EECT 121 LAB NOTEBOOK

STUDENT: BRIAN YANG
INSTRUCTOR:PROFESSOR BELL
LAB PARTNER: CALEB BARGER
FALL 2019

2 TABLE OF CONTENTS

Lab I:Switching Diodes.

* Lab 2: LED's.
* Lab 3: Zener Diodes.
* Lab 5: LED Switch.
* Lab 6: (CE) Amplifier
- Lab 7: LED JFET Switch.
* Lab 8: Common Drain Amplifier.
* Lab 9: Design a Butterworth Low-Pass filter with a 3dB point @ IKHz.
* Lab IO: Design, a Butterworth High-Pass filter with a 3dB point @ IKHz.
* Lab II: Design a BandPass filter with a 3dB point @ IKHz.

Lab I2: Design, a IKHz Notch filter.

4 LAB I

- The purpose of this lab is to: experiment and find out characteristics of switching diodes, and how they work in a circuit.

LAB I OBSERVATIONS

- We tested this diode and found that diodes are polarized. Forward Bias allows voltage to pass. Reverse Bias diminishes the voltage to almost 0 .

LAB 2

7 LAB 2: LIGHT EMITTING DIODES

- The purpose of this lab is to: experiment and find out characteristics of Light Emitting diodes, and how they work in a circuit. Equipment \& parts needed:
- -Breadboard
- -Digital Multimeter
- -DC Power Supply (9Volt)
- -IK ohm Resistor (.982I KOhms Actual Reading)
- -Light Emitting Diodes (Red, Yellow, Green)

8 LAB 2

Observations:

- The Diodes have an amperage thresh hold that must be met to emit light.
- Changes in amperage inside the threshold change the amount of light emitted.
- Light was only emitted when the diodes were oriented according to bias

10 LAB 3: ZENER DIODES

- The purpose of this lab is to: experiment and find out characteristics of Light Emitting diodes, and how they work in a circuit.
- Equipment \& parts needed:
- -Breadboard
- -Digital Multimeter
- -DC Power Supply (9 Volt)
- -IK ohm Resistor
- -Zener Diodes (IN4733A and IN4747A)

Observations:

- We tested 2 different Zener diodes and expected pretty

LAB 3

 close voltages, but found out that one of the two was almost half the voltage of the other.- When bias was reversed some voltage was still allowed to pass.

POWER SUPPLY

I3 POWER SUPPLY LAB

- The object of this lab was to design and build a functioning power supply.
- Design a simulation of power supply
- Create a BOM to order parts
- Build supply

POWER SUPPLY READINGS

```
Grapher View
File Edit View Graph Trace Cursor Legend Tools Help
```



```
DC Operating Point
9V Power Supply
DC Operating Point Analysis
```



```
Selected Diagram:DC Operating Point Analysis
```


15 POWER SUPPLY BOM

Item	Part Description	Part Number	Qty	Unit Price	Total Price
1	Electrolytic Axial Lead Capacitors - 47 uf 50 V	14EA05047u	6	0.28	1.68
2	Silicon Rectifiers - Max Current IA Max PIV 50	111 N 4001	4	0.1	0.4
3	RSR SPST Toggle Swich with lead wires 6 Amp 125 V	I7SWTOGWR	1	1.1	1.1
4	LEDs SMALL 3mm Green	08L32GD	2	0.14	0.28
5	Slow Blow Fuses Bussman 1/2 Amp	2000MDLI/2	1	0.7	0.7
6	Volt. Regulator Adjustable IA	10317-T	1	0.35	0.35
7	Volt. Regulator Adjustable IA	10337-T	1	0.75	0.75
8	Carbon film resistor 5\% 1/2W 20 Ohms	13.552	2	0.07	0.14
9	Carbon Film Resistors 5\% 1/2 W IK Ohms	13.551 K	4	0.07	0.28
10	Carbon Film Resistors 5\% 1/4 W 10 K Ohms	1300510 K	2	0.06	0.12
11	Cermet Potentiometers Single Turn 3/8" Square - Side Adjust 2K Ohm	18CPV2K	2	0.6	1.2
12	In-Line Holder For I-1-4×1-4 Fuses	2001 LINL	1	0.55	0.55
13	Power Transformers 24 VCT . 3 A	16P124-3	1	5.95	5.95
			Total		13.5

Observations:

- The design of the power supply was a refining process. Prof. Bell was kind enough to make general reviews of our work that prevented us from making serious mistakes.

POWER SUPPLY OBSERVATIONS

- When assembling on the board we made the mistake of putting components to close together. This lead to unintentionally soldering some sections of the board to each other
- When we applied power no current was measured on the output leads. We check for heat and only the transformer was warm.
- Passed conductivity test but still not turning on.

LAB 5 - LED SWITCH

- Design Inputs - LED turns "on" \& "off"
- IC should be a low as possible $\sim 5 \mathrm{~mA}$ but LED must be visible when turned "on"
- $\quad V_{\text {in }}=0$ to 5 V

Freq $=$ slow
$V_{c c}=5 \mathrm{VDC}$
$\mathrm{QI}=2 \mathrm{~N} 2222 \mathrm{~A}$
$R B=_$k ohm
$R C=\ldots 200$ ohm
LED $=\ldots$ blue
LED min current $=_5 \mathrm{~mA}$
LED VF $=\ldots 3.1 \mathrm{VDC}$
VCE when LED "on" = \qquad

19 LAB 5:

Observations:

- The Input voltage controls the proportion of the source that gets to the drain
- It is conceivably possible have a logic else where in the cirrcet control the LED's brightness

LAB 6 - COMMON-EMITTER (CE) AMPLIFIER

- Design Inputs
- $\operatorname{Vin}=10 \mathrm{mV}$ pp
- Vout $=100 \mathrm{mV}$ Pp
- Freq $=1 \mathrm{KHz}$
- $\mathrm{Vcc}=9 \mathrm{VDC}$
- $R L=I K$

21 LAB 6

- Observations:
- The output Voltage was higher than the input Voltage.
- This could be used to overcome limitations on Voltage.

LAB 7 - LED JFET SWITCH

- Design Inputs - LED turns "on" \&"off"
- ID should be a low as possible $\sim 5 \mathrm{~mA}$ but LED must be visible when turned "on".
- Vin = tbd
- Freq = slow
- $\mathrm{Vcc}=5 \mathrm{VDC}$
- $\mathrm{QI}=2 \mathrm{~N} 5457$
- $\mathrm{RB}=$ \qquad
- $\mathrm{RC}=$ \qquad
- LED = \qquad
- LED min current = \qquad
- LEDVF = \qquad
- VCE when LED "on" = \qquad
- VCE when LED "off" = \qquad

23 LAB 7 LED SWITCH

- Observations
- This devices had similar effect to the one in lab 5. Its range of control had the reverse polarity of Lab 5 .

L2AB 7

LAB 8 - COMMONDRAIN AMPLIFIER

- Design Inputs
- $\operatorname{Vin}=10 \mathrm{mV}$ pp
- Vout $=100 \mathrm{mV}$ Pp
- Freq $=1 \mathrm{KHz}$
- $\mathrm{Vcc}=9 \mathrm{VDC}$
- $\mathrm{RL}=100 \mathrm{~K}$

26 LAB 8 COMMON DRAIN AMPLIFIER

LABS 9-12:
DESIGNING
ACTIVE
FILTERS

LAB 9: DESIGN A BUTTERWORTH LOW-PASS
 FILTER WITH A 3DB POINT @ IKHZ

$\mathrm{C} \quad$ (i) File | C:/Users/PC/Downloads/HPF.pdf $\quad \Theta$ à

LAB IO: DESIGN,A BUTTERWORTH HIGH-PASS FILTER WITH A 3DB POINT @ IKHZ.

Second-Order Unity-Gain
$1 / 1$

LAB II:DESIGNA BAND-PASS FILTER
WITH A 3DB POINT @ IKHZ.

LAB I2: DESIGN, A IKHZ NOTCH FILTER.

