EECT 112

LAB NOTEBOOK, FALL 2019

BY BRIAN YANG

2 TABLE OF CONTENTS

- Lab I
- Lab 2
- Lab 3
- Lab 4
- Lab 5
- Lab 7
- Lab 8
- Lab 9

3 LAB I

- The purpose of lab I was to learn how to create logic levels for digital circuits using switches and resistors.
- Using a dip switch, four resistors, and a digital multimeter, create high and low digital signals.
- Use mulitsim to build and simulate the provided electrical diagrams

4 LAB I

Voltages for the circuits were recorded
in multisim and then
built in the lab and
measured in real life.
All voltages were
recorded.

5 LAB I OBSERVATIONS

- The difference in voltages were not behaving as I originally expected, which was an interesting learning experience.
- The real life lab experiments just showed zero volts instead of 500uV in the multisim. The lab equipment might not be Advanced enough to show readings that low

- The purpose of lab 2 was to practice converting numbers from one base to another.
- I used the lecture 2 PowerPoint and excels as a reference in the number conversions
- This Lab was just converting numbers using excel, no builds or sim.

5 Bit Binary Min	00000	Decimal value =	0
5 Bit Binary Max	11111	Decimal value =	31
8 Bin Binary Max	0000000	Decimal value =	0
8 Bin Binary Min	11111111	Decimal value =	255

Lecture 2a Slide

5.xlxs

6 Bit Binary Max	111111	Decimal value =	63
7 Bit Binary Max	1111111	Decimal value =	127

Lecture 2a Slide 7.xlxs

Min Decimal No	0	Binary value =	0
Max Decimal No	63	Binary value =	111111

Lecture 2a Slide 9.xlxs

	Min Decimal No	0	Binary value =	0000
	Max Decimal No	15	Rinary value -	1111
9	With Decimarity		Diffary value	A STREET,

Lecture 2a Slide 12.xlxs

Min Hexadecimal No	0	Decimal value =	0
Max Hexadecimal No	FFF	Decimal value =	4095

Lecture 2a Slide 14.xlxs

Hexadecimal	Decimal
000	0
03F	63
07F	127
OFF	255
FFF	4095

Lecture 2a Slide 18.xlxs

Max Decimal value =	450
Hexadecimal value =	1C2
Binary value =	111000010

- Lab 3 was about learning how AND/OR gates work and how to measure their outputs.
- Multisims of the provided circuit diagrams were made and simulated to get simulated data. Then, breadboards were constructed in the lab and real life data was taken.
- Equipment needed:
- I Digital Multimeter
- 2 10Kohm
- I 4 position dip switch
- I 74LS08
- I 74LS32

AND gate circuit

		Simulated Test	
S1	S2	Output	Output
Open	Open	5v	4V
Open	Closed	0v	0.3V
Closed	Open	0v	0.3V
Closed	Closed	0v	0.3V

OR gate circuit

		Simulated	Test
S1	S2	Output	Output
Open	Open	5v	4.05V
Open	Closed	5v	4.05V
Closed	Open	5v	4.1V
Closed	Closed	0v	0.4V

IO LAB 3

 Observations: In multisim, the simulated voltages were 5V and 0V. The real life circuit had 4V and and .34V. This may be to ambient electricity in some of the systems.

II LAB 4

- The object of lab 4 was to continue learning how to describe Logic Circuits algebraically.
- Multisims of the provided circuit diagrams were made and simulated to get simulated data. Then, breadboards were constructed in the lab and real life data was taken.
- Equipment needed:
- I Digital Multimeter
- 3 10Kohm
- I 4 position dip switch
- I 74LS08
- I 74LS32

Circuit One

				Simulated	Test
		Output	Output		
	S1	S2	S3		
	Open	Open Open		0	.1
	Open	Open	Closed	5	4.3
	Open	Closed	Open	0	.1
	Open	Closed	Closed	5	4.3
	Closed	Open	Open	0	.1
	Closed	Open	Closed	5/	4.3
	Cløsed	Closed	Open	- 5/	4.3 -
	Closed	Closed	Closed	5	4.3

4.5

		Simulated	Test	
			Output	Output
S1	S2	S3		
Open	Open Open		0	0
Open	Open Closed		0	.1
Open	Closed Open		0	.1
Open	Closed Closed		5	4.5
Closed	Open	Open	0	.14
Closed	Open	Closed	5	4.5
Closed	Closed	Open	0	1.14

-5

Closed Closed Closed

I3 LAB 4

• Observations: Ik Ohms resistors were needed to achieve Proper voltage levels.

I4 LAB 5

- Lab 5 was to learn how two input logic gates work using digital ICs, switches and resistors.
- Multisims of the provided circuit diagrams were made and simulated to get simulated data. Then, breadboards were constructed in the lab and real life data was taken
- Equipment needed:
- I Digital Multimeter
- 2 10Kohm
- I 4 position dip switch
- I 74LS04 Hex Inverter
- I 74LS08 Quad AND
- I 74LS32 Quad OR
- I 74LS86 Quad XOR

This lab was simulation only and these are the results

- The purpose of this lab was to learn how to reduce a circuit design down to the smallest size using the I7 Theorems and Karnaugh maps.
- Multisims of the provided circuit diagrams were made and simulated to get simulated data. Then, breadboards were constructed in the lab and real life data was taken
- Equipment needed:
- I Digital Multimeter
- 3 10Kohm
- I 4 position dip switch
- I 74LS04 Hex Inverter
- I 74LS00 Quad NAND
- I 74LSI I Triple 3 input AND
- 74LS32 Quad OR

One thing that was able to be used in multisim was a logic converter. This was very handy as it allowed rapid procurement of the theorems needed.

Circuit Schematic

Multisim Build

I8 LAB 7

 Test and Results: All logic options were test and voltages were recorded. Simulations matched highs and lows, but not actual voltages.

Simulated					Те		
							ſ
Α	В	С	Output	А	В	С	
0	0	0	0v	0	0	0	
0	0	1	0v	0	0	1	
0	1	0	0v	0	1	0	
0	1	1	0v	0	1	1	
1	0	0	5v	1	0	0	
1	0	1	5v	1	0	1	
1	1	0	0v	1	1	0	
1	1	1	5v	1	1	1	ſ

Output

.1v

.1v

.1v .1v

3.9v

3.9v .1v 3.9v

Table 2 Karnaugh Map of circuit

	POS
X =AB'C'+AB'C+ABC	form

Table 1 Simulation vs Test

Observations:: <u>Voltage didn't get to where it needed to Be with Ik resistors. Make sure resistors are before and after the switch, this can effect the results and make the switch act inverted.</u>

- The purpose of Lab 8 was to continue learning how to reduce a circuit design down to the smallest size using the 17 Theorems and Karnaugh maps. The results of lab 7 were needed in the SOP and POS forms, and the goal was to build those two circuits.
- Multisims of the provided circuit diagrams were made and simulated to get simulated data. Then, breadboards were constructed in the lab and real life data was taken
- Equipment needed:
- I Digital Multimeter
- 3 10Kohm Resitors
- I 4 position dip switch
- I 74LS04 Hex Inverter
- I 74LS08 Quad AND
- I 74LS32 Quad OR

Lab 8 schematic for SOP and POS circuits

Multisim buildup.

• Results: We added the lab 7 results into the tables to compare them to the results we got for this lab. If everything was done correctly, they were supposed to match (they did)

Simulated							
			Output				
А	В	С	Lab 7	SOP	POS		
0	0	0	0v	0v	0v		
0	0	1	0v	0v	0v		
0	1	0	0v	0v	0v		
0	1	1	0v	0v	0v		
1	0	0	5v	5v	5v		
1	0	1	5v	5v	5v		
1	1	0	0v	0v	0v		
1	1	1	5v	5v	5v		

Test						
			Output			
А	В	С	Lab 7	SOP	POS	
0	0	0	.1v	0.16v	0.16v	
0	0	1	.1v	0.07v	0.16v	
0	1	0	.1v	0.07v	0.16v	
0	1	1	.1v	0.07v	0.16v	
1	0	0	3.9v	4.3v	4.25v	
1	0	1	3.9v	4.3v	4.25v	
1	1	0	.1v	0.07v	0.16v	
1	1	1	3.9v	4.3v	4.25v	

 Observations: This lab was much easier than Lab 7 as these circuits actually had a designated form (POS and SOP).

- Clock lab
- The purpose of this lab is to:
- Many times you can use multiple harmonically related clocks to test a combinational circuits. The Purpose of this lab is to show students how to create a small multiple clock counter circuit that uses JK Flip Flops and a 55 Time $\frac{vcc}{vcc}$ $\frac{vcc}{vcc}$ $\frac{vcc}{vcc}$

Equipment needed:

- I 555 Timer
- I I Kohm
- I 4 position dip switch
- 2 74LS73 Dual JK flip flop with clear
- 2 Resistors (To Be Designed)
- 2 Capacitors (To Be Designed)

26

• Observations:

Remember to look at data sheets to check layout of parts almost turned on the power with 74ls73 in backwards (I overlooked the little notch being careless) but caught it giving the board one more look at the data sheet and part layout.

28 THANK YOU FOR A GREAT SEMESTER PROFESSOR BELL!