MM54HC194/MM74HC194 4-Bit Bidirectional Universal Shift Register

General Description

This 4-bit high speed bidirectional shift register utilizes advanced silicon-gate CMOS technology to achieve the low power consumption and high noise immunity of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads. This device operates at speeds similar to the equivalent low power Schottky part.
This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register. It features parallel inputs, parallel outputs, right shift and left shift serial inputs, operating mode control inputs, and a direct overriding clear line. The register has four distinct modes of operation: PARALLEL (broadside) LOAD; SHIFT RIGHT (in the direction Q_{A} toward Q_{D}); SHIFT LEFT; INHIBIT CLOCK (do nothing).
Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S 1 , high. The data are loaded into their respective flip flops and appear at the outputs after the positive transition of the CLOCK input. During loading, serial data flow is inhibited. Shift right is accomplished synchronously with the rising edge of the clock pulse when S 0 is high and S 1 is low.

Serial data for this mode is entered at the SHIFT RIGHT data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the SHIFT LEFT serial input. Clocking of the flip flops is inhibited when both mode control inputs are low. The mode control inputs should be changed only when the CLOCK input is high
The $54 \mathrm{HC} / 74 \mathrm{HC}$ logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical operating frequency: 45 MHz
- Typical propagation delay: ns (clock to Q)
- Wide operating supply voltage range: $2-6 \mathrm{~V}$

■ Low input current: $1 \mu \mathrm{~A}$ maximum
■ Low quiescent supply current: $160 \mu \mathrm{~A}$ maximum (74HC Series)

- Fanout of 10 LS-TTL loads

Connection Diagram

TL/F/5323-1

Function Table

Inputs							Outputs			
Clear	Mode	Clock	Ser	rial		Parallel				
	S1 S2		Left R	Right		A B C D	$Q_{\text {A }}$	Q ${ }_{\text {B }}$	Q_{C}	Q_{D}
L	X X	X	X	X		$\times \times \times \mathrm{X}$	L	L	L	L
H	X X	L	X	X		X X X X	$Q_{A 0}$	Q ${ }_{\text {B }}$	Q ${ }_{\text {co }}$	$Q_{\text {Do }}$
H	H H	\uparrow	X	X		a b c d	a	b	c	d
H	L H	\uparrow	X	H		$\times \times \times \times$	H	$Q_{\text {An }}$	Q_{Bn}	$Q_{C n}$
H	L H	\uparrow	X	L		X X X X	L	$Q_{\text {An }}$	Q_{Bn}	$Q_{C n}$
H	H L	\uparrow	H	X		$\times \times \times \times$	$Q_{B n}$	$Q_{C n}$	$Q_{D n}$	H
H	H L	\uparrow	L	X		$\times \times \times \times$	$Q_{B n}$	$Q_{C n}$	$Q_{D n}$	L
H	L L	X	X	X		$\times \times \times \times$	$Q_{A 0}$	$\mathrm{Q}_{\mathrm{B} 0}$	$Q_{\text {Co }}$	$Q_{\text {D0 }}$

Order Number MM54HC194 or MM74HC194
$\mathrm{H}=$ high level (steady state)
L = low level (steady state)
X $=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level
$a, b, c, d=$ the level of steady-state input at inputs A, B, C, or D, respectively
$Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D 0}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ the level of Q_{A}, Q_{B}, Q_{C}, respectively, before the most-recent \uparrow transition of the clock.

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limit	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency		50	35	MHz
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay, Clock to Q		17	24	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to Q		25	ns	
$\mathrm{t}_{\text {REM }}$	Minimum Removal Time, Reset Inactive to Clock		5	ns	
ts_{S}	Minimum Setup Time (A, B, C, D to Clock)		20	ns	
t_{S}	Minimum Setup Time Mode Controls to Clock		9	16	ns
t_{W}	Minimum Pulse Width Clock or Reset		-3	0	ns
t_{H}	Minimum Hold Time any Input		20	ns	

AC Electrical Characteristics $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise speciifed)

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Units
				Typ	Guaranteed Limits			
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \\ & 45 \\ & 50 \end{aligned}$	$\begin{gathered} 6 \\ 30 \\ 35 \end{gathered}$	$\begin{gathered} \hline 5 \\ 24 \\ 28 \end{gathered}$	$\begin{gathered} 4 \\ 20 \\ 24 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay, Clock to Q		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 70 \\ & 15 \\ & 12 \end{aligned}$	$\begin{gathered} \hline 145 \\ 29 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 183 \\ 37 \\ 31 \end{gathered}$	$\begin{gathered} 216 \\ 45 \\ 37 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {tPHL }}$	Maximum Propagation Delay, Reset to Q		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 15 \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 150 \\ 30 \\ 26 \\ \hline \end{gathered}$	$\begin{gathered} \hline 189 \\ 37 \\ 31 \end{gathered}$	$\begin{gathered} 216 \\ 45 \\ 37 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
${ }_{\text {t }}$	Maximum Output Rise and Fall Time		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 30 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 22 \\ 19 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {REM }}$	Minimum Removal Time Reset Inactive to Clock		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
ts	Minimum Set Up Time (A, B, C, or D to Clock)		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 100 \\ 20 \\ 17 \end{gathered}$	$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \end{aligned}$	$\begin{gathered} \hline 150 \\ 30 \\ 25 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {ts }}$	Minimum Set Time Mode Controls to Clock		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 100 \\ 20 \\ 17 \end{gathered}$	$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \end{aligned}$	$\begin{gathered} \hline 150 \\ 30 \\ 25 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
t_{H}	Minimum Hold Time any Input		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -10 \\ -3 \\ -3 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tw	Minimum Pulse Width Clock or Reset		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 30 \\ 89 \\ 8 \end{gathered}$	$\begin{aligned} & \hline 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{gathered} \hline 100 \\ 20 \\ 18 \end{gathered}$	$\begin{gathered} \hline 120 \\ 24 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Time		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
CPD	Power Dissipation Capacitance (Note 5)			77				pF
C_{IN}	Maximum Input Capacitance			5	10	10	10	pF
Note 5: $\mathrm{C}_{P D}$ determines the no load dynamic power consumption, $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{P D} \mathrm{~V}_{C C}{ }^{2} f+\mathrm{I}_{C C} \mathrm{~V}_{C C}$, and the no load dynamic current consumption, $\mathrm{I}_{\mathrm{S}}=\mathrm{C}_{\text {PD }} \mathrm{V}_{C C} f+\mathrm{I}_{\mathrm{CC}}$.								

MM54HC194/MM74HC194 4-Bit Bidirectional Universal Shift Register

Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J)
Order Number MM54HC194J or MM74HC194J
NS Package Number J16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

