

Lab notebook EECT 111 Spring 2019

Brian yang

Lab partners: joe forti, Andrew erickson

Labs

- Lab 1: Resistor Variability pg 3-6
- Lab 2: Reading and Sorting Resistors pg 7-10
- Lab 3: Series Resistors pg 11-15
- Lab 4: Black Box Design pg 16-19
- Lab 6: Black Box 2 Design pg 20-24
- Lab 7: 4 Resistor Parallel Circuit pg 25-29
- Lab 8: Black Box 3 Design pg 30-33
- Lab 10: Series/Parallel Capacitors pg 34-38
- Lab 11: RC circuits pg 39-42
- Lab 12: Series/Parallel Inductors pg 43-47
- Lab 13: RL circuits pg48-51

Lab 1: Resistor Variability

- The purpose of Lab One was to learn the how resistors vary even when they have the same color code.
- This lab allowed us to test the resistance of multiple resistors with the same specified resistance.
 This gave us three things
- 1. Opportunity to familiarize ourselves with basic lab equipment
- 2. Showed us that not all parts are truly made to spec
- 3. Taught us to take all of the parts in a lab under consideration as there can be variances.

- After collecting twenty resistors, we measured each one and recorded the resistance in ohms. After we measured all twenty, we made an Excel worksheets and found the smallest, largest, and average resistance as well as the standard deviation.
- Observations: All resistors fell within the acceptable tolerance levels, however, very few where actually close to 1k Ohms

EECT111

Lab 1 – Resistor Variability

Names: Joseph Forti, Andrew Erickson, Brian Yang Date: 01/23/2019

6

The purpose of this lab is to: Learn the how resistors vary using 20 resistors with the same color code.

Select a set of 20, 1 kohm resistors. Measure and record the resistance of each resistor.

Equipment needed:

1 – Digital Multimeter
 1 – 20 resistors with the same color code.

Resistor color code = brown, black, red Resistor value = 1k Ohms Resistor tolerance = +- 5

Using Microsoft Excel plot the resistor values and determine:

Smallest resistance = .9733 k Largest resistance = 1.020 k Average resistance = .9921 k Standard Deviation = 0.0034 11 .9883 k 12 1.001 k 13 .9923 k 14 .9986 k 15 .9953 k 16 .9886 k 17 .9913 k 18 1.003 k 19 1.003 k 20 1.020 k

Sample

1

2

3

4

5

6 7

8

9

10

Measured

Value

.9733 k

.9937 k

.9882 k

.9915 k

1.034 k

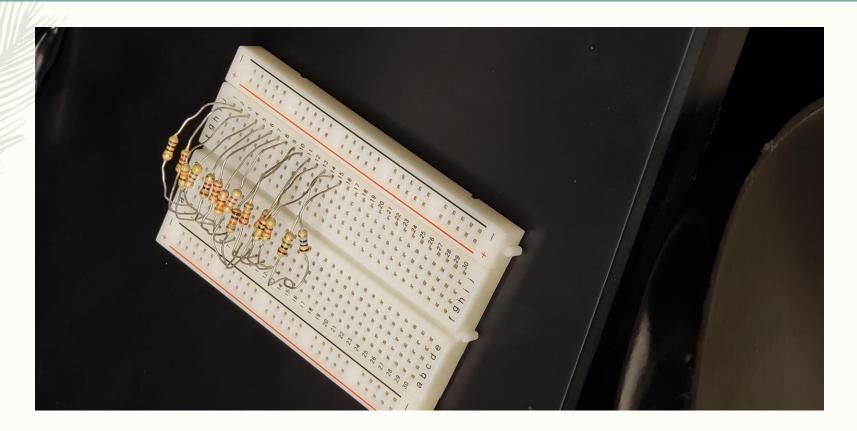
.9852 k

1.022 k

.9956 k

1.006 k

1.002 k

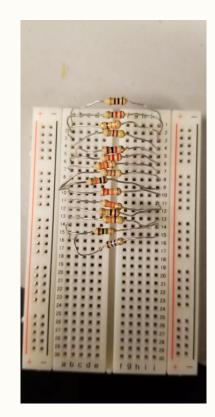

20

1.020

Do any of your resistor values exceed the part tolerance? _no____

· · · · · · · · · · · · · · · · · · ·		-	
Lab 1			
	Measured Resistance		
Resisotor #	(KOhms)	Smallest Resistance	0.9733
1	0.9733	Largest Resitance	1.034
2	0 .9937	Average	0.992189
3	0.9882	Standard deviation	0.003458
4	0.9915		-
5	1.034		
6	0.9852		
7	1.022		
8	0.9956		
9	1.006	7	
10	1.002		
11	0.9883		
12	1.001		
13	0.9923		
14	0.9986		
15	0.9953		
16	0.9886		
17	0.9913		
18	1.003		
19	1.003		

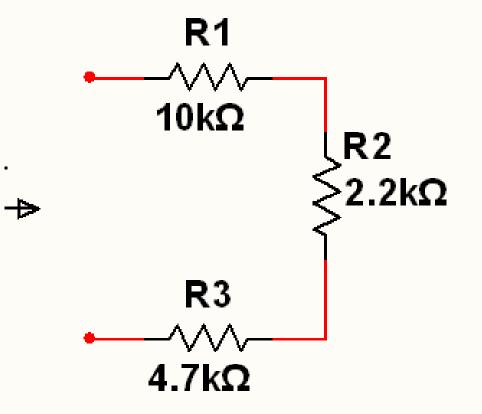
Lab 2: Reading and Sorting Resistors


- The purpose of this lab was to: Learn the resistor c olor code using 15 resistors which must be sorted from smallest to largest value.
- This Lab called for us to measure the resistance of 15 different resistors based on their color code.
- Using an assortment of resistors, a breadboard, and a digital multimeter, we measured and recorded the resistance of each resistor in ohms.

Resistor Values and color codes

9

	Color Code	Measured Value		
100 =	Brown black, brown, Gold	98.66 oh		
220 =	Red, Red, Brown Gold,	217.57		
330 =	Orange orange, brown gold	324.31		
470 =	Yellow, Violet, Brown, Gold	458 ohm		
1K =	Brown, Black, Red, Gold	1.00k		
2.2K =	Red, Red, Red, Gold	2.19k oh		
3.3K =	Orange, Orange, Red, Gold	3.23K oh		
4.7K =	Yellow, Violet, Red, Gold	4.59k		
10K =	Brown, Black, Orange, Gold	9.83k		
22K =	Red, Red, Orange, Gold	21.98k		
33K =	Orange, Orange, Orange, Gold	32.75k		
47K =	Yellow, Violet, Orange, Gold	46.46k		
100K =	Brown, Black, Yellow, Gold	99.20k		
1M =	Brown, Black, Green, Gold	1.009M		
10M =	Brown, Black, Blue, Gold	10.24M		


Resistors on the breadboard

 Observations: All resistors besides the two largest resistors were under their prescribed resistance.
 The to resistors with M resistance were over their prescribed resistance. All measurements were agreeable and fell within the given tolerance.

Lab 2

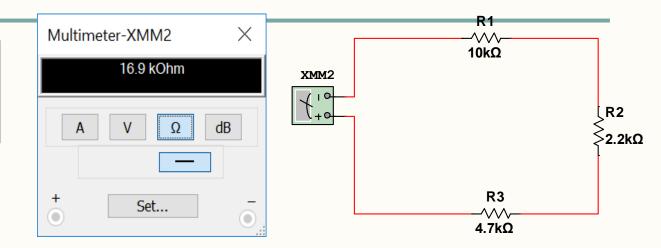
Lab 3: series circuit analysis

Objective: verify that analysis results agree with test results.

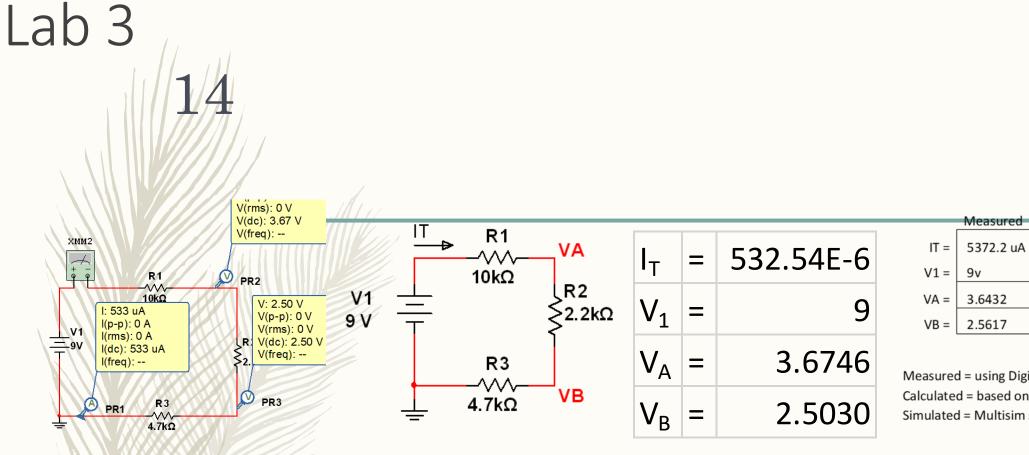
- Equipment used

12

Lab 3


- Resistors (10k,2.2k,4.7k) ohm
- Power : elvis II (9 volts)
- digital multimeter

Calculate results using Excel, multisim, and measuring in lab.


$R_1 =$	10.0E+3
$R_2 =$	2.2E+3
R ₃ =	4.7E+3
R _T =	16.9E+3

	Measured	Calculated	Simulated
R1=	9.796	10k	10kOhm
R2 =	2.2 kOhm	2.2k	2.2kOhm
R3 =	4.7kOhm	4.7k	4.7kOhm
RT =	16.9 kOhm	16.9	16.9kOhm

Measured = using Digital Multimeter Calculated = based on color code and Excel values Simulated = Multisim simulation

Measured resistance results:

Measured = using Digital Multimeter Calculated = based on color code and Excel values Simulated = Multisim simulation

Calculated

532.5 uA

3.674556

2.502959

9v

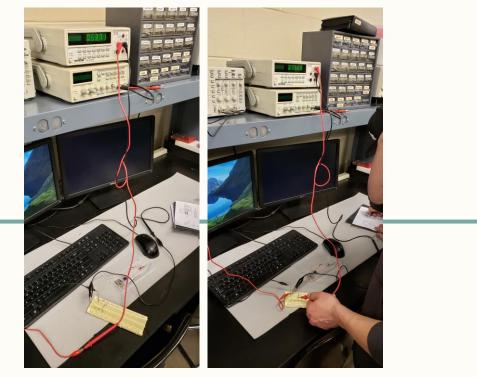
Simulated

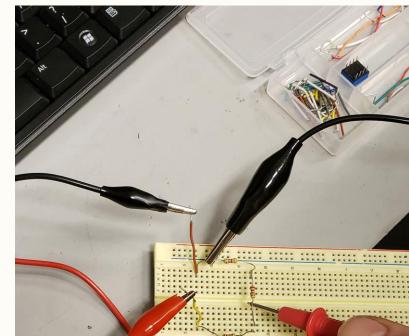
532.54 uA

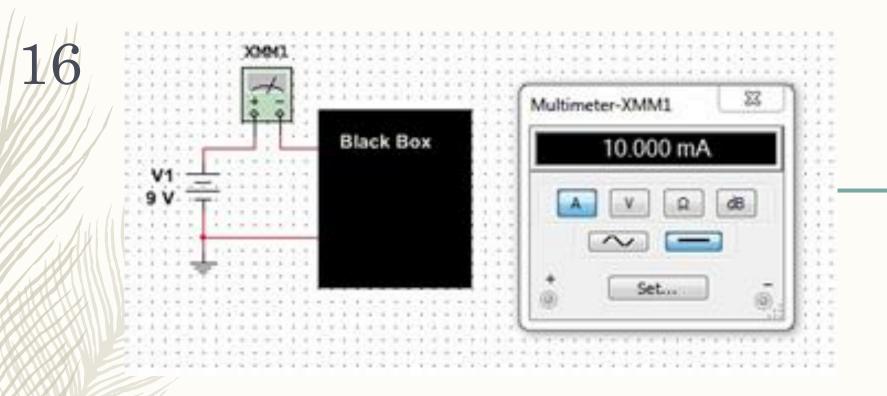
9 V

3.675V

2.503V


Voltage and currant results:


Observations:

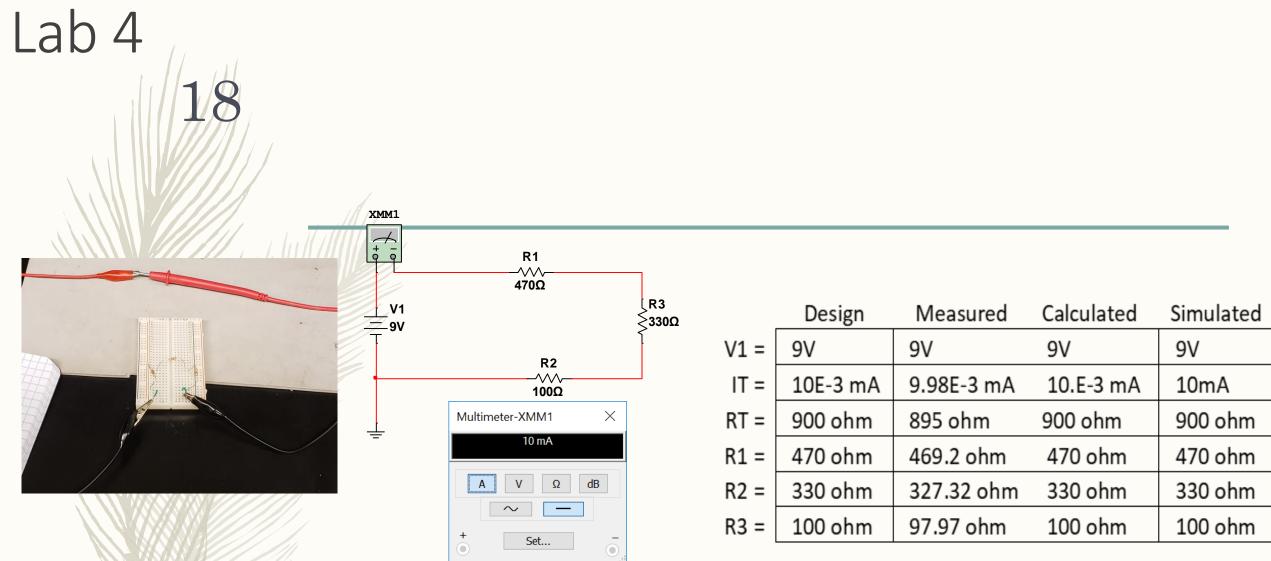

15

Lab 3

• As long as we made sure everything was set up properly the measurements in the lab were agreeable with the multisim and excel calculations. Also make sure the board is set up properly or measurements wont be right.

Lab 4: Blackbox Challenge

17 Objective: there is a 9V power supply and a 10mA current draw, design a 3 resistor series circuit using standard

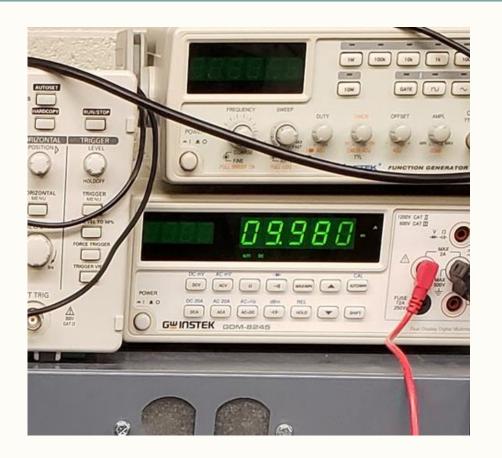

resistors that meet those requirements.

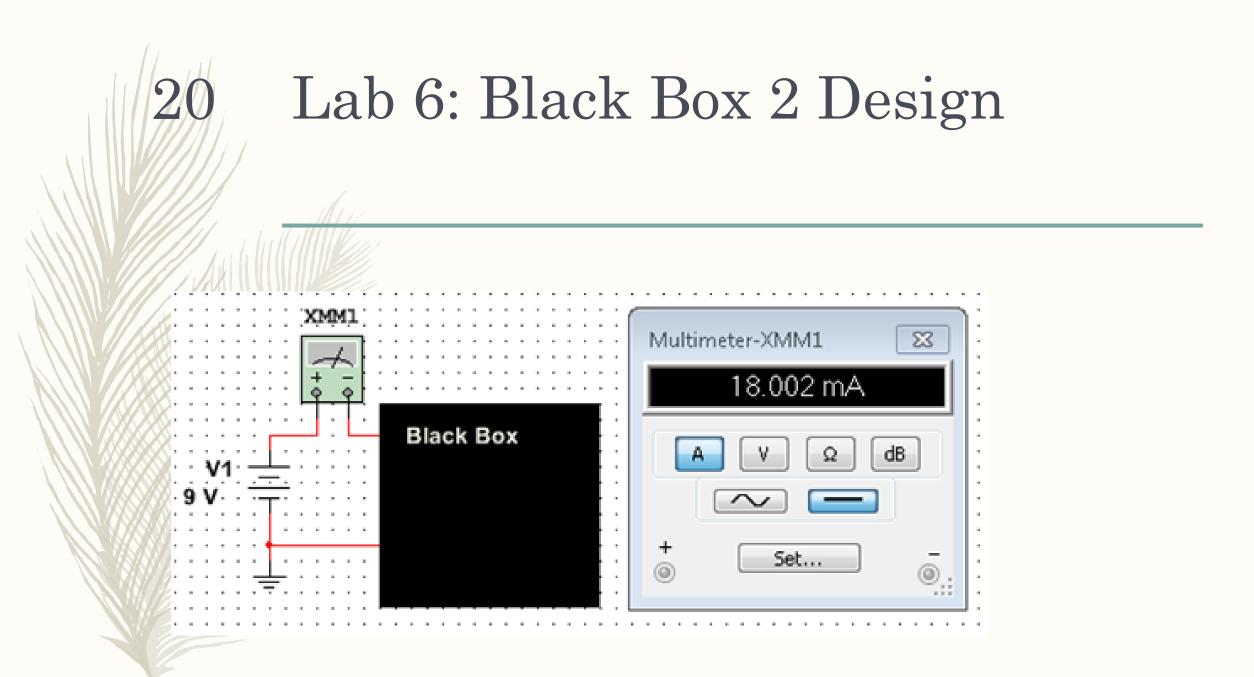
Equipment used:

• Elvis II (9v)

Lab

- Digital Multimeter
- Standard resistors



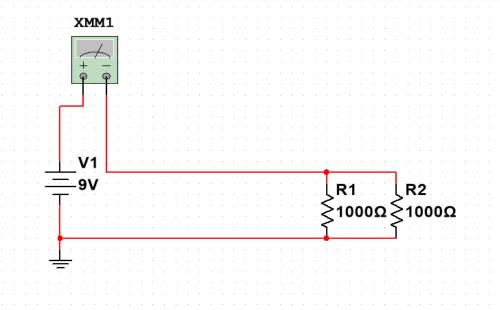

Resistance and currant results: excel, multisim, measured

Observations: everything was agreeable as far as calculations being close to measurement, we did notice a /slight drop in current when measuring in the lab.

Lab 4

19

Parallel Resistor Circuits


Lab 6

 The purpose of lab 6 was to experiment with resistor circuits in series. In this instance we were tasked with building a circuit that would provided 18mA of power from a 9V source.

22

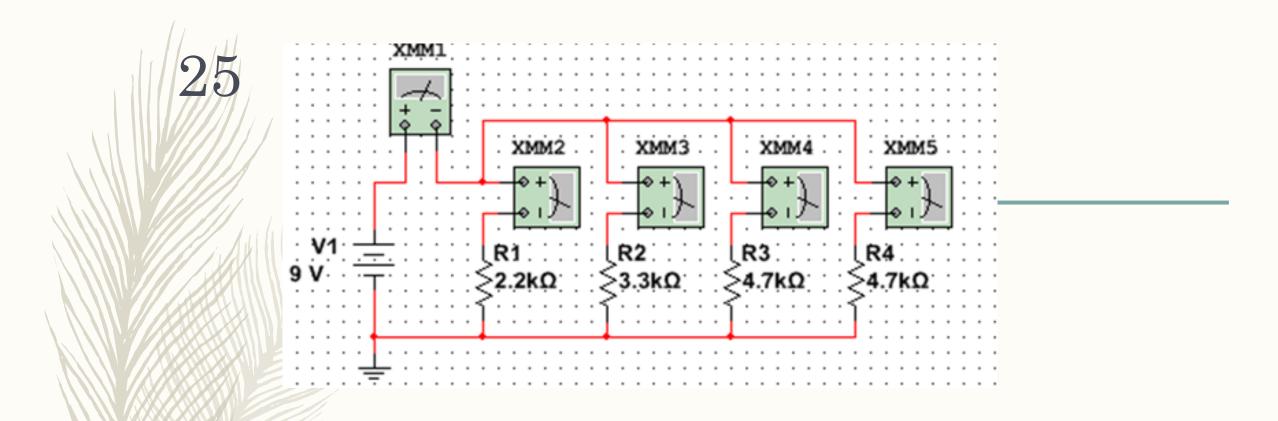
Using ohms law (R=V/I), we created an excel sheet to find the required resistance to create 18mA. After finding that it was 500 Ohms, we used basic algebra to find that we need to use to 1000 ohm resistors in parallel to make 500 ohms.


	А	В	С	
1	Lab 6			
2	V	9		
3	1	0.018		
4	R(required Ohms	500		
5	R1 (ohms)	1000		
5	R2 (ohms)	1000		
7	RT	500		
3				
Э				
0				
1				
-				


In the lab, we built a circuit with two 1000 ohm resistors and measured the resistance and amperage with a digital multimeter.

Resistance kOhm

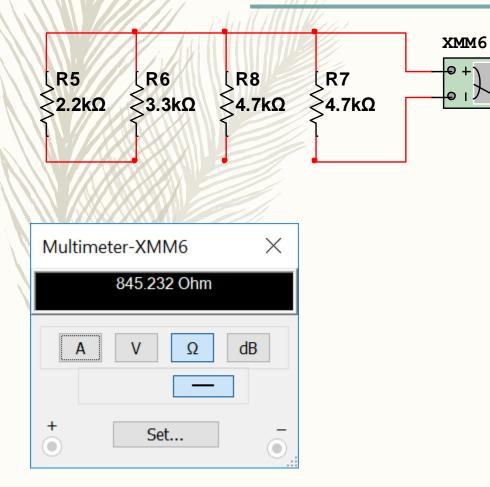
Lab 6


Current mA

	Design	Measured	Calculated	Simulated
V1 =	9.00	9.0E+0	9	9
IT =	.018 A	18.3E-3 A	.018 A	.018 A
RT =	500Oh m	492.8E+0	500 Ohm	500 Ohm
R1 =	1k Ohm	989.0E+0	1k Ohm	1k Ohm
R2 =	1k Ohm	981.0E+0	1k Ohm	1k Ohm

The measured amperage was a bit higher than calculated. This was probably due to the resistors being slightly under their stated resistance.

Lab 7: 4 resistor parallel circuit

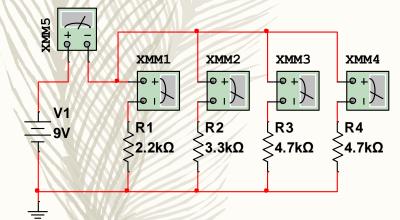

Objective: 9V is applied to 4 parallel resistors, measure

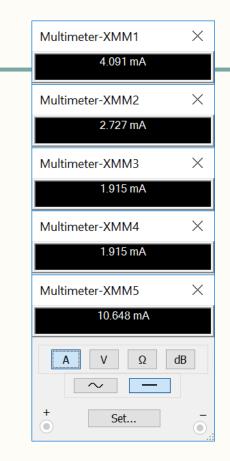
resistor values, total current, and all branch currents.

Equipment used:

- Elvis II (9v)
- Digital Multimeter
- Standard resistors

Lab 7 27 Resistance total: calculated, multisim, measured

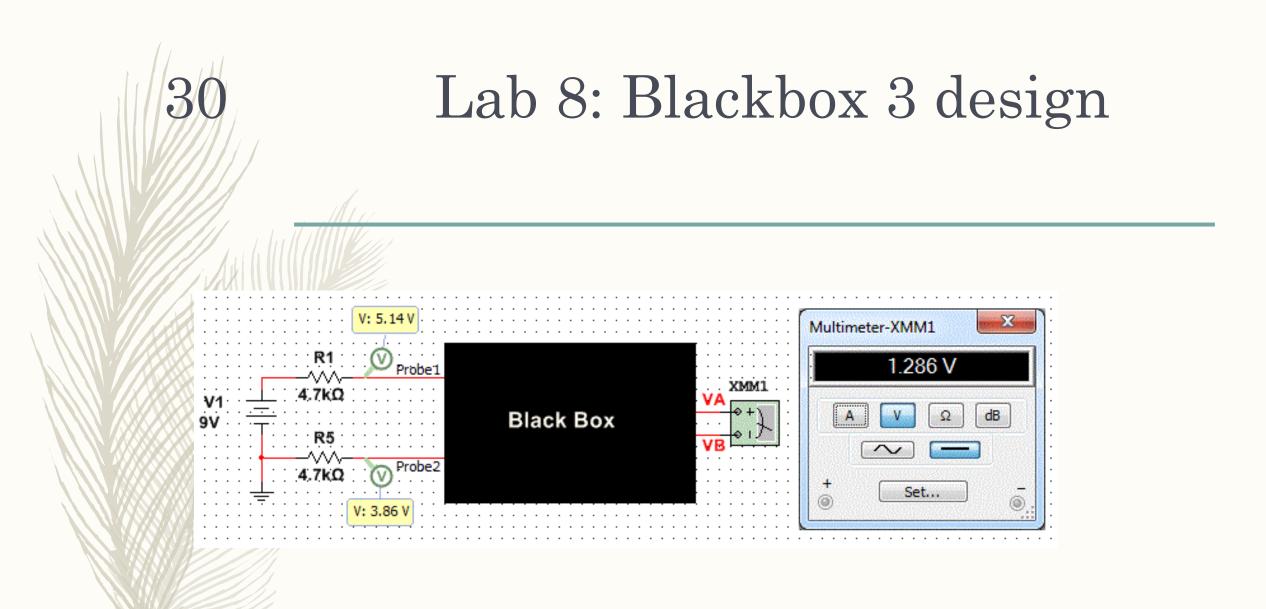



Exce	el	
RT=	1/((1/2.2k)+(1/3.3k)+(1/4.7k)+(1/4.7k))
R1	=	2.2E+3
R2	=	3.3E+3
R3	=	4.7E+3
R4	=	4.7E+3
Rt	=	845.2316076

	Design	Measured
R1 =	2.2k	2.194k
R2 =	3.3k	3.243k
R3 =	4.7k	4.619k
R4 =	4.7k	4.633k

Branch and total current results: excel, multisim, lab

Measured	Calculated	Simulated
9	9	9
1.021K	845.232	845.232
3.903E-3	4.091E-3	4.091E-3
2.680E-3	2.727E-3	2.727E-3
1.896E-3	1.915E-3	1.915E-3
1.898E-3	1.915E-3	1.915E-3
10.566E-3	10.648E-3	10.648E-3
	9 1.021K 3.903E-3 2.680E-3 1.896E-3 1.898E-3	9 9 1.021K 845.232 3.903E-3 4.091E-3 2.680E-3 2.727E-3 1.896E-3 1.915E-3 1.898E-3 1.915E-3



EXCEL: I1=V/R1, I2=V/R2	, 13=	=V/I	R3, I4=V/R4
IT= 1+ 2+ 3+ 4			
	V	=	9
	R_1	=	2.2E+3
	R_2	=	3.3E+3
	R_3	=	4.7E+3
	R_4	=	4.7E+3
	I_1	=	4.091E-3
	I ₂	=	2.727E-3
	I ₃	=	1.915E-3
	I ₄	=	1.915E-3
	I _T	=	10.648E-3
	Rt	=	845.23161

Observations: after we figured out that we did not set up the breadboard properly for a parallel circuit we fixed it and all calculations were within acceptable range compared to the simulation and calculations.

Lab .

Objective: learn about building a circuit that produces exactly 1.3V

Equipment used:

• Elvis II (9v)

31

Lab 8

- Digital Multimeter
- 5-Standard resistors
- 1-5kOhm pot

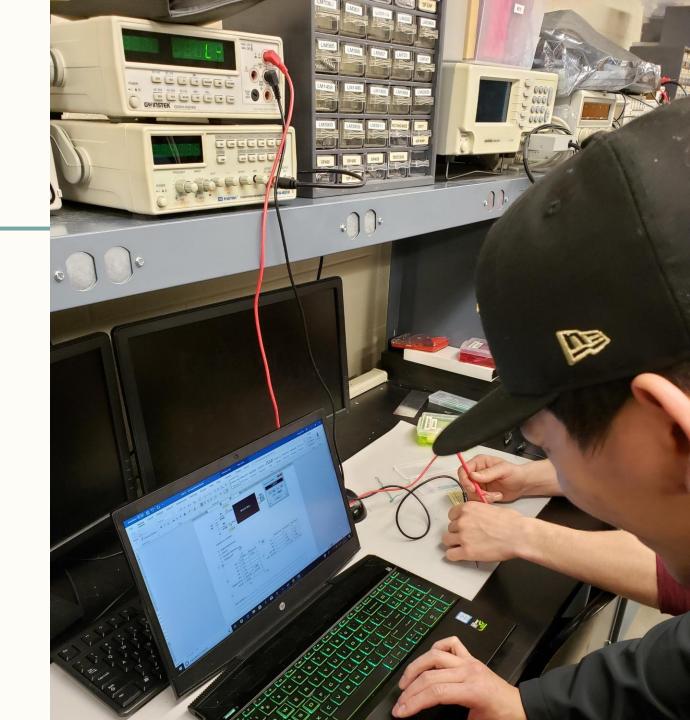
Results: excel, multisim, lab

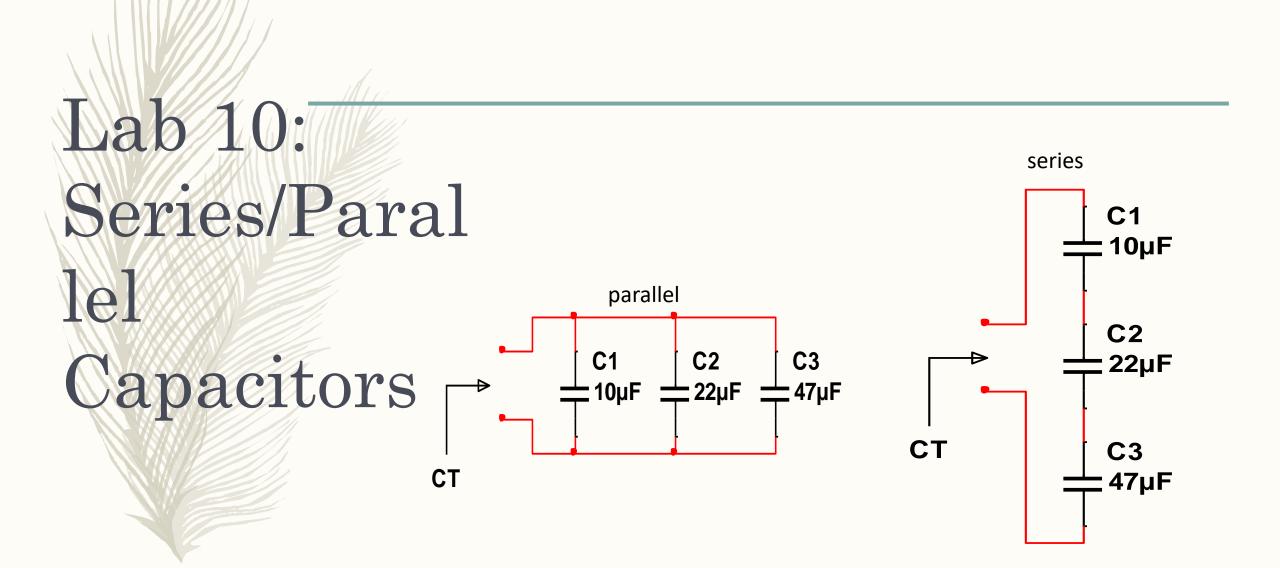
	Iultimeter-XMM1
1:277 uA	1.3 V
(p-p) 0.4 (mms)	A V Ω
4.58kΩ PR3 PR5	
	Set
R5	
4.7KΩ V PR2	Multimeter-XMM2
·····	1.286 V
	Α ν Ω
I: 274 μA V: 5.14 V I(p-p): 0A V(p-p): 0V V(ms): 0 V V(ms): 0 V	+ C+
V: 5.14 V I(freq):	Set
P:-7.39 mW P(avg):-7.39 mW	
4.7KΩ PR8 PR8 PR10	
2PR9	
$= 9V \qquad $	
R7	
4.7kΩ (V) PR7	
÷	

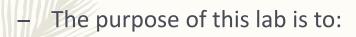
32

Lab 8

VA= V-(IT*R1), VB=V-(IT*(R(BB)+R1)), VA-VB-1.2857V

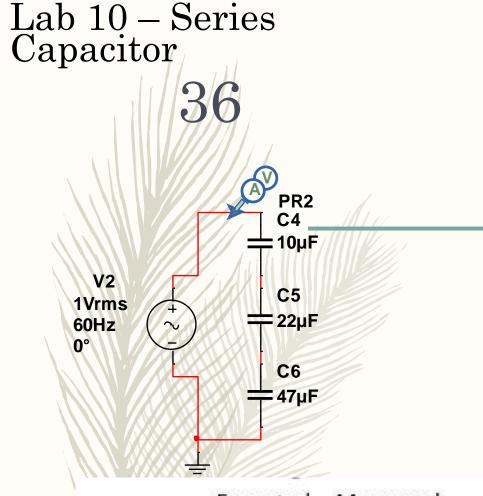

	Measured	Calculated	Simulated
V1 =	9V	9V	9V
VA =	5.147 V	5.14V	5.14V
VB =	3.87V	3.86V	3.86V
VA - VB =	1.2964	1.286V	1.286V
	(5.236-		(5.2-
(VA - VB) adj =	3.917)	(5.2-3.9)V	3.9)V

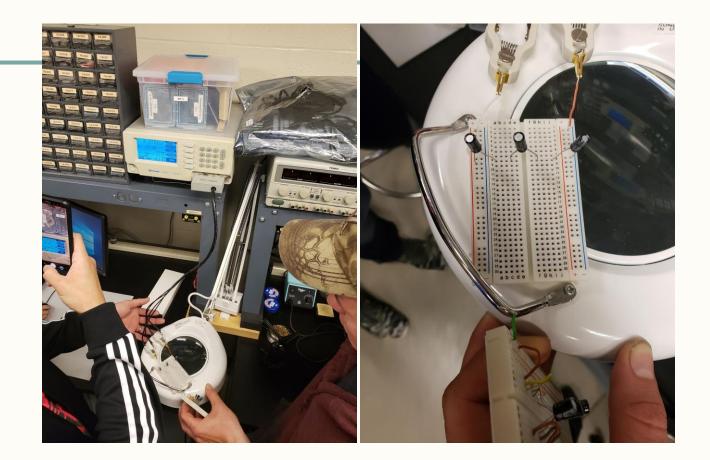

dB


	Design	Measured
R1 =	4.7k	4.62k
R2 =	4.7k	4.629k
R3 =	4.7k	4.642k
R4 =	4.7k	4.616k
R5 =	4.7k	4.588lk
R(Black Box) =	1566.66	1.5233k
R1adj =	4.58K	4.4367k

V1=	9
R1=	4.7E+3
R2=	4.7E+3
R3 =	4.7E+3
R4=	4.7E+3
R5 -	4.7E+3
RT=	10.967E+3
RT(ADJ)=	10.847E+3
IT=	820.7E-6
IT(ADJ)=	829.7E-6
R(BB)=	1.567E+3
R1(ADJ)=	4.58E+3
VA=	5.14E+0
VB=	3.857E+0
VA-VB=	1.285714286
VA-VB(ADJ)=	(5.2-3.9)
IT=	821.3E-6
PIN=	7.4E-3

Observations: We used two different resistors to create a resistance that was close to 4.58k Ohm (3.3k+1.2k).Resistors tended to be on the low side of resistance. We also found that we needed to pay close attention to make sure that our wires and resistors didn't touch. Note to self: if it equals zero, CHECK THE POWER and make sure its on!

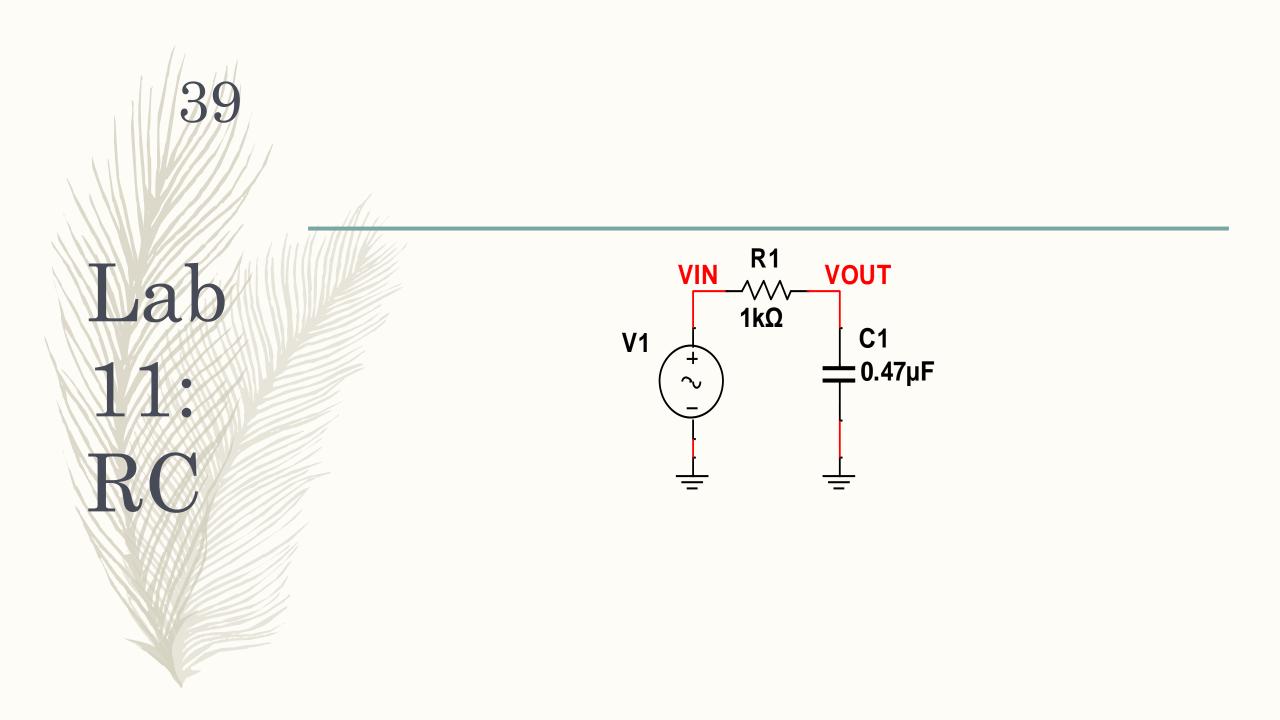




10

- Experiment with series circuits and parallel combinations of capacitors.
- The following capacitors are needed (1 each of the following): 10uF, 22uF and 47uF
- Measure and record the capacitance of each capacitor using the LCR meter.
 Connect the capacitors as shown in Figure 1 and measure and record the total capacitance, CT. Then connect the capacitors as shown in Figure 2 and measure and record the total capacitance, CT.

-	Expected	Measured
C1 =	10 µF	7.09 μF
C2 =	22 μF	17.57 μF
C3 =	47 μF	34 μF
CT =	5.99µF	4.375 μF


Lab 10 –]	Parallel Ca	apacitor					
	37	1					
V1 1Vrms 60Hz 0° - - - - - - - -							
	Expected	Measured					
C1 =	10 µF	8.46 μF					
C2 =	C2 = 22 μF 17,15 μF						
C3 =	47 μF 39.47 μF						
CT =	79 μF	63.93 μF					

38				
	Grapher View			– – ×
	10	Current Langed Table 11		
	File Edit View Graph Trace			
	Single Frequency AC		3、 🔍 🙉 🕲 🖞 A 💯 🕫 🖡 Zoom out 🛛	<u>} • • • • • • • • • • • • • • • • • • </u>
		Lab		
	Sing		C Analysis @ 60 Hz	
	Variable	Magnitude	Phase (deg)	
	1 1/(2*pi*60*(V(PR1)/I(PR1)))	79.00000 u	90.00000	

10

Observations: Capacitors were reading much lower than their assigned capacitance. Used previous multisim simulations for expected measurements.

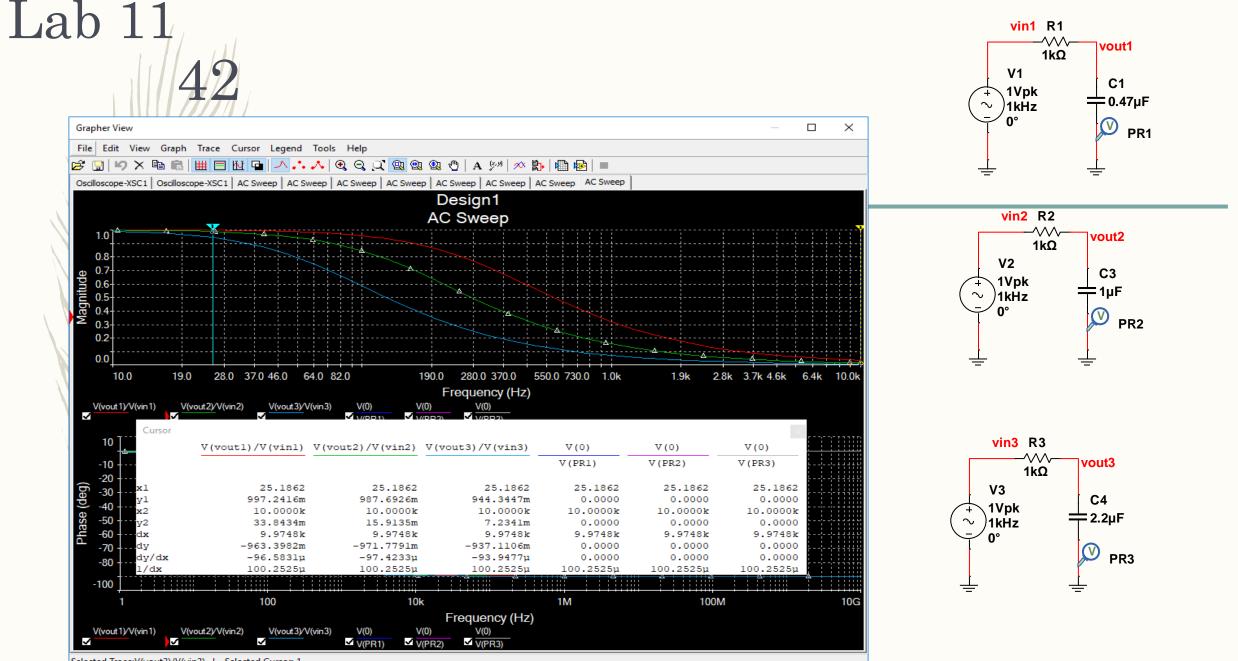
The purpose of this lab is to:

- Experiment with RC (Resistor & Capacitor) circuits.

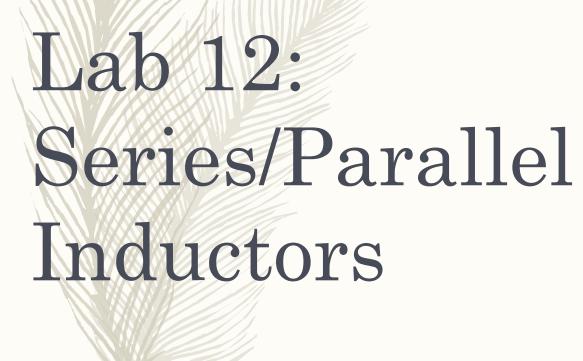
- The following capacitors are needed (1 each of the following): 0.47uF, 1uF and 2.2uF

Measure and record the resistor value using the DMM and measure and record the capacitor values using the LCR meter in Table 1. Connect the resistor and capacitor as shown in Figure 1. Connect the Function Generator to the input at V1 and connect Channel 1 of the Oscilloscope to the input and Channel 2 to the output. Adjust the voltage of the Function Generator to 1Vpp at the frequencies shown in Table 2. Measure the input and output voltages using the Oscilloscope. Record the results in Table 2.

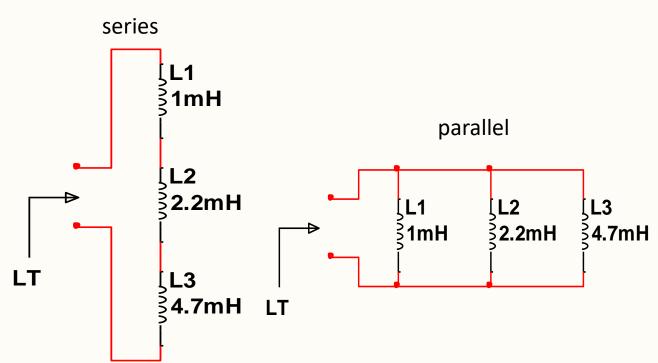
Change the capacitor and retest.


	Capacitance or						
	Resistance						
	Expected Measured						
C1 =	0.47E-6F	0.47uF					
C2 =	1E-6F	1uF					
C3 =	2.2E-6	2.2uF					
R1 =	1k	1k					

4


Table 1 – Resistance and Capacitances Expected = value you expect it to be Measured = using LCR Meter or DMM

	Output Voltage L = <u>V1</u>			Output Voltage L = <u>V2</u>			Output Voltage L = <u>V3</u>		
	Expected	Me	asured	Expected	xpected Measured E		Expected Measured		asured
	Output	Input	Output	Output	Input	Output	Output	Input	Output
Frequency	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage
10		1	1.3823m		1	628.3184u		1	2.9531m
50		1	6.9131m		1	3.1424m		1	14.7676m
100		1	13.8217m		1	6.2831m		1	29.5181m
200		1	27.6435m		1	12.5690m		1	58.9761m
300		1	41.6184m		1	18.9308m		1	88.6324m
400		1	55.2391m		1	25.1392m		1	117.3716m
500		1	68.9676m		1	31.4083m		1	146.1051m
600		1	83.0041m		1	37.8350m		1	175.1426m
700		1	96.9248m		1	44.2284m		1	203.5589m
800		1	110.0026m		1	50.2445m		1	230.0686m
900		1	124.2148m		1	56.8233m		1	258.1229m
1,000		1	136.9281m		1	62.7082m		1	283.2184m
2,000		1	266.510m		1	124.7168m		1	508.5581m
3,000		1	383.9364m		1	185.9628m		1	662.6728m
4,000		1	483.9226m		1	243.8504m		1	763.0938m
5,000		1	568.5790m		1	299.7700m		1	827.9097m
6,000		1	638.1098m		1	353.6427m		1	869.6466m
7,000		1	694.2925m		1	403.7256m		1	898.6093m
8,000		1	741.5209m		1	449.2035m		1	920.7403m
9,000		1	777.7795m		1	492.9159m		1	934.6899m
10,000		1	810.2139m		1	532.0180m		1	947.1682m


RL Frequency Response Expected = value you expect it to be Measured = Using Oscilloscope

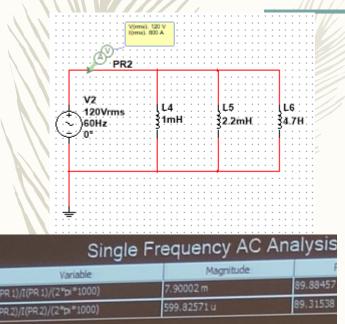
Selected Trace:V(vout2)/V(vin2) | Selected Cursor: 1

43

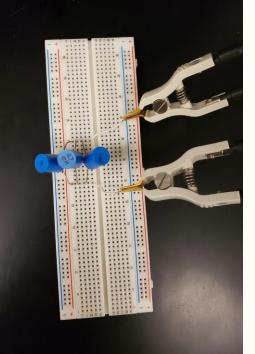
The purpose of this lab is to:

Lab 12

- Experiment with series circuits and parallel combinations of inductors.
- The following inductors are needed (1 each of the following): 1mH, 2.2mH and
 4.7mH
- Measure and record the inductance of each inductor using the LCR meter.
 Connect the inductors as shown in Figure 1 and measure and record the total inductance, LT. Then connect the inductors as shown in Figure 2 and measure and record the total inductance, LT.

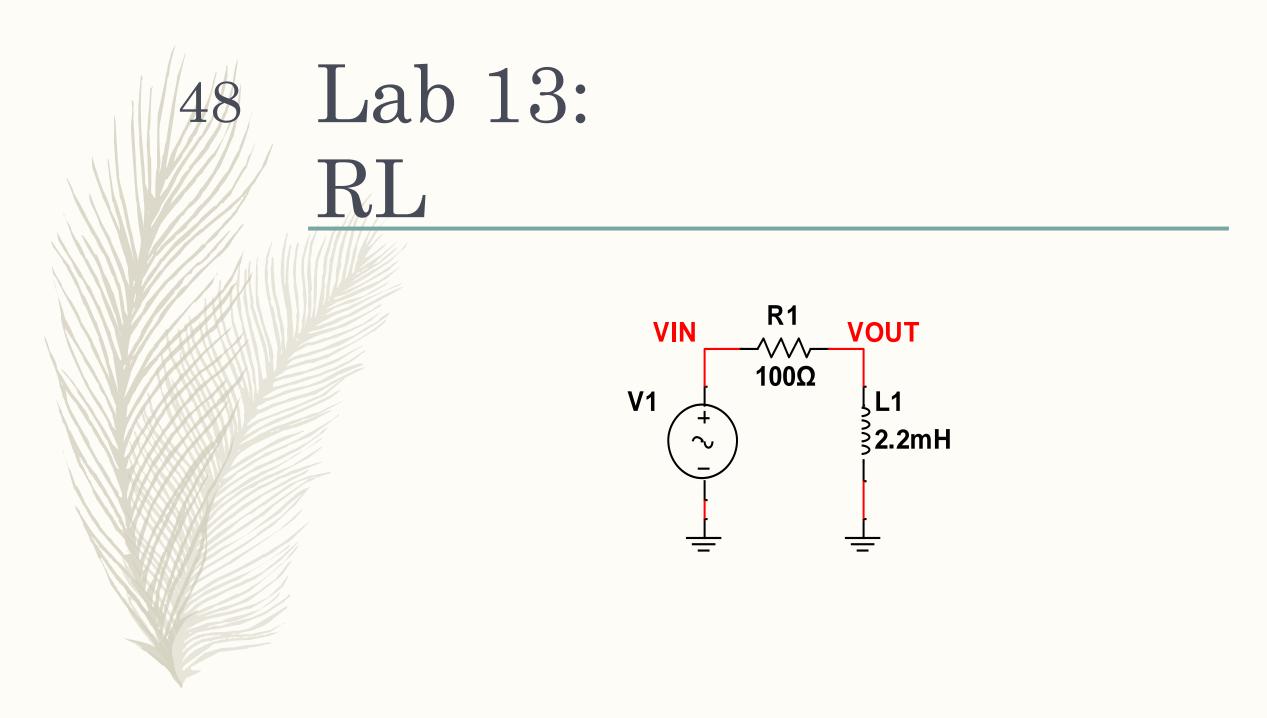

Lab 12 – Series Inductors

	V(ma). 120 V			Expected	Simulated	Measured
	1(ima): 69.8 A		[1.1109
	Ø		L1 =	1mH	1mH	mH
	·····					2.4901
: //			L2 =	2.2mH	2.2 mH	mH
:	·····				100000	5.3772
	1mH		L3 =	4.7mH	4.7mH	mH
			LT =	7.9mH	7.9mH	8.1049mH
	120Vrms [L2		Expected	d = value vo	u expect it t	o be
	(∼)60Hz 2.2mH			'	·	
	· · · · · · · · · · · · · · · · · · ·					
XX:						
	54.7mH					
	÷					
XXI:						
	Single Fr	equen	cy A	C An	alysis	
	Variable	M	lagnitud	e	F	
61 // I			-		89.88457	
	1 V(PR 1)/I(PR 1)/(2"pl=1000)	7.90002 m				
	2 V(PR2)/I(PR2)/(2*pi=1000)	599.82571	u		89.31538	

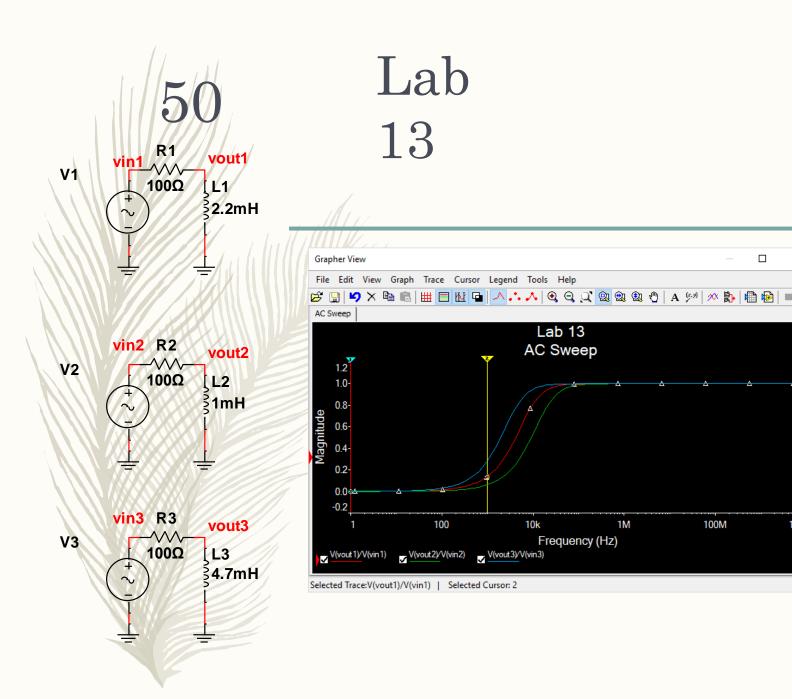

45

Lab 12 – Parallel Inductors

46



	Expected	Simulated	Measured
L1 =	1mH	1mH	1.1109mH
L2 =	2.2mH	2.2mH	2.4901mH
L3 =	4.7mH	4.7mH	5.3772mH
LT =	.5882mH	.5882mH	.6583 mH


Expected = value you expect it to be Simulated = using Multisim Measured = using LCR Meter

 Observations: we were on bench 2 and couldn't get a proper reading so we cleaned up and moved to bench 4 were our reading were within acceptable (lcr at bench 2 might be bad?)

The purpose of this lab is to:

- Experiment with RL (Resistor & Inductor) circuits.
- The following inductors are needed (1 each of the following): 1mH, 2.2mH and 4.7mH
- Measure and record the resistor value using the DMM and measure and record the inductor values using the LCR meter in Table 1. Connect the resistor and inductor as shown in Figure 1. Connect the Function Generator to the input at V1 and connect Channel 1 of the Oscilloscope to the input and Channel 2 to the output. Adjust the voltage of the Function Generator to 1Vpp at the frequencies shown in Table 2. Measure the input and output voltages using the Oscilloscope. Record the results in Table 2.
- Change the inductor and retest.

Cursor			x
	V(voutl)/V(vinl)	V(vout2)/V(vin2)	V(vout3)/V(vin3)
xl	1.0000	1.0000	1.0000
yl	138.2301µ	62.8319µ	295.3097µ
x 2	1.0000k	1.0000k	1.0000k
y2	136.9281m	62.7082m	283.2184m
dx	999.0000	999.0000	999.0000
dy	136.7899m	62.6454m	282.9231m
dy/dx	136.9268µ	62.7081µ	283.2063µ
1/dx	1.0010m	1.0010m	1.0010m

100M

 \times

10G

51

	Output Voltage L = _V1_		Output Voltage L = <u>V2</u>		Output Voltage L = <u>V3</u>		L= V3		
	Expected	-	asured	Expected	-	asured	Expected Measu		asured
	Output	Input	Output	Output	Input	Output	Output	Input	Output
Frequency	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage
10		1	1.3823m		1	628.3184u		1	2.9531m
50		1	6.9131m		1	3.1424m		1	14.7676m
100		1	13.8217m		1	6.2831m		1	29.5181m
200		1	27.6435m		1	12.5690m		1	58.9761m
300		1	41.6184m		1	18.9308m		1	88.6324m
400		1	55.2391m		1	25.1392m		1	117.3716m
500		1	68.9676m		1	31.4083m		1	146.1051m
600		1	83.0041m		1	37.8350m		1	175.1426m
700		1	96.9248m		1	44.2284m		1	203.5589m
800		1	110.0026m		1	50.2445m		1	230.0686m
900		1	124.2148m		1	56.8233m		1	258.1229m
1,000		1	136.9281m		1	62.7082m		1	283.2184m
2,000		1	266.510m		1	124.7168m		1	508.5581m
3,000		1	383.9364m		1	185.9628m		1	662.6728m
4,000		1	483.9226m		1	243.8504m		1	763.0938m
5,000		1	568.5790m		1	299.7700m		1	827.9097m
6,000		1	638.1098m		1	353.6427m		1	869.6466m
7,000		1	694.2925m		1	403.7256m		1	898.6093m
8,000		1	741.5209m		1	449.2035m		1	920.7403m
9,000		1	777.7795m		1	492.9159m		1	934.6899m
10,000		1	810.2139m		1	532.0180m		1	947.1682m

RL Frequency Response

Expected = value you expect it to be

Measured = Using Oscilloscope

Observations: In multisim be sure to have the capacitors value corrected if you copy and paste the first circuit built.