum-rated conditions for extended periods may	s ratings only, and conditions" is not
ES: 1. The input and output voltage ratings may be exceeded if the input and	
2. The package thermal impedance is calculated in accordance with JES	

recommended operating conditions (see Note 3)

			SN54HC193			SN74HC193			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		2	5	6	2	5	6	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5			0.5	
VIL	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35			1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8			1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	0		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000			1000	
$\Delta t / \Delta v \ddagger$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500			500	ns
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400			400	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
\ddagger If this device is used in the threshold region (from $\mathrm{V}_{\text {IL }} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{IH}} \min =1.5 \mathrm{~V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

SN54HC193, SN74HC193

4-BIT SYNCHRONOUS UP/DOWN COUNTERS

 (DUAL CLOCK WITH CLEAR)SCLS122C - DECEMBER 1982 -REVISED DECEMBER 2002
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC193	SN74HC193	UNIT
				MIN MAX	MIN MAX	MIN MAX	
${ }^{\text {f clock }}$	Clock frequency		2 V	4.2	2.8	3.3	MHz
			4.5 V	21	14	17	
			6 V	24	16	19	
${ }^{\text {tw }}$	Pulse duration	CLR high	2 V	120	180	150	ns
			4.5 V	24	36	30	
			6 V	21	31	26	
		$\overline{\text { LOAD }}$ low	2 V	120	180	150	
			4.5 V	24	36	30	
			6 V	21	31	26	
		UP or DOWN high or low	2 V	120	180	150	
			4.5 V	24	36	30	
			6 V	21	31	26	
$\mathrm{t}_{\text {su }}$	Setup time	Data before $\overline{\text { LOAD }}$ inactive	2 V	110	165	140	ns
			4.5 V	22	33	28	
			6 V	19	28	24	
		CLR inactive before UP \uparrow or DOWN \uparrow	2 V	110	165	140	
			4.5 V	22	33	28	
			6 V	19	28	24	
		$\overline{\text { LOAD }}$ inactive before UP \uparrow or DOWN \uparrow	2 V	110	165	140	
			4.5 V	22	33	28	
			6 V	19	28	24	
$t_{\text {h }}$	Hold time	Data after $\overline{\text { LOAD }}$ inactive	2 V	5	5	5	ns
			4.5 V	5	5	5	
			6 V	5	5	5	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC193		SN74HC193		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {max }}$			2 V	4.2	8		2.8		3.3		MHz
			4.5 V	21	55		14		17		
			6 V	24	60		16		19		
$t_{\text {tpd }}$	UP	$\overline{\mathrm{CO}}$	2 V		75	165		250		205	ns
			4.5 V		24	33		50		41	
			6 V		20	28		43		35	
	DOWN	$\overline{\mathrm{BO}}$	2 V		75	165		250		205	
			4.5 V		24	33		50		41	
			6 V		20	28		43		35	
	UP or DOWN	Any Q	2 V		190	250		375		315	
			4.5 V		40	50		75		63	
			6 V		35	43		64		54	
	$\overline{\text { LOAD }}$	Any Q	2 V		190	260		390		325	
			4.5 V		40	52		78		65	
			6 V		35	44		66		55	
tPHL	CLR	Any Q	2 V		170	240		360		300	ns
			4.5 V		36	48		72		60	
			6 V		31	41		61		51	
t_{t}		Any	2 V		38	75		110		95	ns
			4.5 V		8	15		22		19	
			6 V		6	13		19		16	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	No load	50

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A). D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)
8 PINS SHOWN

PIMS	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189	0.337	0.386
	$(4,80)$	$(8,55)$	$(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM	PINS **	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products \& application solutions:

Products

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
	Video \& Imaging	www.ti.com/video	
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

